信息光学重点解答题
- 格式:doc
- 大小:368.00 KB
- 文档页数:4
信息光学试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项不是信息光学的研究范畴?A. 光波传播B. 光纤通信C. 激光加工D. 量子计算答案:D2. 光纤通信中,光信号的传输介质是什么?A. 真空B. 空气C. 光纤D. 水答案:C3. 在信息光学中,光的相干性是指什么?A. 光的强度B. 光的颜色C. 光的传播方向D. 光波的相位关系答案:D4. 以下哪个设备不是用于光纤通信的?A. 光纤B. 光端机C. 路由器D. 光放大器答案:C5. 光波的频率与波长之间的关系是什么?A. 成正比B. 成反比C. 无关D. 相等答案:B二、填空题(每题4分,共20分)1. 光纤通信中,光信号的传输介质是________。
答案:光纤2. 光的相干性是指光波的________。
答案:相位关系3. 光纤通信中,光信号的调制方式包括________和________。
答案:幅度调制、频率调制4. 光纤通信中,光信号的传输损耗主要由________和________造成。
答案:材料吸收、散射5. 光纤通信中,光信号的传输距离可以通过________来延长。
答案:光放大器三、简答题(每题10分,共30分)1. 简述信息光学在现代通信中的应用。
答案:信息光学在现代通信中的应用主要包括光纤通信、激光通信、无线光通信等。
光纤通信利用光纤作为传输介质,具有传输速度快、传输距离远、抗干扰能力强等优点。
激光通信则利用激光的高方向性和高相干性,实现远距离、高速度的通信。
无线光通信则通过大气或自由空间传输光信号,适用于移动通信和卫星通信。
2. 解释光波的相干性及其在信息光学中的重要性。
答案:光波的相干性是指不同光波之间能够相互干涉的能力,它与光波的相位关系密切相关。
在信息光学中,相干性是实现光信号调制、传输和检测的关键因素。
例如,在光纤通信中,相干光源可以提高信号的传输质量和距离。
在光学成像系统中,相干光源可以提高成像的分辨率和对比度。
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g com b = ,系统的传递函数⎪⎭⎫⎝⎛bf Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ 1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
信息光学复习题信息光学复习题一、光的本质和特性1. 什么是光的本质?光是由电磁波组成的,具有粒子和波动性质的物质。
2. 光的波长和频率之间有什么关系?光的波长和频率之间成反比关系,即波长越长,频率越低;波长越短,频率越高。
3. 什么是光的干涉?光的干涉是指两束或多束光波相互叠加而产生的干涉现象。
4. 什么是光的衍射?光的衍射是指光通过一个孔或绕过一个障碍物后,光波的传播方向发生了改变。
5. 什么是光的偏振?光的偏振是指光波中的电矢量在特定方向上振动的现象。
二、光的传播和折射1. 光在真空中的传播速度是多少?光在真空中的传播速度是每秒约300,000公里。
2. 什么是光的折射?光的折射是指光从一种介质传播到另一种介质时,光线的传播方向发生改变的现象。
3. 什么是折射定律?折射定律是描述光在两种介质间折射规律的定律,即入射角、折射角和两种介质的折射率之间满足的关系。
4. 什么是全反射?全反射是指光从光密介质射向光疏介质时,入射角大于临界角时,光线完全被反射回原介质内的现象。
5. 什么是光纤?光纤是一种能够将光信号传输的细长光导纤维,通常由光纤芯和包层组成。
三、光的色散和光谱1. 什么是光的色散?光的色散是指光通过某些介质或物体时,不同波长的光被分散成不同的角度或位置的现象。
2. 什么是光的光谱?光的光谱是指将光按照波长或频率进行排序后的光线分布图。
3. 什么是连续光谱?连续光谱是指包含了所有波长的光谱,如太阳光。
4. 什么是线状光谱?线状光谱是指只包含特定波长的光谱,如氢光谱。
5. 什么是衍射光谱?衍射光谱是指通过衍射现象产生的光谱,如菲涅尔衍射光谱。
四、光的偏振和偏振光器件1. 什么是偏振光?偏振光是指只在一个特定方向上振动的光波。
2. 什么是偏振片?偏振片是一种能够选择性地通过特定方向偏振光的光学器件。
3. 什么是偏振器?偏振器是一种能够将非偏振光转化为偏振光的光学器件。
4. 什么是偏振旋转?偏振旋转是指光在通过某些物质时,其偏振方向发生旋转的现象。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学一、2、从傅立叶光学的角度看,透镜的作用是 实现物体的傅里叶变换 。
5、 给出下式的傅立叶变换(1) =⇒)(rect t )(s i n c ε(2) ⇒)exp(0t i ω )(20ωωπδ- 。
