MIMO系统的原理及容量分析
- 格式:doc
- 大小:690.09 KB
- 文档页数:8
【概述】MIMO(Multiple-Input Multiple-Output)技术在无线通信领域具有广泛的应用,通过利用多个天线,MIMO技术可以显著提高无线信道的传输容量和可靠性。
而信道容量则是衡量无线信道性能的重要指标,它表示在给定的无线信道条件下,信道可以支持的最大数据传输速率。
本文将以matlab代码为例,通过对MIMO信道容量进行仿真分析,来深入探讨MIMO技术在无线通信中的应用和性能。
【1. MIMO信道容量的基本原理】MIMO系统通过利用多个天线进行信号的传输和接收,可以有效地提高无线信道的传输容量。
其基本原理是,利用了空间分集技术,通过将数据分别送入多个天线,并在接收端进行合并处理,从而提高了系统的传输速率和稳定性。
MIMO系统的信道容量受到信道质量、天线数目和信号调制方式等多个因素的影响,因此需要通过仿真分析来进行评估。
【2. MIMO信道容量的matlab代码实现】在matlab中,可以通过编写相应的MIMO信道容量仿真代码,来实现对MIMO系统性能的分析。
以下是一个简化的MIMO信道容量计算的matlab代码示例:```matlab定义MIMO系统参数Nt = 2; 发射天线数Nr = 2; 接收天线数SNR_dB = 0:5:30; 信噪比范围生成随机信道矩阵H = (randn(Nr, Nt) + 1i*randn(Nr, Nt)) / sqrt(2);计算MIMO信道容量capacity = zeros(1, length(SNR_dB));for i = 1:length(SNR_dB)SNR = 10^(SNR_dB(i)/10);capacity(i) = log2(det(eye(Nr) + SNR/Nt*H*H'));end绘制MIMO信道容量曲线plot(SNR_dB, capacity, 'b-o')xlabel('SNR (dB)')ylabel('Capacity (bps/Hz)')title('MIMO Channel Capacity')grid on```以上代码中,首先定义了MIMO系统的参数,包括发射天线数Nt、接收天线数Nr和信噪比范围SNR_dB。
MIMO是什么?MIMO的分类及信道的秘密
01
—
MIMO是什么
在这个万物互联的时代,手机作为我们和外界联系的窗口,似乎已经成为了我们身体的一部分。
而手机是无法自己上网的,和手机进行通信的通信网络,已经变得跟水和电一样。
畅快上网的时候,感觉不到这些幕后英雄的重要,一旦离开就感觉跟活不下去了一样。
按流量收费的时代,曾几何时,1M流量收费一块,普通人一个月也就几百M,用一点少一点,哪敢无时无刻刷抖音啊。
因此,看到wifi,就有了安全感。
我们来看看无线路由器长什么样子。
好家伙,8根天线,都快成蜘蛛了。
看起来很牛逼的样子。
实际呢,信号能多穿两堵墙?还是网速能倍增?
这些效果还真都可以达到。
效果当然是通过这么多天线来实现的,这就是大名鼎鼎的MIMO技术。
MIMO,说人话就叫:多输入多输出(Multi Input Multi Output)。
可这听起来还是不够像人话。
我们这样想一下,如果通过网线上网的话,连接电脑和网络的就是一根实际的线缆。
现在我们通过天线把信号在空气中用电磁波来传送,空气就起到跟网线一样的作用,都是传输信号的通道,叫做无线信道。
那么咋样能让网速更快呢?
