会遇到一种集中在极短时间内作用的量,这种瞬间作用 的量不能用通常的函数表示.为此假设
0, t 0
(t
)
1
,
0t
0, t 0
(t)
1
O
图
11-1
t
其 中 是 很 小 的 正 数 . 当 τ 0 时 , (t) 的 极 限
(t
)
lim
0
(t
)
叫做狄利克莱函数,简称.
(t
)
的图形
如图 14-1 所示.
k1(k1) (s p1 )2
k1k s p1
求k11,方法同第一种情况:
k11 F1(s) s p1 (s p1 )k F (s) s p1
求其它系数,要用下式
第十三页,共50页。
1 di1 k1i (i 1)! d si1 F1(s)
i 1,2,3,k
s p1
当i 2,
d K12 d s F1(s) s p1
f (t)
O
a
图14-2
f (t) f (t a)
t
第三十页,共50页。
例3
求函数u
t
a
0, t 1, t
a a
的拉氏变换.
解
由
L
u
t
1 s
及性质
3
可得
L
u
t
a
1 s
e as
性质 4(微分性质) 若 L f t F s,并 设 f t 在0, 上连续, f t 为分段连续函数,则
当i 3,
1 d2 K13 2 d s2 F1(s) s p1
例:求下列函数的逆变换
F(s)
(s
s2 2)(s 1)2