高一数学必修3第一章测试题及答案人教版(A)
- 格式:doc
- 大小:657.00 KB
- 文档页数:5
新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
12018-2019学年必修三第一章训练卷算法初步(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( ) A .13分钟B .14分钟C .15分钟D .23分钟2.如图给出了一个程序框图,其作用是输入x 值,输出相应的y 值,若要使输入的x 值与输出的y 值相等,则这样的x 值有( )A .1个B .2个C .3个D .4个3.已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是( )A .a =b ,b =aB .a =c ,b =a ,c =bC .a =c ,b =a ,c =aD .c =a ,a =b ,b =c4.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .1B .2C .3D .45.给出程序如下图所示,若该程序执行的结果是3,则输入的x 值是( )INPUT IF THEN =ELSE =END IF PRINT ENDxx y x y x y >0-A .3B .-3C .3或-3D .06.下列给出的输入语句、输出语句和赋值语句: (1)输出语句INPUT a ,b ,c (2)输入语句INPUT x =3 (3)赋值语句3=A (4)赋值语句A =B =C 则其中正确的个数是( ) A .0个B .1个C .2个D .3个7.执行如图所示的程序框图,若输入的a 为2,则输出的a 值是( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号2A .2B .1C D .1-8.阅读下面的程序框图,则输出的S 等于( )A .14B .20C .30D .559.将二进制数110101(2)转化为十进制数为( ) A .106B .53C .55D .10810.两个整数1908和4187的最大公约数是( ) A .51B .43C .53D .6711.运行下面的程序时,WHILE 循环语句的执行次数是( )N=WHILE N 20N=N +1N=N *NWEND PRINT N END< A .3B .4C .15D .1912.下图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是( )A .i 5>B .i 4≤C .i 4>D .i 5≤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果a =123,那么在执行b =a /10-a \10后,b 的值是________. 14.给出一个算法:根据以上算法,可求得f (-1)+f (2)=________.15.把89化为五进制数是________.16.执行下边的程序框图,输出的T =________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.19.(12分)已知函数()2210250x xf xx x⎧-≥⎪⎨-<⎪⎩=对每输入的一个x值,都得到相应的函数值.画出程序框图并写出程序.20.(12分)用秦九韶算法计算f(x)=2x4+3x3+5x-4在x=2时的值.321.(12分)高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.22.(12分)已知函数f(x)=x2-5,写出求方程f(x)=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.42018-2019学年必修三第一章训练卷算法初步(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】(1)洗锅盛水2分钟;(2)用锅把水烧开10分钟,期间可以洗菜6分钟,准备面条及佐料2分钟, 共10分钟;(3)煮面条和菜3分钟.共15分钟.故选C . 2.【答案】C【解析】由题意可得212232 5 5x x y x x xx -⎧≤⎪=-<≤⎨⎪>⎩, ∵输入的x 值与输出的y 值相等,当2x ≤时,2x x =,解得0x =或1x =, 当25x <≤时,23x x =-,解得3x =,当5x >时,1x x -=,解得1x =或1x =-,不符合,舍去, 故满足条件的x 值共有3个,故选C . 3.【答案】D【解析】由赋值语句知选D . 4.【答案】D【解析】初值,S =2,n =1. 执行第一次后,S =-1,n =2, 执行第二次后,S =12,n =3, 执行第三次后,S =2,n =4, 此时符合条件,输出n =4.故选D . 5.【答案】C【解析】该算法对应的函数为y =|x |,已知y =3,则x =±3.故选C . 6.【答案】A【解析】(1)中输出语句应使用PRINT ;(2)中输入语句不符合格式INPUT“提示内容”;变量; (3)中赋值语句应为A =3;(4)中赋值语句出现两个赋值号是错误的.故选A . 7.【答案】A【解析】输入2a =,0k =,11a ==-,5k < 011k =+=,112k =+=,3k =时,1a =-,4k =时, 当5k =时,2a =,当6k =时,输出2a =,故选A . 8.【答案】C【解析】由题意知:S =12+22+…+2i ,当i =4时循环程序终止,故S =12+22+32+42=30.故选C . 9.【答案】B【解析】110101(2)=1×25+1×24+0×23+1×22+0×2+1×20=53.故选B . 10.【答案】C【解析】4187=1908×2+371,1908=371×5+53,371=53×7,从而,最大公约数为53.故选C . 11.【答案】A【解析】解读程序时,可采用一一列举的形式: 第一次时,N =0+1=1;N =1×1=1; 第二次时,N =1+1=2;N =2×2=4;第三次时,N =4+1=5;N =5×5=25.故选A . 12.【答案】C【解析】S =1×24+1×23+1×22+1×21+1=[]{}()211212121⨯+⨯+⨯+⨯+(秦九韶算法).循环体需执行4次后跳出,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】0.3【解析】∵a=123,∴a/10=12.3,又∵a\10表示a除以10的商,∴a\10=12.∴b=a/10-a\10=12.3-12=0.3.14.【答案】0【解析】()40 20 xfxxxx≤⎧⎪⎨>⎪⎩=,∴f(-1)+f(2)=-4+22=0.15.【答案】324(5)16.【答案】30【解析】按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】94,94.【解析】辗转相除法:470=1×282+188,282=1×188+94,188=2×94,∴282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.∴235-141=94,141-94=47,94-47=47,∴470与282的最大公约数为47×2=94.18.【答案】见解析.【解析】程序框图如下图:程序:Si1WHILE i=999S=S+i2i=i+2WENDPRINT SEND∧=0=<19.【答案】见解析.【解析】程序框图:程序为:20.【答案】62.【解析】()f x改写为()[]{}2)4(305f x x x x x-=+++,∴v=2,1v=2×2+3=7,2v=7×2+0=14,3v=14×2+5=33,4v=33×2-4=62,∴()262f=.21.【答案】见解析.【解析】程序如下:程序框图如下图:S M i 1DOINPUT IF 90THEN M =M +1S =S +END IFLOOP UNTIL i 54P =S /M PRINT P ENDxx x =0=0=>>22.【答案】见解析.【解析】本题可用二分法来解决,设1x =2,2x =3,122x x m +=.算法如下: 第一步:1x =2,2x =3; 第二步:122x x m +=; 第三步:计算()f m ,如果()f m =0,则输出m ; 如果()0f m >,则2x m =,否则1x m =;第四步:若21||0.001x x <-,输出m ,否则返回第二步. 程序框图如图所示:。
高一数学必修3第一章测试题及答案-人教版(A)数学第一章测试题一.选择题1.下面的结论正确的是 ( )A .一个程序的算法步骤是可逆的B 、一个算法可以无止境地运算下去的C 、完成一件事情的算法有且只有一种D 、设计算法要本着简单方便的原则2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )A 、 S1 洗脸刷牙、S2刷水壶、S3 烧水、S4 泡面、S5 吃饭、S6 听广播B 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5 听广播C 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭 同时 听广播D 、 S1吃饭 同时 听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3.算法 S1 m=aS2 若b<m ,则m=b S3 若c<m ,则m=c S4 若d<m ,则 m=dS5 输出m ,则输出m 表示 ( ) A .a ,b ,c ,d 中最大值B .a ,b ,c ,d 中最小值C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序 4.右图输出的是A .2005B .65C .64D .63 5、下列给出的赋值语句中正确的是( )A. 5 = MB. x =-x (第4题)C. B=A=3D. x +y = 06、下列选项那个是正确的( )A 、INPUT A;B B. INPUT B=3 C. PRINT y=2*x+1 D. PRINT 4*x 7、以下给出的各数中不可能是八进制数的是( ) A.123 B.10 110 C.4724 D.7 8578、如果右边程序执行后输出的结果是990,那么 在程序until 后面的“条件”应为( ) A.i > 10 B. i <8 C. i <=9 D.i<9 9.读程序 甲: i=1 乙: i=1000 S=0 S=0 WHILE i<=1000 DO S=S+i S=S+i i=i+l i=i 一1 WEND Loop UNTIL i<1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是 ( )A .程序不同结果不同B .程序不同,结果相同C .程序相同结果不同D .程序相同,结果相同 10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果 ( )A .甲大乙小B .甲乙相同C .甲小乙大D .不能判断 二.填空题.11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是( 第12题)12、上面是求解一元二次方程)0(02≠=++a c bx ax 的流程图,根据题意填写: (1) ;(2) ;(3) 。