显然,多来几根天线,多几根虚拟的网线一起收发数据,就能解决问题。
这个多输入多输出,就是针对这个无线信道来说的。
无线路由器如此,在那高高的铁塔上,4G基站和你的手机也在做着同样的事情——为了。
分集技术在MIMO系统中的性能分析随着通信技术的不断发展,无线通信系统中的多天线技术逐渐成为一种重要的解决方案。
多输入多输出(MIMO)系统作为一种能够显著提高信号传输效果的技术,得到了广泛的应用。
分集技术作为MIMO 系统中的一种关键技术,能够进一步提高系统的性能。
本文将就分集技术在MIMO系统中的性能进行详细分析。
一、MIMO系统简介MIMO系统是一种通过在发送和接收端分别使用多个天线来增加无线通信信道容量的技术。
通常情况下,MIMO系统中发送和接收端的天线数目不相同,被称为单输入多输出(SIMO)或多输入单输出(MISO)系统。
MIMO系统通过多条独立子信道同时传输数据,并利用空间分集和信号处理技术来增加系统的吞吐量和数据传输速率。
二、分集技术概述分集技术是一种通过在接收端使用多个天线来减小信号传输过程中的多径衰落和干扰的技术。
在MIMO系统中,通过接收多个相互独立且空间上相关性较小的信号,可以减小信号质量损失和信息传输过程中的信号干扰。
分集技术能够使系统在相同的信噪比条件下,获得更好的性能表现。
三、分集技术对MIMO系统性能的影响1. 多路径效应减小:在无线信道传输中,由于多径效应的存在,信号会经历多个不同路径的传播,导致信号质量损失。
分集技术通过接收多个信号,能够减小多径效应对信号的影响,进而提高信号传输质量。
2. 抗干扰能力提高:在无线通信系统中,干扰是一种常见的问题。
分集技术通过接收多个独立的信号,在接收端对这些信号进行处理和合并,能够减小干扰的影响,提高系统的抗干扰性能。
3. 提高系统容量和覆盖范围:MIMO系统中使用分集技术,可以使系统的容量和覆盖范围得到显著提高。
通过接收多个相互独立的信号,能够增加系统的有效传输速率,提高信号覆盖范围,从而满足更多用户的通信需求。
四、分集技术的实现方式在MIMO系统中,分集技术可以通过多种方式来实现,具体的实现方式取决于系统的需求和实际应用场景。
MIMO信道容量计算公式
MIMO(Multiple-Input Multiple-Output)是一种通过同时使用多个发射天线和接收天线来增加无线通信系统容量的技术。
MIMO技术可以利用信道的冗余和多路径效应,提高信号的传输速率和可靠性。
1.SISO信道容量计算公式:
SISO信道容量的计算公式使用香农公式,用于计算传输速率。
香农公式如下:
C = B * log2(1 + SNR)
其中,C是信道容量,B是带宽,SNR是信噪比(Signal-to-Noise Ratio)。
SISO信道容量计算公式适用于只有一个天线的系统。
2.MIMO信道容量计算公式:
C = log2(det(I + H*SNR*H^H))
其中,C是信道容量,H是MIMO信道的传输矩阵,SNR是信噪比。
除了以上基本的MIMO信道容量计算公式,还有一些进一步考虑调制方式、信道状态信息等因素的改进公式,如ZF(Zero Forcing)和MMSE (Minimum Mean Square Error)等方法,用于提高MIMO系统的容量。
这些方法考虑了天线之间的干扰和多径效应,可以优化信号的传输和接收性能。
总结起来,MIMO信道容量的计算公式可以通过SISO信道容量公式和MIMO信道容量公式来表示,具体的计算方法需要综合考虑信道状况和系
统参数,并结合数值计算方法进行分析。
通过合理设计和优化,MIMO技术可以显著提高无线通信系统的容量和性能。
MIMO原理及测试MIMO (Multiple-Input Multiple-Output) 是一种无线通信技术,利用多个天线进行数据传输和接收,通过空间上的多径传播来提高无线信号的可靠性和吞吐量。
MIMO技术可应用于各种无线通信系统,如Wi-Fi、LTE和5G等。
MIMO技术的原理是在发送端和接收端分别安装多个天线,通过多路径传播,实现多个独立的数据流同时传输,并利用信道的空间多样性提高系统性能。