二、4、傅里叶变换透镜和普通透镜的区别:在消除球差和彗差时,必须满足剩余一定的畸变量,使理想成像点位置与空间频率成线性关系。
三、2、已知一平面波的复振幅表达式为 )]143142141(exp[),,(z y x j A z y x U ++=,求此波在传播方向的空间频率以及沿z y x ,,方向的空间频率。
解:由)]cos cos cos (exp[),,(γβαz y x jk z y x U ++=可得143cos ,142cos ,141cos ===γβαk k k 149cos ,144cos ,141cos 222222===γβαk k k 由1cos cos cos 222=++γβα可得1=k , (1)又有 λπ2=k (2) 由(1)和(2)式可得πλ2= 所以 πλ211==f 因此 1423cos ,141cos ,1421cos πλγξπλβηπλαε====== 5、判断系统)()(x f dxd x g =是否有线性和平移不变性。
解:有题可设)()(111x f dx d x g =,)()(222x f dx d x g = )()()()()()(2211222111222111x g a x g a x f dx d a x f dx d a x f a dx d x f a dx d +=+=+故系统满足线性)()()()(00101011x x g x x f x x d d x x f dx d -=--=-故系统也具有平移不变性因此 系统满足线性和平移不变性6、已知)()()(x g x h x f =*,证明若其中一个函数发生x 0的位移,证明 )()()(00x x g x h x x f -=*-.证明:已知)()()(x g x h x f =*, 通过变换,要求得到)()()(00x x g x h x x f -=*-.有一维卷积公式:⎰∞∞--=*t t x h t f x h x f d )()()()(因此: )('d )'()'('d )'()'(d )()()()(000''000x x g t t x x h t f t x t x h t f x t t t t x h x t f x h x x f x t t -=--=--=-=--=*-⎰⎰⎰∞∞-∞∞--=∞∞-替换,上式可得:用7、F =)}({x δ F -1 =}1{ 证明:⎰+∞∞--=)(2εδπεdx e x j 证明:F =)}({x δ⎪⎩⎪⎨⎧≠===-⎰⎰+∞∞-∞+∞-0,00,1)0()2exp()(x x dx dx x j x δπεδF -1 =}1{=⎰+∞∞-επεd x j )2exp(1)(x δ对于⎰+∞∞--=)(2εδπεdx e x j 的证明见教材9页,认真看一下对以后的学习后继课程有用,考试不做要求。
一、选择题(每题2分,共40分)1.三角函数可以用来表示光瞳为________________的非相干成像系统的光学传递函数。
A 、矩形B 、圆孔C 、其它形状2.Sinc 函数常用来描述________________的夫琅和费衍射图样A 、圆孔B 、矩形和狭缝C 、其它形状3.高斯函数)](exp[22y x +-π常用来描述激光器发出的________________A 、平行光束B 、高斯光束C 、其它光束4.圆域函数Circ(r)常用来表示________________的透过率A 、圆孔B 、矩孔C 、方孔5.卷积运算是描述线性空间不变系统________________的基本运算A 、输出-输入关系B 、输入-输出关系C 、其它关系6.相关(包括自相关和互相关)常用来比较两个物理信号的________________A 、相似程度B 、不同程度C 、其它关系7.卷积运算有两种效应,一种是展宽,还有一种就是被卷函数经过卷积运算,其细微结构在一定程度上被消除,函数本身的起伏振荡变得平缓圆滑,这种效应是________________A 、锐化B 、平滑化C 、其它8互相关是两个信号之间存在多少相似性的量度。
两个完全不同的,毫无关系的信号,对所有位置,它们互相关的结果应该为________________A 、0B 、无穷大C 、其它9.周期函数随着其周期逐渐增大,频率(即谱线间隔)________________。
当函数周期变为无穷大,实质上变为非周期函数,基频趋于零A .愈来愈小B 、愈来愈大C 、不变14.函数rect(x)rect(y)的傅立叶变换为________________A 、),(y x f f δB 、1C 、)(sin )(sin y x f c f c16.一个 空间 脉冲 在输入平面位移,线性系统的响应函数形式不变 ,只产生相应的位移,这样的系统称为________________A、时不变系统B、空间不变系统或位移不变系统C、其它系统17.线性空间不变系统的脉冲响应的傅立叶变换称为系统的________________。