第一章单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关于算法的说法,正确的个数有()①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1个B.2个C.3个D.4个答案 C解析由于算法具有可终止性、明确性和确定性,因而②③④正确,而解决某类问题的算法不一定唯一.2.阅读如图所示的程序框图,下列说法正确的是()A.该框图只含有顺序结构、条件结构B.该框图只含有顺序结构、循环结构C.该框图只含有条件结构、循环结构D.该框图包含顺序结构、条件结构、循环结构答案 D解析阅读程序框图,可知该程序框图含有顺序结构、循环结构、条件结构,故选D.3.阅读如图所示的算法,其功能是()A.将a,b,c由小到大排序B.将a,b,c由大到小排序C.输出a,b,c中的最大值D.输出a,b,c中的最小值答案 D解析根据程序可知,其功能是输出a,b,c三个数中最小的数.故选D.4.如图所示的程序的输出结果为()a=2b=3a=bb=aPRINT'a,bENDA.3,2 B.3,3 C.2,2 D.2,3答案 B解析模拟执行程序,根据赋值语句的功能可得a=2,b=3,a=3,b=3,输出a,b的值为3,3.故选B.5.运行如图所示的程序,其结果为()n=8s=1WHILE n>=1s=s*nn=n-2WENDPRINT sENDA.192 B.3840 C.384 D.1920答案 C解析程序的功能为计算8×6×4×2的值,易知为384,故选C.6.十进制数25对应的二进制数是()A.11001 B.10011 C.10101 D.10001答案 A解析7.运行如图所示的程序框图,输出A,B,C的一组数据为3,-1,2,则在两个判断框内的横线上分别应填()A.垂直、相切B.平行、相交C.垂直、相离D.平行、相切答案 A解析由题意得直线Ax+By+C=0为3x-y+2=0,此时与直线x+3y-1=0满足A1A2+B1B2=0,即两直线垂直,且单位圆圆心到该直线的距离d=2=1,即直线与圆相切.(3)2+128.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6.当x=-4的值时,其中v4的值为()A.-57 B.124 C.-845 D.220答案 D解析由题意知v0=3,v1=3×(-4)+5=-7,v2=-7×(-4)+6=34,v3=34×(-4)+79=-57,v4=-57×(-4)-8=220.9.执行如图所示的程序框图,若输出S=49,则输入整数n=()A.8 B.9 C.10 D.8或9 答案 D解析在条件成立的情况下,执行第一次循环后,S=13,i=4;执行第二次循环后,S=25,i=6;执行第三次循环后,S=37,i=8;执行第四次循环后,S=49,i=10.若n=8或n=9,此时10≤n不成立,退出循环,输出S=49,因此n=8或n=9,故选D.10.用秦九韶算法求n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+a0的值,当x =x0时,求f(x0)需要至多算乘方、乘法、加法的次数分别为()A.n(n+1)2,n,n B.n,2n,nC.0,n,n D.0,2n,n答案 C解析f(x)=(…((a n x+a n-1)x+a n-2)x+…+a1)x+a0,由括号内层依次向外计算一次多项式的值,即:v1=a n x+a n-1,v2=v1x+a n-2,v3=v2x+a n-3,…,v n=v n-1x+a1,这样转化为求n个一次多项式的值,所以至多做n次乘法和n次加法,故选C.11.执行如图所示的程序框图,若输出的值为-5,则判断框中可以填入的条件为()A.z>10? B.z≤10?C.z>20? D.z≤20?答案 D解析x=1,y=2,z=1+2=3,满足条件;x=2,y=3,z=2+3=5,满足条件;x=3,y=5,z=3+5=8,满足条件;x=5,y=8,z=5+8=13,满足条件;x=8,y=13,z=8+13=21,由题意,此时应该不满足条件,退出循环,输出x-y=8-13=-5,所以判断框内可填入的条件是“z≤20?”.故选D.12.下列各数中最小的数为()A.101011(2)B.1210(3)C.110(8)D.68(12)答案 A解析全部转化为十进制,则101011(2)=1×25+1×23+1×2+1=43,1210(3)=1×33+2×32+1×3=48,110(8)=1×82+1×8=72,68(12)=6×12+8=80,故选A.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.如图的程序框图,若输入m=210,n=196,则输出的n为________.答案14解析输入m=210,n=196,得r=14;m=196,n=14,得r=0,输出n=14.14.程序如下:INPUT'“a,b,c=”;a,b,ca=bb=cc=aPRINT' a,b,cEND若输入10,20,30,则输出结果为________.答案20,30,20解析给a,b,c赋初值分别为10,20,30,执行a=b后a的值为20,执行b=c后b的值为30,执行c=a后c的值为20.故答案为20,30,20.15.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”.当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,如图所示,那么孩子已经出生________天.答案510解析由题中满七进一,可得题图所示为七进制数,化为十进制数为1×73+3×72+2×71+6×70=510.16.张老师给学生出了一道题:试画一个程序框图,计算S=1+13+15+17+19.同学们有如下四种画法,其中有一个是错误的,这个错误的程序框图是________(填相应的序号).答案 ③解析 ③中,当i =7时,执行最后一次循环,此时S =S +17,与题意不符合. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出用辗转相除法求下列两组数的最大公约数的过程: (1)8251与6105; (2)6731与2809.解 (1)8251=6105×1+2146; 6105=2146×2+1813; 2146=1813×1+333; 1813=333×5+148; 333=148×2+37; 148=37×4.∴最后的除数37就是8251和6105的最大公约数. (2)6731=2809×2+1113; 2809=1113×2+583; 1113=583×1+530; 583=530×1+53; 530=53×10.∴6731与2809的最大公约数为53.18.(本小题满分12分)写出下面程序运行的过程,并写出运行结果.解运行过程如下:解根据秦九韶算法,把多项式改写成如下形式:20.(本小题满分12分)如图所示,在边长为4的正方形ABCD的边上有一点P,沿着边线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB 的面积为y,求y与x之间的函数关系式并画出程序框图.解程序框图如图所示:21.(本小题满分12分)用二分法求f(x)=x2-2(x>0)近似零点的程序框图如下图所示.(1)请在图中判断框内填上合适的语句,使之能完成该题算法功能;(2)根据程序框图写出程序.解(1)判断框内应填循环终止的条件:22.(本小题满分12分)某班有50名同学,现将某科的成绩分为三个等级,80~100分为A,60~79分为B,60分以下为C.试用框图表示输出每个学生成绩等级的算法.解框图如图所示:。
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分) 1.下列四种说法中正确的有( )①任何一个算法都离不开顺序结构;②程序框图中,根据条件是否成立有不同的流向;③循环体是指按照一定条件,反复执行某一处理步骤;④循环结构中有条件结构,条件结构中有循环结构.A .1个B .2个C .3个D .4个解析: 因为顺序结构是任何一个算法都离不开的基本结构,所以①正确;在一个算法中,经常会遇到一些条件的判断,算法流程根据条件是否成立有不同的流向,因此②正确;根据循环体的定义知,③正确;④不正确.因为在条件结构中可以不含循环结构.综上分析知①②③正确,④不正确.故选C.答案: C2.(2015·四川卷)执行如图所示的程序框图,输出S 的值为( )A .-32B.32C .-12D.12解析:根据题中程序框图,可知k=1,k=1+1=2<4,k=2+1=3<4,k=3+1=4,k=4+1=5>4,S=sin 5π6=12.故输出S的值为12.故选D.答案: D3.(2015·天津卷)阅读如图的程序框图,运行相应的程序,则输出i的值为()A.2 B.3C.4 D.5解析:第一次执行,i=1,S=10-1=9;第二次执行,i=2,S=9-2=7;第三次执行,i=3,S=7-3=4;第四次执行,i=4,S=4-4=0,满足条件,则退出循环,所以输出i的值为4.故选C.答案: C4.(2015·菏泽模拟)如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S(n+1) B.S=Sx n+1C .S =SnD .S =Sx n解析: 赋值框内应为累乘积,累乘积=前面项累乘积×第n 项,即S =Sx n ,故选D. 答案: D二、填空题(每小题5分,共15分)5.阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n 后,输出的S ∈(10,20),那么n 的值为________.解析: 先读出框图的计算功能,再结合等比数列求和公式求解. 框图功能为求和,即S =1+21+22+…+2n -1. 由于S =1×(1-2n )1-2=2n-1∈(10,20),∴10<2n -1<20,∴11<2n <21,∴n =4, 即求前4项和.∴判断框内的条件为k >4?,即n =4. 答案: 46.按下列程序框图运算:规定:程序运行到“判断结果是否大于244”为1次运算,若x =5,则运算进行________次才停止.解析:第一次运算得13,第二次运算得37,第三次运算得109,第四次运算得325,大于244,程序终止,故运算进行4次.答案: 47.(2015·黄石模拟)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=________.解析:开始x=4.5,i=1,进入循环体,x=3.5;不符合x<1,则i=2,x=2.5;不符合x<1,则i=3,x=1.5;不符合x<1,则i=4,x=0.5,符合x<1,输出i=4.答案: 4三、解答题(每小题10分,共20分)8.设计程序框图,计算1×2×3×4×…×n的值.解析:程序框图(1),含有当型循环结构,如图(1)所示.程序框图(2),含有直到型循环结构,如图(2)所示.9.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分以上)的成绩,试设计一个算法,并画出程序框图.解析:算法步骤如下:第一步,把计数变量n的初始值设为1.第二步,输入一个成绩r,比较r与60的大小.若r≥60,则输出r,然后执行下一步;若r<60,则执行下一步.第三步,使计数变量n的值增加1.第四步,判断计数变量n与学生个数50的大小,若n≤50,返回第二步,若n大于50,则结束.程序框图如图.。