MIMO系统的优势在于增加系统容量、提高传输速率、增强链接可靠性、提高频谱效率等。
MIMO技术可以通过两种方式实现:空时编码和空间复用。
空时编码是指在发送端通过将数据流编码成多个信号,并在不同的天线上进行发送,接收端则通过解码算法将多个接收信号合并得到原始数据流。
最著名的空时编码方案是MIMO-OFDM (Orthogonal Frequency-Division Multiplexing),在LTE和Wi-Fi通信中广泛应用。
空间复用是指在发送端将不同的数据流通过不同的天线同时发送,接收端通过空间上的分离接收到这些信号。
空间复用技术可以分为空间分集和空间复用两种方式。
空间分集是通过多个天线接收同一个数据流,提高接收信号的可靠性,降低传输误码率;空间复用是通过多个天线接收不同的数据流,提高系统的容量和吞吐量。
空间复用技术在4G和5G通信系统中得到了广泛应用。
除了空时编码和空间复用,MIMO技术还可以通过波束赋形、预编码和波束成形等进一步优化。
波束赋形是通过调整天线的辐射模式,将信号在特定方向进行增强,提高信号的接收强度;预编码是在发送端通过矩阵乘法对数据进行编码,优化信号传输性能;波束成形则是在接收端通过相位调整和信号处理策略完成信号接收。
对于MIMO系统的测试,可以从以下几个方面进行评估。
首先是信道特性的测试,包括测量信道响应、信号幅度衰减、多径传播等。
此外,还可以对MIMO系统的容量和吞吐量进行测试,评估系统的性能。
MIMO:新一代移动通信核心技术多输入多输出(MIMO)技术是指在发射端和接收端分别使用多个发射天线和接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的服务质量(误比特率或数据速率)。
MIMO技术对于传统的单天线系统来说,能够大大提高频谱利用率,使得系统能在有限的无线频带下传输更高速率的数据业务。
目前,各国已开始或者计划进行新一代移动通信技术(后3G或者4G)的研究,争取在未来移动通信领域内占有一席之地。
随着技术的发展,未来移动通信宽带和无线接入融合系统成为当前热门的研究课题,而MIMO系统是人们研究较多的方向之一。
本文重点介绍MIMO 技术的五大研究热点。
MIMO信道的建模和仿真为了更好地利用MIMO技术,必须深入研究MIMO信道特性,尤其是空间特性。
与传统信道不同的是,MIMO信道大多数情况下都具有一定的空间相关性,而不是相互独立的。
在2001年11月的3GPP 会议中,朗讯、诺基亚、西门子和爱立信公司联合提出了标准化MIMO信道的建议。
3GPP和3GPP2推荐的链路级MIMO信道的建模方法有两个:基于相关(Corrlration-Based)的方法和基于子径(EAGC -A14H)的方法。
尽管3GPP和3GPP2对链路级的信道参数进行了定义,但是对于如何实现并没有达成共识。
研究信道的相关性对系统容量的影响成为MIMO技术的研究方向之一。
另外,目前对MIMO系统的研究都是假定在理想信道条件下进行的,而实际上在接收端无线传播环境中是不可能知道信道冲激响应的,因此要进行信道估计。
由于在MIMO系统中进行信道估计时,天线之间存在着干扰,因此,研究在天线之间存在干扰时的信道估计方法也是目前研究的热点。
MIMO系统的天线选择技术因为多天线需要多射频RF电路,而RF又非常昂贵,因此,寻找具有MIMO天线优点且低价格、低复杂度的最优天线子集选择技术极具吸引力。
多天线选择发送接收系统就是利用一定的准则从M根发送天线中选择MS根天线用于发送信号,同样在接收端从N根接收天线中选择NS根用于接收信号,这样就构成了选择的MS×NS的MIMO系统。
MIMO系统的原理及容量分析MIMO (Multiple Input Multiple Output)系统是一种利用多个天线实现的无线通信系统。
相对于传统的单输入单输出(SISO)系统,MIMO系统可以显著提高信号传输的质量和容量。
本文将介绍MIMO系统的原理以及容量分析。
MIMO系统的原理是利用多个天线在发射端和接收端之间实现多路径信号的传输和接收。
与SISO系统相比,MIMO系统可以同时发送和接受多个独立的数据流。