(1)()⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--25.22121*232121*32x rect x rect x x rect x δδ(2)()()1*=x rect x comb(3)⎪⎭⎫ ⎝⎛+21x rect *⎪⎭⎫ ⎝⎛-21x rect 设卷积为()x g ,当0≤x 时,()x g =220+=⎰+x d x α,当0>x 时,()x g =x d x -=⎰22α()⎪⎩⎪⎨⎧>-<+=0,210,212x xx xx g即()⎪⎭⎫⎝⎛Λ=22x x g(4)已知()2ex px π-的傅里叶变换为()2ex p πξ-,求(){}()222ex p ex p ξππ-=-x(){}()222222ex p 22/ex p ξσππσ-=-x(5)单位振幅的单色平面波垂直入射到一半径为a 的圆形孔径上,试求菲涅耳衍射图样在轴上的强度分布解:孔径平面撒谎能够的透射场为()⎪⎪⎭⎫⎝⎛+=a y x circ y x U 2020000,由菲涅耳公式,当0==y x 时,得到轴上点的复振幅分布为 ()()00202020202exp exp ;0,0dy dx z y x jka y x circz j jkz z U ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞∞-λ ()rdr z r jk d z j jkz a ⎰⎰⎪⎪⎭⎫ ⎝⎛=02202exp exp πθλ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=z a z a jk jkz j λπ2sin 4exp exp 222 ()⎪⎪⎭⎫⎝⎛=z a z I λπ2sin 4;0,022(6)焦距mm f 500=,直径mm D 50=的透镜将波长nm 8.632=λ的激光束聚焦,激光束的截面mm D 201=。
试求透镜焦点处的光强是激光束光强的多少倍? 解:设入射激光束的复振幅为0A ,强度为200A I =,通过透镜后的出射光场为,将此式代入菲涅耳衍射公式,并令0==y x 得焦点处的复振幅和光强为()()()4exp 2/exp ;0,021000120200D z j jkz Ady dx D y x circz j jkz A f U πλλ=⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞∞-()602120104;0,0⨯≈⎪⎪⎭⎫ ⎝⎛=I f D A f I λπ (14)彩虹全息照相系统中使用狭缝的作用是什么?为什么彩虹全息图的色模糊主要发生在狭缝垂直的方向上?在彩虹全息照相中使用狭缝的目的是为了能在白光照明下再现准单色像。
(1)()⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--25.22121*232121*32x rect x rect x x rect x δδ(2)()()1*=x rect x comb(3)⎪⎭⎫ ⎝⎛+21x rect *⎪⎭⎫ ⎝⎛-21x rect 设卷积为()x g ,当0≤x 时,()x g =220+=⎰+x d x α,当0>x 时,()x g =x d x -=⎰22α()⎪⎩⎪⎨⎧>-<+=0,210,212x xx xx g即()⎪⎭⎫⎝⎛Λ=22x x g(4)已知()2ex px π-的傅里叶变换为()2ex p πξ-,求(){}()222ex p ex p ξππ-=-x(){}()222222ex p 22/ex p ξσππσ-=-x(5)单位振幅的单色平面波垂直入射到一半径为a 的圆形孔径上,试求菲涅耳衍射图样在轴上的强度分布解:孔径平面撒谎能够的透射场为()⎪⎪⎭⎫⎝⎛+=a y x circ y x U 2020000,由菲涅耳公式,当0==y x 时,得到轴上点的复振幅分布为 ()()00202020202exp exp ;0,0dy dx z y x jka y x circz j jkz z U ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞∞-λ ()rdr z r jk d z j jkz a ⎰⎰⎪⎪⎭⎫ ⎝⎛=02202exp exp πθλ()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=z a z a jk jkz j λπ2sin 4exp exp 222 ()⎪⎪⎭⎫⎝⎛=z a z I λπ2sin 4;0,022(6)焦距mm f 500=,直径mm D 50=的透镜将波长nm 8.632=λ的激光束聚焦,激光束的截面mm D 201=。