第一章 算法初步测试题(A 组)班次 学号 姓名 一、选择题 (每小题5分,共50分)1.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:①计算c =a ,b 的值;③输出斜边长c 的值,其中正确的顺序是 ( ) A.①②③ B.②③① C.①③② D.②①③2.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是 ( ) A.求输出,,a b c 三数的最大数 B.求输出,,a b c 三数的最小数 C.将,,a b c 按从小到大排列 D.将,,a b c 按从大到小排列3.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.0m =?B.0x = ?C.1x = ?D.1m =? ( ) 4.将两个数a =8,b =7交换,使a =7,b =8,使用赋值语句正确的一组 ( ) A. a =b ,b =a B. c =b ,b =a ,a =c C. b =a ,a =b D. a =c ,c =b ,b =a 5.下列给出的输入语句、输出语句和赋值语句⑴输出语句INPUT a ;b ;c (2)输入语句INPUT x =3 (3)赋值语句3=B (4)赋值语句A=B=2则其中正确的个数是, ( )A .0个 B. 1个 C. 2个 D. 3个6.直到型循环结构为 ( )7.下边程序执行后输出的结果是 ( ) 5n = 0s =WHILE 15s < s s n =+ 1n n =- WENDPRINT n ENDA. -1B. 0C. 1D. 28.当2x =时,下面的程序段结果是 ( ) 1i = 0s =WHILE 4i <= *1s s x =+ 1i i =+ WENDPRINT s ENDA. 3B. 7C. 15D. 17AAABC D9.下面为一个求20个数的平均数的程序,在横线上应填充的语句为 ( ) 0S = 1i = DOINPUT x S S x =+ 1i i =+LOOP UNTIL ___________ /20a S = PRINT a ENDA.20i >B.20i <C. 20i >=D.20i <=10.下列各数中最小的数是 ( ) A.()2111111 B.()6210 C.()41000 D.()981二、填空题 (每小题5分,共20分)11.如图⑵程序框图箭头a 指向①处时,输出 s=__________. 箭头a 指向②处时,输出 s=__________.12.此题程序运行结果为。
高中数学人教A版必修3 第一章算法初步高考复习习题(解答题1-100)含答案解析学校:___________姓名:___________班级:___________考号:___________一、解答题1.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出程序框图.2.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为________.3.如图所示的程序框图,(1)输入x=-1,n=3,则输出的数S是多少?(2)该程序框图是什么型?试把它转化为另一种结构.4.画出计算1+++…+的值的程序框图.5.根据如图算法的程序,画出其相应的算法程序框图,并指明该算法的目的.y 时,输入的x的值. 6.读下列程序,写出此程序表示的函数,并求当输出的67.函数y=试写出给定自变量x,求函数值y的算法.8.写出求任意给出的4个数a,b,c,d的平均数的一个算法.9.下面给出了一个问题的算法:第一步,输入x.第二步,若x≥4,则执行第三步,否则执行第四步.第三步,y=2x-1,输出y.第四步,y=x2-2x+3,输出y.问题:(1)这个算法解决的问题是什么?(2)当输入的x值为多大时,输出的数值最小?10.设计一个算法,找出闭区间上所有能被3整除的整数.11.写出一个算法,求底面边长为,侧棱长为的正四棱锥的体积.12.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸.13.写出求过两点的直线与坐标轴围成的图形的面积的一个算法. 14.从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).编号分组频数1[0,2)122[2,4)163[4,6)344[6,8)44续表编号分组频数5[8,10)506[10,12)247[12,14)128[14,16)49[16,18]4合计200(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.15.读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.16.阅读如图所示的程序框图,解答下列问题:(1)求输入的的值分别为,时,输出的的值;(2)根据程序框图,写出函数()的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.17.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)若执行该程序框图,输出的结果为9,求输入的实数x 的值.18.(1)用秦九韶算法求多项式()543254323f x x x x x x =++++-当2x =时的值;(2)用辗转相除法或更相减损术求81和135的最大公约数. 19.阅读如图所示的程序框图,解答下列问题:(1)求输入的x 的值分别为1,2-时,输出的()f x 的值;(2)根据程序框图,写出函数()f x (x R ∈)的解析式;并求当关于x 的方程()0f x k -=有三个互不相等的实数解时,实数k 的取值范围.20.已知函数f(x)=x 2-5,写出求方程f(x)=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.21.高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图. 22.用秦九韶算法计算f(x)=2x 4+3x 3+5x -4在x =2时的值.23.已知函数 ,对每输入的一个x 值,都得到相应的函数值.画出程序框图并写出程序.24.画出计算12+32+52+…+9992的程序框图,并编写相应的程序. 25.25.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.26.函数y =1,0{0,0 1,0x x x x x -+>+<=,写出给定自变量x ,求函数值的算法.27.如图,给出了一个程序框图, 其作用是输入 的值, 输出相应的 的值(1) 若视为自变量,为函数值,试写出函数的解析式;(2)若要使输入的的值与输出的的值相等,则输入的值为多少?28.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.设计安全过河的算法.29.写出解方程x2-2x-3=0的一个算法.30.读框图(如图),说明该程序框图所表示的算法功能,并写出与之对应的程序.31.根除如下一个算法:第一步,输入;第二步,若,则,否则执行第三步;第三步,若,则,否则;第四步,输出.(1)画出该算法的程序框图;(2)若输出的值为1,求输入实数的所有可能的取值.32.分别用辗转相除法和更相减损术求1734,816的最大公约数.33.用辗转相除法求294,84的最大公约数.34.“鸡兔同笼”问题是我国古代著名的趣题之一.《孙子算经》中就记载了这个有趣的问题.书中这样描述:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?试设计一个算法,输入鸡兔的总数量和鸡兔的脚的总数量,分别输出鸡、兔的数量,写出程序语句.并画出相应的程序框图.35.对于任意的实数a,b,定义一种运算a*b=a3-a2b+ab2+b3,试设计一个程序,能够验证该运算是否满足交换律.36.以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.INPUT “ ,y=”; ,yx=x/3y=2*y∧2PRINT x,yx=2*x-yy=y-1PRINT x,yEND37.在R1,R2,R3这三个电阻并联的电路中,电压为U,则电流的公式为I=UI的程序.38.某代销点出售《无线电》《计算机》《看世界》三种杂志,它们的定价分别为1.20元、1.55元、2.00元,编写一个程序,求输入杂志的订购数后,立即输出所付金额. 39.已知直线方程为 A +By+C=0(A·B≠0),试编写一个程序,要求输入符合条件的A,B,C的值,输出该直线在x轴、y轴上的截距和直线的斜率.40.已知函数f(x)=x2-2x+1,y1=f(3),编写一个程序计算f(y1)的值.41.已知函数f(x)=x2+3x+1,编写一个程序来计算f(4)的值.42.2015年春节期间,某水果店的三种水果标价分别为香蕉:2元/千克,苹果:3元/千克,梨:2.5元/千克.请你设计一个程序,以方便店主的收款.43.由程序框图写出程序.44.结合图形,说明下列程序的功能.45.汽车托运重量为P(kg)的货物时,托运每千米的费用(单位:元)标准为:y=()0.220{ 0.2200.112020P P kg P P kg≤⨯+⨯-> 当 当试编写一程序求行李托运费.46.给出如下程序(其中x 满足:0<x<12) 程序: INPUT xIF x>0AND x<=4 THEN y=2x ELSEIF 4<x AND x<=8 THEN y=8 ELSE y=24-2x END IF END IF PRINT y END(1)该程序用函数关系式怎样表达? (2)画出这个程序的程序框图.47.已知函数y=3,0,{3,0,x xx x->+≤设计程序,使输入x的值,输出相应的y值.48.读下面所给的程序,依据程序画出程序框图,并说明其功能:INPUT xIF x>1 OR x<-1 THENy=1ELSE y=0END IFPRINE yEND.49.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2当x=-2时的值.50.已知函数y.51.(1)用辗转相除法求567与405的最大公约数;(2)用更相减损术求2 004与4 509的最大公约数.52.儿童乘坐火车时,若身高不超过1.1 m,则无须购票;若身高超过1.1 m但不超过1.4 m,可买半票;若超过1.4 m,应买全票.试写出一个购票算法程序.53.给出一个算法的程序框图(如图所示).(1)说明该程序的功能;(2)请用WHILE型循环语句写出程序.54.编写程序,使得任意输入2个整数按从大到小的顺序输出.55.已知函数f (x )=(x+1)2,将区间[1,10]九等分,画出求函数在各等分点及端点处所取得函数值算法的程序框图.56.