《三角形内角和》教学设计
- 格式:doc
- 大小:42.00 KB
- 文档页数:5
小学数学《三角形内角和》教学设计(6篇)《三角形的内角和》教学反思篇一新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。
让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。
学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:1学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。
就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。
为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。
三角形内角和教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、汇报材料、自我鉴定、条据文书、合同协议、心得体会、方案大全、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, presentation materials, self-evaluation, documentary evidence, contract agreements, reflections, comprehensive plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample essay formats and writing methods, please stay tuned!三角形内角和教案优秀5篇如果教案无法在实际教学中实施,就无法让学生真正理解和应用所学的知识,教案写好了,能够帮助我们更好地与学生和家长进行沟通和交流,本店铺今天就为您带来了三角形内角和教案优秀5篇,相信一定会对你有所帮助。
《三角形内角和》优秀教学设计《三角形内角和》优秀教学设计(通用13篇)作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?下面是店铺收集整理的《三角形内角和》优秀教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《三角形内角和》优秀教学设计篇1设计思路本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。
再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。
概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。
最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。
先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。
给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。
让学生在游戏中拓展学生思维。
教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。
并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。
三角形内角和教学设计15篇三角形内角和教学设计(15篇)作为一名教职工,时常需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
我们该怎么去写教学设计呢?下面是小编收集整理的三角形内角和教学设计,仅供参考,欢迎大家阅读。
三角形内角和教学设计1北师大版四年级数学下册1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。
教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。
扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。
一、创设情境,激发兴趣。
出示课件,提出两个两个疑问:1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?2、三个形状不一样的三角形的争论。
我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?二、初建模型,实际验证自己的猜想在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
这时教师要组织学生进行小组合作,每人用量角器量出一种三角形的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。
三角形的形状三角形每个内角的度数内角和锐角三角形钝角三角形直角三角形等腰三角形等边三角形三、再建模型,彻底的得出正确的结论因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。
四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
《三角形内角和》教学设计《三角形内角和》教学设计1教学内容人教版小学数学第八册第五单元第85页例5任务分析教材分析:《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。
这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。
它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。
教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。
教学内容的`核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。
在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。
但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点探究发现和验证“三角形的内角和180度”。
教学难点验证三角形的内角和是180度。
教学准备多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程一、复习旧知,学习铺垫1、一个平角是多少度?等于几个直角?2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?二、探究新知,理解规律1、说明三角形的三个内角和说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
小学数学《三角形内角和》教学设计(优秀5篇)《三角形内角和》数学教案篇一【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。
【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。
【学情分析】:学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。
对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。
另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
【学习目标】:1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
【评价任务设计】:1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。
达成目标1。
2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。
达成目标2。
3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。
达成目标3。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
通过“做一做”和习题第9、10、12题达成目标4和目标3。
【重难点】教学重点:探索和发现三角形的内角和是180°。
教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°【教学过程】一、复习准备。
三角形内角和教学设计优秀七篇角形内角和教学设计篇一【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能利用三角形的内角和是180解决生活中常见的问题。
2.让学生经历量一量、折一折、拼一拼等动手操作的过程。
通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。
3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
【教学重点】使学生知道三角形的内角和是180,并能利用它解决生活中常见的问题。
【教学难点】通过多种方法验证三角形的内角和是180。
【教学准备】课件。
四组教学用三角板。
铅笔。
大帆布兜子。
固体胶。
剪刀。
筷子若干。
【教学过程】一.激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。
激发学生的好奇心。
然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。
我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自身的方法验证。
教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那请听好师傅的第二个问题。
4.导入新课。
图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二.动手操作,探索交流新知1.分组活动,探索新知根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。