试求透镜焦点处的光强是激光束光强的多少倍? 解:设入射激光束的复振幅为0A ,强度为200A I =,通过透镜后的出射光场为,将此式代入菲涅耳衍射公式,并令0==y x 得焦点处的复振幅和光强为()()()4exp 2/exp ;0,021000120200D z j jkz Ady dx D y x circz j jkz A f U πλλ=⎪⎪⎭⎫ ⎝⎛+=⎰⎰∞∞-()602120104;0,0⨯≈⎪⎪⎭⎫ ⎝⎛=I f D A f I λπ (14)彩虹全息照相系统中使用狭缝的作用是什么?为什么彩虹全息图的色模糊主要发生在狭缝垂直的方向上?在彩虹全息照相中使用狭缝的目的是为了能在白光照明下再现准单色像。
在普通全息照相中,若用白光照明全息图再现时,不同波长的光同时进入人眼,我们将同时观察到相互错位的不同颜色的再现像,造成再现像的模糊,即色模糊。
在彩虹全息照相中,由于狭缝起了分色作用,再现过程中不同波长的光对应不同的水平狭缝位置,通过某一狭缝位置只能看到某一准单色的像,从而避免了色模糊。
在彩虹全息照相中,为了便于双眼观察,参考平面波的选择总是使全息图的光栅结构主要沿水平方向,因而色散沿竖直方向。
狭缝沿水平方向放置,这样色散方向与狭缝垂直,即色模糊主要发生在与狭缝垂直的方向上,这样做的结果便于人眼上下移动选择不同颜色的准单色像(7)等腰直角三角形孔径放在透镜的前焦面上,以单位振幅的单色平面波垂直照明,试求透镜后焦面上是夫琅禾费衍射图样的复振幅分布 解:注意到等腰直角三角形三个边的方程分别为a x x y x y =-==00000,,,由公式得()()()[]0000'2e x p,,dy dx y x j y x t cy x U ηξπ+-=⎰⎰∞∞-()[]00000'2exp 0dy y x j dx cx x aηξπ+-=⎰⎰-()[]()()[](){}a c j a c a j ajc ηξηξπηξηξππη---+++-=sin ex p sin ex p 2' 其中fy f x ληλξ==,(8)衍射受限系统的出瞳直径为D 的圆,求此系统的光学传递函数 解:由于是圆形光瞳,OTF 应该是圆对称的,只要沿ξ轴计算即可,在x 轴方向移动ξλi d 后,交叠面积被AB 分成两个面积相等的弓形,根据几何公式,交叠面积()()θθθξcos sin 20,2-=D SDd D d i i ξλξλθ==2/2/cos在截止频率内()()()()θθθππξξξc o s s i n 24/0,0,0,20-===D S S S截止频率满足D d i =ξλ,系统相干传递函数的截止频率i c d D λρ2/=。
显然光学传递函数的截止频率恰好又是c ρ2()ηξ,在极坐标中的表达式为()[]⎪⎩⎪⎨⎧≤-=其它,0/,cos sin 2id D λρθθθπρ式中Dd i ρλθηξρ=+=cos ,22(9)衍射受限非相干成像系统的光瞳为边长l 的正方形,求其光学函数 解:光瞳函数为()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=l y rect l x rect y x P ,重叠面积()()()()()⎪⎩⎪⎨⎧>><++>--=l d l d d l d l d l d l S i i i i i i ηλξληξηλξληξηλξληξ,,00,,0,,,即()()()⎩⎨⎧<<--=其它,0,,,ld l d d l d l S i i i i ηλξληλξληξ光学传递函数为()ηξ,()⎪⎪⎭⎫ ⎝⎛Λ⎪⎪⎭⎫⎝⎛Λ==cc S S ρηρξηξ22,0式中,i c d l λρ2/=是同一系统采用相干照明时的截止频率。
非相干系统沿ξ和η轴方向上截止频率是i c d l λρ/2=(10)物体的复振幅透过率为()bx x t π2cos 1=将此物通过一横向放大率为1的光学系统成像,系统的出瞳是半径为a 的圆形孔径,并且bd a bd i iλλ2<<。
i d 为出瞳到像面的距离,λ为照明光波波长,试问对该物体成像,采用相干照明和非相干照明,哪一种照明方式为好?解:当采用相干照明系统时,对于半径为a 的圆形出瞳,其截止频率为icd a λρ=由于系统的横向放大率为1,物和理想像等大,空间频谱结构相同。
由题设条件bd a bd i iλλ2<<可得c c bρρ<<121,将物函数展开成傅里叶级数得 ()⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+== b x b x b x x t ππππ6cos 5·314cos 3·112142cos 1此物函数的基频c b ρ>/2。
所以在相干照明下,成像系统只允许零频分量通过,而其它频谱分量均被挡住,所以物不能成像,像面呈均匀强度分布。
在非相干照明条件下,系统的截止频率c ρ2大于物的基频b /2,所以零频和基频均能通过系统参与成像,于是在像面上仍有图像存在,尽管像的基频被衰减,高频被截断了。