画出求12-22+32-42+…+992-1002的值的算法的程序框图. 57.(1)将137化为六进制数. (2)将53(8)转化为三进制数.58.用辗转相除法求888与1 147的最大公约数.59.利用秦九韶算法求多项式f(x)=3x 6+12x 5+8x 4-3.5x 3+7.2x 2+5x-13当x=6时的值,写出详细步骤.60.分别用辗转相除法和更相减损术求261与319的最大公约数. 61.把三进制数2101211(3)转化为八进制的数.62.已知()()10175125r =,求在这种进制里的数()76r 应记成十进制的什么数? 63.学习优秀奖的条件如下: (1)五门课的成绩总分不低于500分. (2)每门课成绩都不低于90分.(3)三门主课每门的成绩都不低于100分,其他两门课的成绩都不低于90分. 输入某学生的五门课的成绩,问他是否够优秀条件.画出程序框图. 64.阅读如图程序框图,并根据该框图回答以下问题.(1)分别求f (-1),f (0),f ,f (3)的值. (2)写出函数f (x )的表达式.65.在音乐唱片超市里,每张唱片售价25元,顾客如果购买5张以上(含5张)唱片,则按照九折收费;如果顾客购买10张以上(含10张)唱片,则按照八五折收费.请设计一个完成计费工作的算法,并画出程序框图.66.画出输入一个数x ,求分段函数y .67.设计一个算法计算1×3×5×7×…×99值的算法,画出程序框图,写出程序.68.设计一个算法,求使1+2+3+4+…+n>2 017成立的最小自然数,画出程序框图,并写出程序语句.69.已知f(x)=x2-2x-3,求f(3),f(-5),f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出程框图.70.已知一个直角三角形的两条直角边长为a、b,斜边长为c,写出它的外接圆和内切圆面积的算法,并画出程序框图.71.已知两个单元分别存放了变量x和y,试变换两个变量的值,并输出x和y,请写出算法并画出程序框图.72.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.73.已知x=10,y=2,画出计算w=5x+8y值的程序框图.74.如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并画出程序框图.75.76.求函数()()222y={22x x xx-≥-<的值的程序框图如图所示.(1)指出程序框图中的错误,并写出算法;(2)重新绘制解决该问题的程序框图,并回答下面提出的问题.①要使输出的值为正数,输入的x的值应满足什么条件?②要使输出的值为8,输入的x值应是多少?③要使输出的y值最小,输入的x值应是多少?77.用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.78.如图是为求1~100中所有自然数的平方和而设计的程序框图,将空补上,指明它是循环结构中的哪一种类型,并画出它的另一种循环结构框图.79.在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a,输出顾客要缴纳的金额C.并画出程序框图.80.下列是某个问题的算法程序,将其改为程序语言,并画出程序框图.算法:第一步,令i=1,S=0.第二步,若i≤999成立,则执行第三步;否则,输出S,结束算法.第三步,S=S.第四步,i=i+2,返回第二步.81.分别用辗转相除法和更相减损术求282与470的最大公约数.82.如图所示的程序框图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件解答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为3时,求输出的f(x)的值;(3)要想使输出的值最大,求输入的x的值.83.如图所示的程序框图,要使输出的y的值最小,则输入的x的值应为多少?此时输出的y的值为多少?84.已知一个三角形的三边边长分别为2,3,4,设计一个算法,求出它的面积,并画出程序框图.85.给出20个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推,如图所示的程序框图的功能是计算这20个数的和.(1)请在程序框图中填写两个(_______)内缺少的内容;(2)请补充完整该程序框图对应的计算机程序(用WHILE语句编写).86.阅读程序框图,并完成下列问题:(1)若输入x=0,求输出的结果;(2)请将该程序框图改成分段函数解析式;(3)若输出的函数值在区间11,42⎡⎤⎢⎥⎣⎦内,求输入的实数x的取值范围.87.编写一个程序计算12+32+52+…+992,并画出相应的程序框图.88.用辗转相除法和更相减损术求1734和816的最大公约数(写出过程)89.《中国诗词大会》第二季总决赛已于2017年2月初完美收官,来自全国各地的选手们通过答题竞赛的方式传播中国古诗词,从诗经、汉魏六朝诗、唐宋诗词、明清诗词―直到毛泽东诗词,展现了对中国传统文化经典的传承与热爱,比赛采用闯关的形式,能闯过上一关者才能进人下一关测试,否则即被淘汰.已知某选手能闯过笫一、二、三关.(1)求该选手在第3关被淘汰的概率;(2)该选手在测试中闯关的次数记为X,求随机变量X的分布列与数学期塑. 90.根据下面的要求,求13599++++的值.(1)请完成执行该问题的程序框图;(2)请用for语句写出该算法.91.已知175(r)=125(10),求在这种进制里的数76(r)应记成十进制的什么数?92.分别用当型和直到型循环语句编写一个程序,计算2×4×6×…×100的值.93.199100++⨯并画出程序框图及编写程序.94.编写一个程序计算12+32+52+…+992,并画出相应的程序框图.95.读下列各题所给的程序,依据程序画出程序框图,并说明其功能:(1)INPUT “x=”;xIF x>1 OR x<-1 THENy=1ELSE y=0END IFPRINE yEND(2)INPUT “输入三个正数a,b,c=”;a,b,cIF a+b>c AND a+c>b AND b+c>a THENp=(a+b+c)/2S=SQR(p*(p-a)*(p-b)*(p-c))PRINT “三角形的面积S=”SELSEPRINT “构不成三角形”END IFEND96.某商场为迎接店庆举办促销活动,活动规定:购物额在100元及以内不予优惠,在100~300元之间优惠5%,超过300元之后,超过部分优惠8%,原优惠条件仍然有效.写出顾客的购物额与应付金额之间的程序,要求输入购物额能够输出实付货款,并画出程序框图.97.已知函数y=f(x)的程序框图如图所示.(1)求函数y=f(x)的表达式;(2)写出输入x的值计算y的值的程序.98.编写一个程序,求用长度为L的细铁丝分别围成一个正方形和一个圆时所围成的正方形和圆的面积.要求输入L的值,输出正方形和圆的面积,并画出程序框图.(π取3.14)99.中秋节到了,糕点店的售货员很忙,请设计一个程序,帮助售货员算账,已知豆沙馅的月饼每千克25元,蛋黄馅的月饼每千克35元,莲蓉馅的月饼每千克30元,那么依次购买这三种月饼a、b、c千克,应收多少钱?100.“鸡兔同笼”问题是我国古代著名的趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中这样描述:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?试设计一个算法,输入鸡兔的总数和鸡兔的脚的总数,分别输出鸡、兔的数量.参考答案1.见解析.【解析】试题分析:由题意,从成绩中搜索出大于等于60的成绩,由此可得选择结构的判断框的条件,再依据搜索数据的个数确定循环的条件,得到算法,即可画出相应框图试题解析:算法如下:第一步:i=1.第二步,输入x.第三步,若x≥60则输出.第四步,i=i+1.第五步,判断i>50,是,结束;否则执行第二步.程序框图如图所示:2.9【解析】试题分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.试题解析:第一次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,不满足退出循环的条件,,再次执行循环体后,,满足退出循环的条件,故输出的值为9,故答案为93.(1);(2)见解析.【解析】试题分析:(1)列出循环过程中与的数值,满足判断框的条件即可结束循环.(2)原图是当型循环,改为直到型试题解析:(1)当n=3时,i=3-1=2,满足i≥0,故S=6×(-1)+2+1=-3;执行i=i-1后i的值为1,满足i≥0,故S=(-3)×(-1)+1+1=5;再执行i=i-1后i的值为0,满足i≥0,故S=5×(-1)+0+1=-4;继续执行i=i-1后i的值为-1,不满足i≥0,故输出S=-4.(2)原图是当型循环,改为直到型(如图):4.见解析.【解析】试题分析: 由已知中程序的功能为用循环结构计算1+++…+的值,为累加运算,且要反复累加10次,可令循环变量的初值为1,终值为10,步长为1,由此确定循环前和循环体中各语句,即可得到相应的程序框图.试题解析:程序框图如下图所示:【点睛】本题考查设计程序框图解决实际问题,其中熟练掌握利用循环进行累加和累乘运算的方法,是解答本题的关键.5.见解析【解析】分析:根据已知中的程序语句可知,该程序是一个直到型循环结构,进而可画出程序的框图,进而根据循环条件及输出项,可判断出程序的功能,进而构造满足条件的不等式,解不等式,可得答案.详解:画出的其相应的算法程序框图如下:该算法的目的:求使1+2+3+…+n>2010成立的最小自然数n.(或1+2+3+…+n≤2010的最大正整数n的值再加1)点睛:该题考查的是有关程序框图的问题,在解题的过程中,需要先从题中所给的程序中判断该程序所要解决的问题,即其运行的目的,之后根据题意求得结果.6.2,0{1,0 2,0x x y x x x <=-=>,或3x =.【解析】试题分析: 分析此程序框图表示的函数是分段函数, 讨论x 的取值范围,求出6y =时x 的值.试题解析:根据程序图,可知此程序框图表示的函数为2,0{1,0 2,0x x y x x x <=-=>, 当0x <时,由26x =当0x >时,由26x = 得, 3x =.; 故当输出的6y =时,输入的或3x =.7.见解析【解析】试题分析:本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中分段函数的解析式y=,然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可写出算法.试题解析:因为函数是分段函数,故要先输入变量值,再进行判断,分别进行不同的计算.算法如下:第一步,输入x.第二步,若x>0,则令y=-x+1后执行第五步;否则执行第三步.第三步,若x=0,则令y=0后执行第五步;否则执行第四步.第四步,令y=x+1.第五步,输出y 的值.点睛:分析题意,解答此类问题,可以依据已知的分段函数,将x 的取值范围作为条件设计算法;联系题设,依据不同x 的取值范围下对应不同的函数式结合算法的概念写出算法过程.8.见解析【解析】试题分析:熟悉并掌握算法的步骤,分解平均数的计算步骤即可作答.