四年级下册《三角形内角和》的教学设计(通用6篇)四年级下册《三角形内角和》的教学设计(通用6篇)作为一无名无私奉献的教育工作者,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
教学设计应该怎么写才好呢?下面是小编精心整理的四年级下册《三角形内角和》的教学设计(通用6篇),希望对大家有所帮助。
四年级下册《三角形内角和》的教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
《三角形内角和》优秀教学设计一等奖《《三角形内角和》优秀教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、《三角形内角和》优秀教学设计一等奖教材分析《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》、《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的.内角和是180°这一规律具有重要意义。
学情分析学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。
教学目标(一)知识与技能:掌握“三角形内角和定理”的证明及其简单应用,让学生探索发现三角形的内角和是180°。
(二)过程与方法:通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、反思等能力和初步的空间想象力,感受数学的转化思想;发展学生的空间观念和初步的逻辑思维能力;能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。
(三)情感态度与价值观:1、渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神,及与他人合作交流的意识。
2、让学生切实感受到从实验中得到的现象,经过简单的推理证明以后可以成为我们的一般公理,初步感受从个别到一般的思维过程。
教学重点和难点理解并熟练运用三角形的内角和是180°。
2、《三角形内角和》优秀教学设计一等奖尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
三角形内角和教学设计方案(精选7篇)三角形内角和教学设计方案(精选篇1)课题三角形的内角和手记教学目标1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。
三角形内角和教学设计十篇三角形内角和教学设计1【教材内容】北京市义务教育课程改革实验教材(北京版)第九册数学【教材分析】《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。
教材中安排了学生对不同形状的、大小的三角形进行度量,再利用拼、折、剪等方法发现三角形的内角和是180°。
让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。
【学生分析】在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。
在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。
这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。
三角形的内角和是三角形的一个重要性质。
它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
【教学目标】1.通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
2.通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3.使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
【教学重点】让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。
【教学难点】能利用学到的知识进行合情的推理。
【教具学具准备】课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸【教学过程】一.学具三角板,引入新课1.(出示两个直角三角板),问:这是咱们同学非常了解的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)2.顾名思义一个三角形都有几个角呀?(三个)3.认识内角1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。
(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?2)这个三角形内有几个内角?(三个)这个呢?(三个)(设计意图:由学生最了解的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)二.动手操作,探索新知(一)直角三角形内角和ⅰ、特殊直角三角形内角和1.根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
三角形内角和教学设计(共6篇)第1篇:“三角形内角和”教学设计“三角形内角和”教学设计教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。
教学目标:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。
并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点:学生理解不同探究方法的内涵和对所得结论的灵活运用。
设计思路:三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。
四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。
《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。
因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。
并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。
同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。
教学准备:多媒体课件、三角尺等。
教学过程:一、激趣引入(一)认识三角形内角师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,……师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠1、∠2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。
四年级《三角形内角和》的教学设计四年级《三角形内角和》的教学设计范文(精选5篇)四年级《三角形内角和》的教学设计1教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。
教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。
教学目标:1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件、各种三角形等。
学具准备:三角形、剪刀、量角器等。
教学过程:一、出示课题,复习旧知1、认识三角形的内角。
(1)复习三角形的概念。
(2)介绍三角形的“内角”。
2、理解三角形的内角“和”。
【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。
二、动手操作,探究新知1、通过预习,认识结论,提出疑问2、验证三角形的内角和(1)用“量一量、算一算”的方法进行验证①汇报测量结果②产生疑问:为什么结果不统一?③解决疑问:因为存在测量误差。
(2)用“剪一剪、拼一拼”的方法进行验证①指导剪法。
①分别拼:锐角三角形、直角三角形、钝角三角形。
《三角形内角和》教学设计
教材分析:
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三
角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,
因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示
了三个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三
角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三
角形两个内角的度数,求出第三个角的度数。
学生分析:
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
一、教学目标
1、让学生探索发现三角形的内角和是180°。
2、通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、
反思等能力和初步的空间想象力。感受数学的转化思想。
3、发展学生的空间观念和初步的逻辑思维能力;
4、情感态度价值观:渗透转化迁移思想,培养学生大胆质疑的勇气和严谨
科学的精神,及与他人合作交流的意识。
二、教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和
应用的全过程;知道三角形的内角和是180度并且能应用。
三、教学难点:三角形内角和是180度的探索和验证过程。
四、教学准备:课件、量角器、剪刀、各类三角形。
五、教学过程:
一、 情景激趣,质疑猜想。
播放课件:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”
爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定
比你们的内角和大。”直角三角形也吼到:“我的个头大,我的内角和才是最大
的。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你
小。”
师:同学们,想一想,什么是三角形的内角,什么是内角的和。(板书:内角、
内角和)
生答:(三条线段围成三角形后在三角形内形成了三个角,这三个角叫三角形的
内角,三个内角相加的和叫三角形的内角和)
那你能猜一下这三个三角形哪个内角和大吗?