通过多个天线同时工作,MIMO系统可以在相同的频谱带宽和发射功率下实现更高的数据传输速率和更好的抗干扰能力。
在MIMO系统中,发射端将输入的数据流通过独立的天线发送,接收端则通过多个天线接收到来自不同路径的信号。
每个接收天线可以接收到与发射天线相对应的信号,这些信号在传输过程中经历了不同的路径和衰减。
接收端通过对接收到的信号进行处理和合并,可以恢复出原始的信号流,从而提高系统的容量和性能。
MIMO系统的容量分析是评估系统的性能和限制的关键方法。
MIMO系统的容量主要由两个因素决定:空间多样性和信道状态信息。
空间多样性是指通过使用多个天线来利用信号在空间中的不同路径,从而提高系统的信号传输质量。
信道状态信息是指发送和接收端对信道状况的了解,包括信道增益、相位等信息。
MIMO系统的容量可以通过计算信道容量来评估。
信道容量表示在给定的信号传输条件下,所能达到的最大数据传输速率。
对于MIMO系统,信道容量可以通过计算信道的奇异值分解(SVD)来获得。
通过SVD分解,可以将原始信道分解为多个独立的子信道,每个子信道都具有不同的信道增益。
系统的总容量等于各个独立子信道容量的总和。
对于一个MIMO系统,其容量与天线的数量、信道状况和调制方式等因素密切相关。
通常情况下,增加天线的数量可以提高系统的容量。
在理想的条件下,如果天线数量等于信道的最小维度(最小值为发射端和接收端天线数量的较小值),则可以实现系统的最大容量。
MIMO系统中的信道建模与容量分析随着无线通信技术的不断发展,多输入多输出(MIMO)系统已成为提高无线信号传输效率和可靠性的重要技术手段。
MIMO系统通过在发送和接收端同时使用多个天线来实现多路传输和接收,并利用信道状态信息来优化信号传输。
为了有效地设计和优化MIMO系统,需要对信道进行准确的建模和容量分析。
首先,在MIMO系统中,信道建模是非常重要的一步。
信道建模即通过建立数学模型来描述信号在传输过程中所经历的衰落、延迟和失真等特性。
常用的信道模型包括射线模型、瑞利衰落模型和莱斯衰落模型等。
在MIMO 系统中,由于存在多个天线,信道建模需要考虑天线之间的空间相关性。
通常可以使用复正态分布来描述MIMO信道的相关性,其中的相关矩阵反映了天线之间的相关性和功率分配。
其次,容量分析是评估MIMO系统性能的重要指标。
容量分析可用于确定MIMO系统在给定条件下所能达到的最高数据传输速率。
基于信道状态信息的MIMO系统容量分析通常采用信息论的方法进行,而信息论关注的是在给定的信道条件下,数据可以以多快的速率传输而不发生误差。
因此,容量分析可以帮助我们确定有效的调制和编码方案,以最大化MIMO系统的数据传输速率。
在进行MIMO系统容量分析时,常用的性能指标包括信噪比、误码率和中位数吞吐量等。
信噪比是信号功率与噪声功率之比,可以衡量信号传输的质量。
误码率是指在给定信噪比条件下传输的错误比特数量,通常用于评估系统的可靠性。
中位数吞吐量是指在给定的信道条件下达到50%的数据传输速率,可以作为容量分析的参考指标。
进行MIMO系统容量分析时,需要先确定信道状态信息,即利用已有的信道测量数据或通过信道估计算法获取信道矩阵。
然后,根据所采用的调制和编码方案,通过信息论的方法计算出MIMO系统的容量。
常用的容量分析方法包括水容量法、差分熵和最大固定速率等。
除了信道建模和容量分析,还有一些其他方面需要考虑。
例如,天线选择和配置、功率控制、信道估计和预编码等都会影响MIMO系统的性能。
第4章多用户MI M O的信道模型
艺R k‘1092d e t(‘+牛尽凡.r衅)娜/H z(4.3)
j v o
比如,两个用户的系统(尸=2)的容量区域满足下列不等式:
,·,。
92(1·会},}.二)
、·f o g Z〔1·会.:、,.二)风·、·1052似〔:·枷二补气·)(4.4) (4.5) (4.6)
图4
F i 2接收端联合解码的M IM O一M A C信道的容量区域
g砒e4.2C ap acit v region for M I M O一M A C wi t h join t