试题解析:第一步,输入a,b,c,d的值;第二步,计算S=a+b+c+d;第三步,计算V=;第四步,输出V的值.9.(1)见解析(2)当输入的x的值为1时,输出的数值最小.【解析】试题分析:本题考查了一个条件分支结构的算法,可分为和,执行不同的计算,即可得到结论.试题解析:(1)这个算法解决的问题是求分段函数y的函数值的问题.(2)本问的实质是求分段函数最小值的问题.当x≥4时,y=2x-1≥7;当x<4时,y=x2-2x+3=(x-1)2+2≥2.∴函数最小值为2,当x=1时取到最小值.∴当输入x的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.10.见解析【解析】试题分析:可通过循环结构的算法实现求闭区间上所有能被整除的整数.试题解析:第一步,用20除以3,余数不为0,故20不能被3整除;第二步,用21除以3,余数为0,故21能被3整除;第三步,用22除以3,余数不为0,故22不能被3整除;第四步,用23除以3,余数不为0,故23不能被3整除;第五步,用24除以3,余数为0,故24能被3整除;第六步,用25除以3,余数不为0,故25不能被3整除;第七步,指出在闭区间[20,25]上能被3整除的整数为21和24.11.见解析【解析】试题分析:求解正四棱锥的体积,先求出棱锥的高与底面面积和高,再利用体积公式求出体积.试题解析:第一步,令a=4,l=5.第二步,计算R=.第三步,计算h=.第四步,计算S=a2.第五步,计算V=Sh.第六步,输出运算结果V.12.见解析【解析】试题分析:根据算法的概念和算法的流程为一个循环结构的算法,可把该算法分为五步,即可写出算法.试题解析:第一步,两个小孩将船划到右岸.第二步,他们中一个上岸,另一个划回来.第三步,小孩上岸,一个士兵划过去.第四步,士兵上岸,让小孩划回来.第五步,如果左岸没有士兵,那么结束,否则转第一步点睛:本题考查了算法的一个实际应用问题,解题时要主语熟练掌握循环结构算法的性质和应用是解答的关键,算法时新课标中新增内容,也一直是命题的一个热点,试题比较基础,属于基础题.13.见解析【解析】试题分析:根据算法的概念和算法的流程即可写出该算法.试题解析:第一步,取x1=-2,y1=-1,x2=2,y2=3.第二步:计算y y.y y第三步:在第二步结果中令x=0得到y的值为m,得直线与y轴交点为(0,m).第四步:在第二步结果中令y=0得到x的值为n,得直线与x轴交点为(n,0).第五步:计算S=|m|·|n|.第六步:输出运算结果S.14.(1)0.9(2)0.125(3)4【解析】试题分析:(1)求出对应情况下出现的频数,频数与总数之比为频率;(2)根据频数求出频率,频率乘以组距得出a,b的值;(3)结合频率分布直方图根据题意算出平均数.试题解析:(1)由频率分布表可知该周课外阅读时间不少于12 h的频数为12+4+4=20,故可估计该周课外阅读时间少于12 h的概率为1-=0.9.(2)由频率分布表可知数据在[4,6)的频数为34,故这一组的频率为0.17,即a=0.085,数据在[8,10)的频数为50,故这一组的频率为0.25,即b=0.125.(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(h),故样本中的200名学生该周课外阅读时间的平均数在第四组.15.【解析】试题分析:阅读程序框图可知,此程序表示的函数为,当时,得.当时,得.试题解析:此程序表示的函数为,当时,得.当时,得.故当输出的时,输入的,故答案为.16.(1),;(2).【解析】试题分析:(1)根据框图中条件语句,判断变量执行哪个函数,计算求解即可;(2)由框图可知,分析分段函数的单调性,进而可得解.试题解析:(1)当输入的 的值为 时,输出的 . 当输入的 的值为2时,输出的 .(2)根据程序框图,可得, 当 时, ,此时 单调递增,且 ;当 时, ;当 时, 在 0 1 上单调递减,在 上单调递增,且 .结合图象,知当关于 的方程 有三个不同的实数解时,实数 的取值范围为 0 1 .17.(1)2,1{ 21,1x x x y x -<=+≥;(2)7x =-或3. 【解析】试题分析:(1)利用条件结构框图得到函数的解析式;(2)分两种情况解得输入的实数x 的值.试题解析:(1)2,1{ 21,1x x x y x -<=+≥.(2)当1x <时, 29x -=, 7x =-; 当1x ≥时, 2+1=9x , 3x =, 所以7x =-或3.18.(1)255;(2)27【解析】试题分析:(1)把所给的函数式变化成都是一次式的形式,逐一求出从里到外的函数值的值,最后得到当2x =时的函数值;(2)用辗转相除法求81与135的最大公约数,写出135=81×1+54=27×2+0,得到两个数字的最大公约数.试题解析:(1)()()()()()543213f x x x x x x =++++-05v =; 152414v =⨯+=; 2142331v =⨯+=; 3312264v =⨯+=46421129v =⨯+=; 512923255v =⨯-=所以,当2x =时,多项式的值为255.(2)13581154=⨯+8154127=⨯+,542720=⨯+,则81与135的最大公约数为27点睛:本题主要考查辗转相除法和更相减损术求最大公约数,属于中档题. 辗转相除法和更相减损术是求两个正整数的最大公约数的方法,辗转相除法是当大数被小数除尽时,结束除法运算,较小的数就是最大公约数;更相减损术是当大数减去小数的差等于小数时停止减法运算.较小的数就是最大公约数.一般情况下,用辗转相除法得到最大公约数的步骤较少,而用更相减相术步骤较多.但运算简易.解题时要灵活运用.19.(1)见解析(2)()0,1.【解析】试题分析:(1)根据输入的x 的值为1-时,输出结果;当输入的x 的值为2时,输出结果;(2)根据程序框图,可得()f x ,结合函数图象及()0f x k -=有三个互不相等的实数解即可求出实数k 的取值范围.试题解析:(1)当输入的x 的值为1-时,输出的 当输入的x 的值为2时,输出的()222211f x =-⨯+= (2)根据程序框图,可得()22,0{2,0 21,0x x f x x x x x <==-+>当0x <时, ()2xf x =,此时()f x 单调递增,且()01f x <<; 当0x =时, ()2f x =;当0x >时, ()()22211f x x x x =-+=-在()0,1上单调递减,在()1,+∞上单调递增,且()0f x ≥.结合图象,知当关于x 的方程()0f x k -=有三个互不相等的实数解时,实数k 的取值范围为()0,1.20.见解析【解析】试题分析:本题可用二分法来解决,设,,算法如下,第一步,,,第二步,第三步,计算,如果,则输出,如果,则,否则第四步,若,则输出,否则返回第二步解析:点睛:本题考查了用二分法求解函数零点的近似解,按照精确条件,设计出循环结构图,通过限制条件做运算,本题在求解的过程中需要很好的理解二分法的做法,以及确定好限制条件。
.. .. ..高一数学必修 3 第一章试题一、选择题 : (每题 5 分,共 60 分)1. 算法的三种基本构造是 ( )A. 次序构造、模块构造、条件构造B. 次序构造、循环构造、模块结构C. 次序构造、条件构造、循环构造D. 模块构造、条件构造、循环结构2. 将两个数 a=8,b=17 互换 ,使 a=17,b=8, 下边语句正确一组是()A.a=b B. c=b C. b=a D. a=cb=ab=a a=b c=ba=c b=a3.给出以下四个问题 ,①输入一个数 x,输出它的相反数 .②求面积为 6 的正方形的周长 .x 1. x0③求三个数 a,b,c 中的最大数 .④求函数f (x) {x 2. x0 的函数值. 此中不需要用条件语句来描绘其算法的有 ( )A.1 个B.2 个C.3个D.4 个4. 下边为一个求 20 个数的均匀数的程序 ,在横线上应填补的语句为 ( )S=0i=1A. i>20DOINPUT xS=S+xi=i+1B. i<20LOOP UNTIL _____.. .. ..C. i>=20D. i<=205. 下边的程序运转后的输出结果为 ( )A .17B .19C .21D .236. 将 389 化成四进位制数的末位是 ( )A. 1B. 2C. 3D. 07. 以下各数中最小的数是()A. 85( 9)B. 210 (6 )1000 (4 )D.111111 (2 )C.8. 用秦九韶算法计算多项式 f ( ) 3 x 64 x5 5 x 46 x 37 x 28 x 1当 x 0.4x时的值时 ,需要做乘法和加法的次数分别是( )......A.6,6B.5,6C.5,5D.6,59. 用秦九韶算法计算多项式f ( x) 12 35x 8x 2 79x3 6x4 5x5 3x 6在x4时的值时 ,V3的值为 ()A. -845B. 220C. -57D. 3411. 履行下边的程序框图,输出的 S= ( )A.25 B.9 C.17 D.2012. 如下图,程序框图 (算法流程图 )的输出结果是( ).A. 3 B. 4 C. 5 D .8二.填空题 .(每题 2 分,共 10 分)13. 下左程序运转后输出的结果为_________________________.x=5y=- 20IF x<0 THENx=y - 3ELSEy=y+3END IFPRINT x- y , y- xEND第13题14. 1001011(2)= ( 10)三.解答题 : (2 小题 ,共 30 分.注意 :解答题一定要写出必需的文字说明或步骤 )15.用展转相除法求 324 、 243 、135 的最大条约数x 2 1, x 116. (15 分) 已知函数 yx 1, 1 x 1 编写一程序求函数值 .3x 3 , x 1高一数学必修 3 第一章试题答案一.选择题:CBBAC ADAC CB二. 填空题 :13: 22 ,-2214:75三. 解答题 :15. 解: 324=243 ×1+ 81243=81 ×3+0 则 324 与 243 的最大条约数为 81......又 135=81 ×1+5481=54 ×1 + 2754=27 ×2 + 0则81与135的最大条约数为27 因此 ,三个数 324 、 243 、135 的最大条约数为27.16. 解:INPUT “x= ”; xIF x<- 1 THENy=x^2-1ELSEIF x>1 THENy=SQR(3*x)+3ELSEy=ABS(x)+1END IFEND IFPRINT “y= ”; yEND......。