(学生猜测:钝角三角形的内角和大,锐角三角形的内角和大,任意一个三角形
的内角和都相同,都是180度)
师:所有的三角形的内角和都是180度吗?(板书引出本节课探究的问题)
二、用什么方法证明三角形的内角和是180度呢?
学生独立思考提出方案(量后算一算,或撕拼,折拼)
师:我们就先来看量后算一算这种方法。
首先我们遇到一个问题:三角形有无数个,是不是要一个一个的去验证?(引出
按锐角三角形、直角三角形、钝角三角形来进行分类验证)
(1) 量算法
量出三角形每个内角的度数,再把他们加起来填到小组活动记录表中
小组活动记录表
第( )组
小组成员的姓名 三角形的形状 每个内角的度数 三个内角的
和
(学生分小组每人任意画一个三角形,小组保证三种类型的三角形都有)
学生在操作过程中,教师注意辅导学生操作规范性,比如量一个角就标出一个度
数再填表)板书展示一个小组的活动记录表。
师:观察活动记录表三角形的内角和这一栏你发现了什么?
得出三角形的内角和接近180度。
除了画算法,刚才有些同学还提出了撕拼法,折拼法
想不想试一试(可以选其中的一种、或两种方法试一下,有些学生可能想不出可
提示他们参考课本31页)
学生先独立动手操作。后在4人小组中进行交流。
全班交流。
(2)撕拼法
师:提示为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它∠1、
∠2、∠3。
学生独立操作,小组交流
(全班交流学生说方法,并到黑板前演示。)
把三个三角形的3个内角撕下来,拼成一个大角,再量出这个大角的度数(发现这
个大角的两条边在一条直线上,所以拼成的大角是180度,教师用直尺放在两条
边上测试在一条直线上。证明三角形的内角和是180度。
(3)折拼法
学生独立操作,小组交流
(学生汇报方法。并演示)
把三个内角折叠后拼在一起,(其中一个角向对边折过去,角的顶点放在对边的
边上,折痕与对边平行。另外两个角向这个角的方向折去,使三个角拼在一起没
有缝隙)
刚才同学们通过撕拼法、折拼法得出,无论是什么样的三角形的内角和都
是1800,那我有些不明白,为什么量算法得出的三角形内角和有时不是正好是
180度呢?(让学生了解是测量时有误差)(师手指三角形的内角和是180度?
这句话成立吗?)让我们带着自豪的语气大声地读出“三角形的内角和是1800”。
除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180
度到初中我们还要更严密的方法证明三角形的内角和是180°
四、介绍数学家帕斯卡
早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和
都是180°他就是法国数学家、物理学家、近代概率论的奠基者帕斯卡他当时才
12岁。当他把自己的发现:“任何三角形的三个内角和都是一百八十度”的结
果告诉父亲时,父亲惊喜交集地流出了激动的眼泪。
五、实践应用
我们就用三角形的内角和是180度这个结论来解决问题
1. 看图求出未知角的度数。(知道两个角度数,求第三个角的度数。)课本
32页第一题533
2、判断
(1)一个三角形的三个内角度数是:80° 、75° 、 24° 。 ( )
(2)大三角形比小三角形的内角和大。 ( )
(3)两个小三角形拼成一个大三角形,大三角形的内角和是360°( )
3、每组卡片中,哪三个角可以组成三角形?
4、挑战题
图形
名称 三角形 四边形 五边形 六边形
有几个三角形 1
内角和 180°
如果要求10边形的内角和,你会求吗?你有什么发现?
六:小结
教学设计
三角形内角和是180°
一、 量算法
二、 撕拼法
三、 折拼法
个人简历:
王慧,女,本科学历,一级教师,2002年参加工作。现任教于铜川市印台区
金锁关镇纸坊小学。参加工作12年以来,一直从事小学一线教育教学工作,自
2002年以来,一直从事小学语文、数学教学及班主任工作,教学经验丰富。论
文、课件、教学设计、自制教具等曾多此获得不同等级的表彰。