基于这种分析,显然非相干成像要比相干成像好 (11)在上题中,如果物体换为()x t 2,其复振幅透过率为()b x x t π2cos 2=结论又如何?解:()x t 1和()x t 2这两个物函数的振幅分布不同,但有相同的强度分布bxπ2cos 。
对于相干照明,理想像的复振幅分布为bx i π2cos ,其频率为b /1,按题设系统的截止频率为ic d a λρ=,且b/1c ρ<,因此这个呈余弦分布的复振幅能不受影响地通过此系统成像。
对于非相干照明,理想像的强度分布为⎥⎦⎤⎢⎣⎡+=i i x b b x 22cos 1212cos ππ,其频率为b /2,按题设c b ρ2/2<,即小于非相干截止频率。
故此物也能通过系统成像,但幅度要受到衰减。
由此看来,在这种物结构下,相干照明好于非相干照明。
(12)制作一全息图,记录时用的是氩离子激光器波长为488.0nm 的光,而成像时则是用He-Ne 激光器波长为632.8nm 的光: ①设,10,,0cm z z z r p =∞=∞=问像距i z 是多少?②设,10,2,00cm z z z z r p==∞=问i z 是多少?放大率M 是多少?解:由公式1012121-⎪⎪⎭⎫ ⎝⎛±=z z z z r p i λλλλ,pr z z z z M 20101λλ-=,ppi r r i i i x z zx z z x z z x +±=120012λλλλ,p pi r r i i i y z zy z z y z z y +±=120012λλλλ可得①cm z i 7.7 =②cm z i 4.15 =,2=M 当i z 为正时,再现像是虚像,位于全息图左侧;当i z 为负时,再现像是实像,位于全息图右侧(13)散射物体的菲涅耳全息图的一个有趣性质是,全息图上局部区域的划痕和脏迹并不影响像的再现,甚至取出全息图的一个碎片,仍能完整地再现原始物体的像,这一性质称为全息图的冗余性①应用全息照相的基本原理,对这一性质加以说明。
②碎片的尺寸对再现像的质量有哪些影响? ①对于散射物体的菲涅耳全息图,物体与底片之间的关系是点面对应关系,即每一物点所发出的光波都直接照射到记录介质的整个平面上;反过来,菲涅耳全息图上的每一点都包含了物体各点的全部信息,称为全息图的“冗余”性。
这意味着只要一小块全息图就可以完整再现原始物的像。
因此,局部区域的划痕和脏迹并不影响物的完整再现,甚至取出一小块仍能完整再现原始物体的像。
②虽然,冗余的各小块并不带来新的信息,但各小块再现像的叠加提高了像的信噪比,增加了像的亮度。
其次,一个物点再现为一个像点是在假定全息记录介质也即全息图为无限大的情况下得出的。
对于有限大小的全息图,点物的再现像是一个衍射斑,全息图越小衍射斑越大,分辨率越低。
碎块的再现像分辨率较低。
最后,通过全息图来观察再现像,尤如通过橱窗看里面的陈列品一样,如将橱窗的一部分遮挡,有些物品就可能看看不到。
因此,小块全息图再现时,视场较小(15)在图所示系统中,在11y x 平面上放置一正弦光栅,其振幅透过率为()()101012cos x t t x tπξ+=①在频谱面的中央设置一小圆屏挡住光栅的零级谱,求像的强度分布及可见度; ②移动小圆屏,挡住光栅的+1级谱,像面的强度分布和可见度又如何?解:①设用振幅为1的单色平面波垂直照明物平面,频谱面上的零级斑对应于物平面上与0t 项相联系的直流信息,所以挡住零级斑相当于完全通过系统的物信息为()()1012102c o s ,x t y x u πξ=故输出信息成为()=33,y x u i ()()3013302c o s ,x t y x u πξ=输出图像的强度()()()()[]302130221233334cos 1212cos ,,x t x t y x u y x I i i πξπξ+===除直流外,其交流成分的空间频率02ξξ=,而条纹可见度12/2/2121min max min max ==+-=t t I I I I ②展开输入图像的物信息()()212exp 2110101++=x j t t x tπξ()1012ex p x j t πξ-谱平面上的+1级谱与物信息中含有的()1012exp 21x j t πξ相对应,故挡住+1级谱相当于完全通过的物信息为()+=0210,t y x u ()1012exp 21x j t πξ-此时的输出信息为()=33,y x u i ()=330,y x u ()30102exp 21x j t t πξ-+输出图像的强度分布为()()==23333,,y x u y x I i i ()301021202cos 41x t t t t πξ++除直流分流外,其交流成分的空间频率仍为0ξ,但条纹可见度降为4/212010t t t t +=(16)在图所示系统中,在11y x 平面上有两个图像,它们的中心在1x 轴上,距离坐标点分别为a 和a -,今在频谱面上放置一正弦光栅,其振幅透过率为()()ξπηξa T2cos 1,+=,试证明在像面中心可得到两个图像相加。