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同解析:算法的特点:有穷性、确定性、顺序性、正确性、不唯一性与普遍性.答案: C2.如图是某算法流程图的一部分,其算法的逻辑结构为()A.顺序结构B.判断结构C.条件结构D.循环结构解析:条件结构是处理逻辑判断并根据判断结果进行不同处理的结构,由算法流程图知,该算法的逻辑结构为条件结构,故选C.答案: C3.下面的程序:a=1WHILE a<100a=a+1WEND执行完毕后a的值为()A.99B.100C.101D.102解析:a=99+1=100.答案: B4.下列语句中:①m=x3-x2②T=T×I③32=A④A=A+2⑤a=b=4,其中是赋值语句的个数为()A.5B.4C.3D.2解析:①m=x3-x2为赋值语句;②T=T×I为赋值语句;③32=A,因为左侧为数字,故不是赋值语句;④A=A+2为赋值语句;⑤a=b=4,因为是连等,故不是赋值语句.故赋值语句个数为3,故选C.答案: C5.阅读下列程序:A的值为()A.5B.6C.15D.120解析:执行赋值语句后A的值依次为2,6,24,120,故最后A的值为120.答案: D6.执行如图的程序框图,如果输入的n是4,则输出的p是()A.8B.5C.3D.2解析:运行过程如下:n=4,s=0,t=1,k=1,p=1,k=1<n,p=0+1=1,s=1,t=1,k=1+1=2<n,p=1+1=2,s=1,t=2,k=2+1=3<n,p=1+2=3,s=2,t=4,k=3+1=4<n不成立,所以输出p=3.答案: C7.4 830与3 289的最大公约数是()A.13B.35C.12D.23解析:用辗转相除法,4 830=3 289×1+1 541,3 289=1 541×2+207,1 541=207×7+92,207=92×2+23,92=23×4,所以23是4 830与3 289的最大公约数.答案: D8.下面进位制之间转化错误的是()A.101(2)=5(10)B.27(8)=212(3)C.119(10)=315(6)D.31(4)=62(2)解析:101(2)=1×22+0×2+1=5,故A对;27(8)=2×8+7=23,212(3)=2×32+1×3+2=23,故B对;315(6)=3×62+1×6+5=119,故C对;31(4)=3×4+1=13,62(2)=6×2+2=14,故D错.答案: D9.某程序框图如图所示,若输出结果是126,则判断框中可以是()A.i>6?B.i>7?C.i≥6?D.i≥5?解析:根据程序框图可知,该程序执行的是2+22+23+24+25+26,所以判断框中应该填i>6?.答案: A10.给出30个数:1,2,4,7,11,…,其规律是第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A.i≤30;p=p+i-1B.i≤29;p=p+i+1C.i≤31;p=p+iD.i≤30;p=p+i解析:将p=p+i-1,p=p+i+1,p=p+i依次代入执行框②处验证可知只有p=p+i符合给定的前五项,判断框①处代入i≤30验证正好符合30个数求和.答案: D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.204与85的最大公因数是W.解析:∵204÷85=2……34,85÷34=2……17,34÷17=2,204与85的最大公因数是17,故答案为17.答案:1712.已知多项式p(x)=3x5+9x4+x3+kx2+4x+11,当x=3时值为1 616,则k=W.解析:由秦九韶算法,得p(x)=((((3x+9)x+1)x+k)x+4)x+11.则当x=3时,p(3)=(((54+1)×3+k)×3+4)×3+11.=(495+3k+4)×3+11=9k+1 508=1 616,所以k=12.答案:1213.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8当x=5时的值的过程中v3=W.解析:∵f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,∴v3=((5x+2)x+3.5)x-2.6将x=5代入得v3=((5×5+2)×5+3.5)×5-2.6=689.9.答案:689.914.对任意非零实数a ,b ,若a ⊗b 的运算原理如下图所示,则log 28⊗⎝⎛⎭⎫12-2= W.解析: log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么? (2)根据框图用当型循环语句编写程序. 解析: (1)①k <101?(k ≤100?) ②s =s +1k(2)16.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧x 2-1,x <-1,|x |+1,-1≤x ≤1,3x +3,x >1,编写一个程序求函数值.解析: 程序如下:f (x )=2x 4+3x 3+5x -4在x =2时的值. 解析: f (x )改写为f (x )=(((2x +3)x +0)x +5)x -4, ∴v 0=2, v 1=2×2+3=7, v 2=7×2+0=14, v 3=14×2+5=33, v 4=33×2-4=62, ∴f (2)=62.18.(本小题满分14分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.解析: 算法如下:第一步,a 1=1. 第二步,i =9.第三步,a 0=2×(a 1+1). 第四步,a 1=a 0. 第五步,i =i -1.第六步,若i =0,执行第七步,否则执行第三步. 第七步,输出a 0的值. 流程图和程序如下:。
最新人教A版必修三高中数学高一数学(人教版必修3)第一章算
法初步和答案
重点列表:重点重点1重点2重点3名称算法的概念顺序结构分支结构重要指数
★★★★★★★★★★★重点详解:1.算法的概念及特点(1)算法的概念
在数学中,算法通常是指遵循一定的
(2)算法的特点之一是具有______性,即算法中的每一步都应该是确定的,并能有效的执行,且得到确定的结果,而不应是模棱两可的;其二是具有______性,即算法步骤明确,前一步是后一步的前提,只有执行完前一步才能进行后一步,并且每一步都准确无误才能解决问题;其三是具有______性,即一个算法应该在有限步操作后停止,而不能是无限的;另外,算法还具有不唯一性和普遍性,即对某一个问题的解决不一定是唯一的,可以有不同的解法,一个好的算法应解决的是一类问题而不是一两个问题.2.程序框图(1)程序框图的概念
程序框图,也称为流程图,是一种使用、和来表示算法的图形。
(2)构成程序框图的图形符号、名称和函数
图形符号名称功能表示一个算法的起①始和结束表示一个算法输入②和输出的信息③赋值、计算判断某一条件是否成立,成立时在出口标明“是”或④处“y”;不成立时标明“否”或“n”⑤连接程序框○
3.算法的基本逻辑结构(1)顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按__________的顺序进行的.它是由若干个__________的步骤组成的,它是任何一个算法都离不开的基本结构.顺序结构可用程序框图表示为如图所示的形式:
将两者联系起来⑥ 部分程序框图
(2)条件结构
在算法中,我们经常会遇到一些条件的判断。
根据条件是否成立,算法的流程有不同的流向。
通用条件结构可在程序框图中以两种形式表示,如图所示:。
高中数学学习材料马鸣风萧萧*整理制作第一章综合素能检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.算法共有三种逻辑结构,即顺序结构、条件结构和循环结构.下列说法中,正确的是( )A .一个算法只能含有一种逻辑结果B .一个算法最多可以包含两种逻辑结构C .一个算法必须含有上述三种逻辑结构D .一个算法可以含有上述三种逻辑结构的任意组合 [答案] D2.下列赋值语句错误的是( ) A .i =i -1 B .m =m 2+1 C .k =-1k D .x*y =a[答案] D[解析] 执行i =i -1后,i 的值比原来小1,则A 正确;执行m =m 2+1后,m 的值等于原来m 的平方再加1,则B 正确;执行k =-1k 后,k 的值是原来的负倒数,则C 正确;赋值号的左边只能是一个变量,则D 错误.3.计算机执行下面的程序段后,输出的结果是( ) A .1,3 B .4,1 C .0,0D .6,0a =1b =3a =a +b b =a -bPRINT a ,b[答案] B[解析] 把1赋给变量a ,把3赋给变量b ,由语句“a =a +b ”得a =4,即把4赋给定量a ,由语句“b =a -b ”得b =1,即把1赋给变量b ,输出a ,b ,即输出4,1.4.阅读如图所示的程序框图,如果输出的函数值在区间⎣⎢⎡⎦⎥⎤14,12内,则输入的实数x 的取值范围是( )A .(-∞,-2]B .[-2,-1)C .[-1,2)D .[2,+∞)[答案] B[解析] 由程序框图知,要使输出的函数值在区间⎣⎢⎡⎦⎥⎤12,12内,则输出的f(x)=2x,所以2x∈⎣⎢⎡⎦⎥⎤14,12,∴x ∈[-2,-1].故选B .5.用秦九韶算法求n 次多项式f(x)=a n x n +a m x n -1+…+a 1x +a 0,当x =x 0时,求f(x 0)需要算乘方、乘法、加法的次数分别为( )A .n (n +1)2,n ,n B .n,2n ,n C .0,2n ,n D .0,n ,n[答案] D[解析] f(x)=[((a n x +a n -1)x +a n -2)x +…+a 1]x +a 0,故没有乘方运算,要进行n 次乘法,n 次加法运算.6.(2012~2013·江西省上饶市一模)如图所示的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在①②两个判断框中,应该填入下图四个选项中的( )A.①b>x?②c>x? B.①x>b?②x>c?C.①b>a?②c>b? D.①a>a?②c>b?[答案]A[解析]由题意知,要输出a、b、c中最大的数,所以①应填入b>x?,②应填入c>x?,故选A.7.运行如图所示的程序框图,若输出结果为137,则判断框中应该填的条件是()A.k>5? B.k>6? C.k>7? D.k>8? [答案]B[解析]由程序框图知:S=1时,k=1;S=1+11×2=32时,k=2;S=32+12×3=53时,k=3;S=53+13×4=74时,k=4;S=74+14×5=95时,k=5;S=95+15×6=116时,k=6;S=116+16×7=137时,k=7.所以当k =7时满足条件,输出S =137,故应填的条件是k >6,∴选B .8.下面程序输出的结果为( )A .17B .19C .21D .23[答案] C[解析] 当i =9时,S =2×9+3=21,判断条件9>=8成立,跳出循环,输出S.9.(2012~2013·山东淄博一模)某程序框图如图所示,现输入如下四个函数:f (x )=x 2,f (x )=1x ,f (x )=e x ,f (x )=x 3,则可以输出的函数是( )A .f (x )=x 2B .f (x )=1x C .f (x )=e x D .f (x )=x 3[答案] D[解析] 由程序框图知,输出的函数应该即是奇函数,又存在零点.故选D.10.(2013·全国卷Ⅰ)运行如下程序框图,如果输入t ∈[-1,3],则输出S 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5][答案] A[解析] 有题意知,当t ∈[-1,1)时,S =3t ∈[-3,3),当t ∈[1,3]时,s =4t -t 2∈[3,4],故输出S ∈[-3,4],选A.11.下列各进位制数中,最大的数是( ) A .11111(2) B .1221(3) C .312(4) D .56(8)[答案] C[解析] 11111(2)=1×24+1×23+1×22+1×21+1=31,1221(3)=1×33+2×32+2×3+1=52,312(4)=3×42+1×4+2=54,56(8)=5×8+6=46,故选C.12.(2012·辽宁高考)执行如图所示的程序框图,则输出的S 值是( )A .-1 B.23 C.32 D .4[答案] D[解析] 根据程序框图的要求一步一步的计算判断.因为S =4,i =1<9,所以S =-1,i =2<9;S =23,i =3<9;S =32,i =4<9;S =4,i =5<9;S =-1,i =6<9;S =23,i =7<9;S =32,i =8<9;S =4,i =9<9不成立,输出S =4.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.459与357的最大公约数是________. [答案] 51[解析] 459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51.14.用秦九韶算法计算多项式f (x )=x 6-12x 5+60x 4-160x 3+240x 2-192x +64当x =2时的值时,v 4的值为________.[答案] 80[解析] v 0=1,v 1=v 0x +a 5=1×2-12=-10,v 2=v 1x +a 4=-10×2+60=40,v 3=v 2x +a 3=40×2-160=-80,v 4=v 3x +a 2=-80×2+240=80.15.若输入8时,则下列程序执行后输出的结果是________.[答案] 0.7[解析] 此程序表示的是分段函数.y =⎩⎪⎨⎪⎧0.2, t ≤40.2+0.1×(t -3), t >4, ∴当t =8时,y =0.716.(2012·江苏高考卷)下图是一个算法流程图,则输出的k 的值是________.[答案] 5[解析] 将k =1带入0=0不满足, 将k =2带入-2<0不满足, 将k =3带入-2<0不满足, 将k =4带入0=0不满足, 将k =5带入4>0满足, 所以k =5.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知一个正三角形的周长为a ,求这个正三角形的面积,设计一个算法解决这个问题.[解析] 算法步骤如下:第一步,输入a 的值.第二步,计算l =a 3的值.第三步,计算S =34l 2的值.第四步,输出S 的值.18.(本小题满分12分)(1)用辗转相除法求567与405的最大公约数.(2)用更相减损术求2 004与4 509的最大公约数.[解析] (1)∵567=405×1+162,405=162×2+81,162=81×2.∴567与405的最大公约数为81.(2)∵4 509-2 004=2 505,2 505-2 004=501,2 004-501=1 503,1 503-501=1 002,1 002-501=501.∴2 004与4 509的最大公约数为501.19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧ x 2-1,x<-1,|x|+1,-1≤x ≤1,3x +2,x>1,编写一个程序求函数值.[解析] 程序如下:20.(本小题满分12分)利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.[解析]利用秦九韶算法求出当x=0及x=2时,f(x)=x5+x3+x2-1的值,f(x)=x5+x3+x2-1可改写成如下形式:f(x)=((((x+0)x +1)x+1)x+0)x-1.当x=0时,v0=1,v1=0,v2=1,v3=1,v4=0,v5=-1,即f(0)=-1.当x=2时,v0=1,v1=2,v2=5,v3=11,v4=22,v5=43,即f(2)=43.由f(0)f(2)<0知f(x)在[0,2]上存在零点,即方程x5+x3+x2-1=0在[0,2]上存在实根.21.(本小题满分12分)如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P 运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,并画出程序框图.[解析] 由题意可得y =⎩⎪⎨⎪⎧ 2x , 0≤x ≤4,8, 4<x ≤8,2(12-x ), 8<x ≤12.程序框图如图:22.(本小题满分12分)假定在银行中存款10 000元,按2.5%的年利率,一年后连本带息将变为10 250元,若将此款继续存入银行,试问多长时间就会连本带利翻一番?请用直到型和当型两种语句写出程序.[解析] 用“当型”循环用“直到型”循环。
数学人教A 版必修3第一章算法初步单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列程序框中表示处理框的是()2.下列关于算法的描述正确的是( )A .只有解决数学问题才有算法B .算法过程要一步一步执行,每一步的操作都是明确的C .有的算法可能无结果D .算法的三种基本逻辑结构是模块结构、条件结构、循环结构3.已知函数y =lg(1),0,1,0,x x x x +⎧⎨+<⎩≥输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构4.编写程序,计算1×2×3×…×n (n ∈N *)的值时,需用到的基本算法语句是( )A .输入语句、输出语句、赋值语句B .赋值语句、条件语句、输出语句C .输出语句、循环语句、赋值语句D .输入语句、输出语句、赋值语句、条件语句、循环语句5.下列赋值语句错误的是( )A .i =i -1B .m =m 2+1C .k =1k -D .x +y =a6.用秦九韶算法求当x =1.032时多项式f (x )=3x 2+2x +3的值时,需要乘法运算和加法运算的次数分别为( )A .3 2B .4 3C .2 2D .2 37.根据下面的算法,可知输出的结果S 为( )第一步,i =1.第二步,判断i <10是否成立,若成立,则i =i +2,S =2i +3,重复第二步,否则执行下一步.第三步,输出S .A .19B .21C .25D .278.如图是求x 1,x 2,…,x 10的乘积S 的程序框图,图中空白框中应填入的内容为( )A .S =S ×(n +1)B .S =S ×x n +1C .S =S ×nD .S =S ×x n9.(2011·北京海淀一模,理4)执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为( )A .0B .1C .2D .1110.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=1xC .f (x )=e xD .f (x )=sin x二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.用辗转相除法求两个正整数a ,b (a >b )的最大公约数时,得到表达式a =nb +r (n∈N),这里r的取值范围是________.12.459与357的最大公约数是________.13.将258化成四进制数是__________.14.如图所示的流程图,若输入的x=-9.5,则输出的结果为__________.15.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若x1,x2,x3,x4分别为1,1.5,1.5,2,则输出的结果s为__________.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)到银行办理个人异地汇款(不超过100万元),银行收取一定的手续费.汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取;超过5 000元,一律收取50元手续费.画出程序框图描述汇款额为x元时,银行收取手续费y元的过程.17.(本小题满分15分)有如下算法:第一步,使x=3,S=0.第二步,使x=x+2.第三步,使S=S+x.第四步,若x≥2 008,则执行第五步;否则,返回第二步继续执行.第五步,打印x,算法结束.那么由第五步打印出的数值是多少?并画出程序框图.参考答案1.答案:A2.答案:B3.答案:C4.答案:D5.答案:D6.答案:C f(x)=(3x+2)x+3,则需2次乘法,2次加法运算.7.答案:C该算法的运行过程是:i=1i=1<10成立i=1+2=3S=2×3+3=9i=3<10成立i=3+2=5S=2×5+3=13i=5<10成立i=5+2=7S=2×7+3=17i=7<10成立i=7+2=9S=2×9+3=21i=9<10成立i=9+2=11S=2×11+3=25i=11<10不成立输出S=25.8.答案:D由于是求输入的10个数的积,所以图中空白框中应填入的内容为S=S×x n.9.答案:C设输入x的值为m,该程序框图的运行过程是:x=m,n=1n=1≤3成立x=2m+1n=1+1=2n=2≤3成立x=2(2m+1)+1=4m+3n=2+1=3n=3≤3成立x=2(4m+3)+1=8m+7n=3+1=4n=4≤3不成立输出x=8m+7,则有8m+7=23,解得m=2,即输入的x值为2.10.答案:D该程序框图的功能是输出的函数为奇函数且存在零点,A项中,函数f(x)=x2不是奇函数;B项中,函数f(x)=1x没有零点;C项中,函数f(x)=e x不是奇函数,D项中,函数f(x)=sin x为奇函数且有零点,所以D项符合题意.11.答案:[0,b)12.答案:51459=357×1+102357=102×3+51102=51×2所以459与357的最大公约数是51.13. 答案:10 002(4)利用除4取余法来化.则258=10 002(4).14.答案:1输入的x=-9.5,该流程图的运行过程是:x=-9.5>0不成立x=-9.5+2=-7.5x=-7.5>0不成立x=-7.5+2=-5.5x=-5.5>0不成立x=-5.5+2=-3.5x=-3.5>0不成立x=-3.5+2=-1.5x=-1.5>0不成立x=-1.5+2=0.5x=0.5>0成立c=2x=2×0.5=1输出1.15.答案:324位居民的月均用水量分别为1,1.5,1.5,2,该程序框图的运行过程是:x1=1,x2=1.5,x3=1.5,x4=2 s1=0,i=1i=1≤4成立s1=0+1=1s=11×1=1i=1+1=2 i=2≤4成立s1=1+1.5=5 2s=12×52=54i=2+1=3i =3≤4成立s 1=52+1.5=4 s =13×4=43 i =3+1=4i =4≤4成立s 1=4+2=6s =14×6=32i =4+1=5i =5≤4不成立输出s =3216. 分析:这是一个实际问题,故应先建立数学模型,找出函数解析式y =1,0100,0.01,1005000,50,50001000000.x x x x <⎧⎪<⎨⎪<⎩≤≤≤由此看出,求手续费时,需先判断x 的取值范围,故应用条件结构描述.解:程序框图如图所示.17. 解:由第五步打印出的数值是89.程序框图如图所示.。
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题分,共分)
.当=时,下面的程序段输出的结果是( )
..
..
解析:因为=<,所以=×=.
答案:
.运行下面的程序,若输入的值为,则输出的的值为( )
..
..
解析:由于=>,所以=(-)=.
答案:
.已知程序如下:
如果输出的结果为,那么输入的自变量的取值范围是( )
..(-∞,]
.(,+∞) .
解析:由输出的结果为,则执行了后面的语句=,即>不成立,所以有≤.
答案:
.给出如下程序:
输入=时,输出的结果是( )
..-
..
解析:如果输入<,则=-;如果输入=,则=;如果输入>,则=;因为输入的值为,所以输出的结果为.
答案:
二、填空题(每小题分,共分)
.下面给出的是用条件语句编写的程序,该程序的功能是求函数的函数值.。
高一数学必修 3 第一章测试题及答案-人教版 (A)数学第一章测试题一.选择题1.下边的结论正确的选项是()A .一个程序的算法步骤是可逆的B 、一个算法能够无止境地运算下去的C、达成一件事情的算法有且只有一种D、设计算法要本着简单方便的原则2、清晨从起床到出门需要洗脸刷牙(5 min) 、刷水壶 (2 min) 、烧水 (8 min) 、泡面 (3 min) 、吃饭(10 min) 、听广播 (8 min) 几个步骤、从以下选项中选最好的一种算法( )A、 S1 洗脸刷牙、 S2 刷水壶、 S3 烧水、 S4 泡面、 S5 吃饭、 S6 听广播B、 S1 刷水壶、 S2 烧水同时洗脸刷牙、S3 泡面、 S4 吃饭、 S5 听广播C、 S1 刷水壶、 S2 烧水同时洗脸刷牙、S3 泡面、 S4 吃饭同时听广播D 、 S1 吃饭同时听广播、 S2 泡面、 S3 烧水同时洗脸刷牙、 S4 刷水壶3.算法S1 m=aS2 若 b<m,则 m=bS3 若 c<m,则 m=cS4 若 d<m,则 m=dS5 输出 m,则输出 m 表示( )A . a, b, c, d 中最大值B.a, b, c, d 中最小值C.将 a, b, c, d 由小到大排序D.将 a, b,c, d 由大到小排序4.右图输出的是A .2005 B.65 C.64 D.635、以下给出的赋值语句中正确的选项是( )A. 5 = MB. x = - x (第 4题)C. B=A=3D. x +y = 06、以下选项那个是正确的()A 、 INPUT A;B B. INPUT B=3 C. PRINT y=2*x+1 D. PRINT 4*x7、以下给出的各数中不行能是八进制数的是()A.123B.10 110C.4724D.7 8578、假如右侧程序履行后输出的结果是990,那么i=11在程序 until 后边的“条件”应为()s=1A.i > 10B. i <8C. i <=9D.i<9 DO9.读程序s= s * i甲: i=1 乙:i=1000 i = i - 1S=0 S=0 LOOP UNTIL “条件”WHILE i<=1000 DO PRINT sS=S+i S=S+i ENDi=i+l i=i 一 1 (第 7题)WEND Loop UNTIL i<1PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的选项是( )A .程序不一样结果不一样B.程序不一样,结果同样C.程序同样结果不一样 D .程序同样,结果同样10.在上题条件下,假设能将甲、乙两程序“定格”在i=500,即能输出输出结果()i=500 时一个值,则A .甲大乙小B.甲乙同样C.甲小乙大D.不可以判断二.填空题 .11、有以下程序框图(如右图所示),则该程序框图表示的算法的功能是第输出 i-2(第 11 题)( 第12题)12、上边是求解一元二次方程ax2 bx c 0( a 0) 的流程图,依据题意填写:(1);( 2);( 3)。
i=11 s=1 DO s= s * i i = i -1 LOOP UNTIL “条件” PRINT s END (第7题) 高一数学必修3第一章测试题及答案-人教版(A)
数学第一章测试题
一.选择题
1.下面的结论正确的是 ( )
A .一个程序的算法步骤是可逆的
B 、一个算法可以无止境地运算下去的
C 、完成一件事情的算法有且只有一种
D 、设计算法要本着简单方便的原则
2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )
A 、 S1 洗脸刷牙、S2刷水壶、S3 烧水、S4 泡面、S5 吃饭、S6 听广播
B 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5 听广播
C 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭 同时 听广播
D 、 S1吃饭 同时 听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3.算法 S1 m=a
S2 若b<m ,则m=b S3 若c<m ,则m=c S4 若d<m ,则 m=d
S5 输出m ,则输出m 表示 ( ) A .a ,b ,c ,d 中最大值
B .a ,b ,c ,d 中最小值
C .将a ,b ,c ,d 由小到大排序
D .将a ,b ,c ,d 由大到小排序 4.右图输出的是
A .2005
B .65
C .64
D .63 5、下列给出的赋值语句中正确的是( )
A. 5 = M
B. x =-x (第4题)
C. B=A=3
D. x +y = 0
6、下列选项那个是正确的( )
A 、INPUT A;
B B. INPUT B=3 C. PRINT y=2*x+1 D. PRINT 4*x 7、以下给出的各数中不可能是八进制数的是( ) A.123 B.10 110 C.4724 D.7 857
8、如果右边程序执行后输出的结果是990,那么 在程序until 后面的“条件”应为( ) A.i > 10 B. i <8 C. i <=9 D.i<9 9.读程序 甲: i=1 乙: i=1000 S=0 S=0 WHILE i<=1000 DO S=S+i S=S+i i=i+l i=i 一1 WEND Loop UNTIL i<1 PRINT S PRINT S
END END
对甲乙两程序和输出结果判断正确的是 ( )
A .程序不同结果不同
B .程序不同,结果相同
C .程序相同结果不同
D .程序相同,结果相同 10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果 ( )
A .甲大乙小
B .甲乙相同
C .甲小乙大
D .不能判断 二.填空题.
11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是
( 第12题)
12、上面是求解一元二次方程)0(02
≠=++a c bx ax 的流程图,根据题意填写: (1) ;(2) ;(3) 。
13.将二进制数1010 101(2) 化为十进制结果为 ;
再将该数化为八进制数,结果为 . 14.用冒泡法对数3,6,9,5,1从小到大排序
3 1 6 3 9 5 5 6 1 9
第一趟 第二趟 第三趟 第四趟
15.计算11011(2)-101(2)= (用二进制表示)
三、解答题
16. 已知算法: ① 将该算法用流程图描述之; ② 写出该程序。
S1、 输入 X
S2 、 若X<1,执行 S3. 否则执行S6 S3 、 Y =X - 2 S4、输出 Y S5、 结束
S6、 若X=1 ,执行S7;否则执行S10; S7 Y =0 S8 输出Y S9 结束 S10 Y= 2X+1 S11 输出Y S12 结束 17、设计算法求
50
491
431321211⨯+
⋅⋅⋅+⨯+⨯+⨯的值,写出用基本语句编写的程序. (第11题) 第 输出i-2
18.用辗转相除法求210与162的最大公约数,并用更相减损术检验。
19、《中华人民共和国个人所得税法》规定,公民月工资,薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算:
全月应纳税所得额税率
不超过500元的部分5%
超过500元的部分至2000元的部分10%
超过2000元至5000元的部分15%
试写出工资x (x 5000 元)与税收y的函数关系式,并写出计算应纳税所得额的的程序。
20、给出30个数:1,2,4,7,……,其规律是:第1个数是1,第2
个数比第1个数大1, 第3个数比第2个数大2,第4个数比第3个数大3,
依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如
图所示),(I)请在图中判断框内(1)处和执行框中的(2)处填上合适的语句,
使之能完成该题算法功能;(II)根据程序框图写出程序.
(第20题)
数学第一章测试题
姓名座位号班别
一、选择题
题
1 2 3 4 5 6 7 8 9 10
号
答
D C B D B D D D B C
案
二、填空题
11..计算并输出使1×3×5×7…×>10 000成立的最小整数.
12.(1) <0 (2)x1= a
b 2∆
+- x2=a b 2∆-- (3) 输出x1,x2
13. 85 、 125(8)
14.用冒泡法对数3,6,9,5,1从小到大排序
3
3 3 3 1 6 6 5 1 3 9 5 1 5 5 5 1 6 6 6 1 9 9 9 9
第一趟 第二趟 第三趟 第四趟
15. 10110
三、解答题
16. 该算法是求函数
Y=⎪⎪⎪⎪
⎩
⎪⎪
⎪⎪
⎨⎧+==-=120
2X Y Y X Y )
1()
1()1(>=<X X X
17、解 这是一个累加求和问题,共49项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示
18.
19.
y=0800(800)5%800130025(1300)10%1300280025150(2800)15%
28005800
x x x x x x x ≤⎧
⎪-⨯<≤⎪⎨
+-⨯<≤⎪⎪++-⨯<≤⎩
20.解 (I )该算法使用了当型循环结构,因为是求30个数的和,故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为30≤i .算法 中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大1-i ,,第1+i 个数比其前一个数大i ,故应有i p p +=.故(1)处应填30≤i ;(2)处应填i p p +=。