d e e o d ing at th e re e e iv e r
速率区域如图4.2所示。
沿斜线速率风+凡和是恒定的,且为最大可达和速率
q汇。
沿此线的每一个点都是由每个用户以最大可用功率发送来实现的。
要达到较
(E_,…I,、.,___.L___、、__,,、。
、.。
一低转”的点“,用户‘以全速“一’092{‘+剖“叼构建高斯码字,这里假设没有干扰。
用户2假设来自用户1的信号是加性噪声来构建码字。
较高转角的点B可
以用同样的方式得到,用户1把用户2当作加性噪声来设计码字,且用户2以全。
5g mimo 原理
5G MIMO的原理在于利用多天线技术来提升网络覆盖和性能。
MIMO(多输入多输出)技术是在发送端和接收端部署多根天线,通过多根天线配合提供分集增益和赋形增益,以提升网速和覆盖率面积。
分集增益是指通过多天线同时收发信号,在单位时间内传输更多的数据,提高数据的接收成功率。
赋形增益则利用波的干涉原理,增强部分波束,从而增强波束的传播能力。
5G MIMO基站中的天线数量更多,从2x2MIMO、8x4MIMO发展到
32×32MIMO甚至64×64MIMO,以满足5G技术标准所要求的性能。
这种技术可以在同一频带内实现多个数据流的传输,从而提高频谱利用率和系统容量。
以上内容仅供参考,如需更多信息,建议查阅5G MIMO相关论文或咨询通信专家。
MIMO系统的原理及容量分析MIMO系统的原理基于空间多样性和空间复用的概念。
通过在发送端和接收端使用多个天线,MIMO系统可以利用信道中存在的空间多径传播效应,以增加系统的容量和减小传输误差。
具体而言,MIMO系统通过同时发送多个独立数据流,每个数据流通过不同的天线进行发送,并且每个数据流通过信道的不同路径传播,从而实现在同一频率和时间资源上的多路信号传输。
MIMO系统的原理涉及到两个重要概念:空间复用和空间多样性。
空间复用是指多个独立的数据流通过不同的天线进行传输,从而在相同的频带宽度上同时传输多个数据。
空间多样性是指通过多个天线多径传播,增加信道的容量,并减小传输误差。
通过在发送端和接收端使用矩阵运算,MIMO系统可以对每个数据流进行编码和解码,从而使得系统可以同时传输和接收多个数据流。
MIMO系统的容量分析是评估MIMO系统性能的重要方法。
容量是指在给定的信道条件下,系统可以传输的最大数据速率。
对于MIMO系统来说,容量的计算需要考虑信道矩阵的特征值分解和均衡功率分配。
通过特征值分解,可以得到信道矩阵的奇异值分解(SVD),并通过SVD可以计算系统的容量。
具体而言,假设MIMO系统中有Nt个发射天线和Nr个接收天线,那么系统的信道矩阵H的维度为NrxNt。
通过对信道矩阵H进行奇异值分解,可以得到信道矩阵H的奇异值分解矩阵U、奇异值矩阵Σ和奇异向量矩阵V。
系统的容量C可以通过下式计算得到:C = log2(det(I + ρH*H')),其中,ρ为信道功率分配系数,I为单位矩阵。
容量分析可以帮助我们了解MIMO系统在特定信道条件下的性能和传输能力。
通过调整天线数量、功率分配和调制方式等参数,可以优化系统的容量。
此外,容量分析还可以帮助我们评估系统的可靠性和抗干扰性能。
综上所述,MIMO系统的原理和容量分析是深入了解和评估MIMO系统性能的重要内容。
通过了解MIMO系统的原理,我们可以了解到MIMO系统是如何利用空间多样性和空间复用来提高系统容量的。
摘要当今时代移动通信越来越离不开人们的生活,但是目前移动通信技术发展遇到了瓶颈。
有限的频率资源和日益增长的用户需求成为移动通信技术中最主要的矛盾。
在未来的移动通信发展中,如何有效大幅度提高无线链路的数据传输速率成为充满挑战性的关键问题。
MIMO技术能在不增加传输信道带宽的前提下使得整个系统容量呈线性增长,这使得该技术成为了现代无线通信中的必选技术之一。
MIMO技术是无线通信中实现了高速率数据传输、改善传输质量、提高系统容量的重要途径。
MIMO技术彻底打破传统的无线通信模式,它要求系统使用多根发射和接收天线同时地发射和接收数据,使得无线通信系统结构、分析方法、调制、编码、信道估计、检测和多址方式等各个方面面临挑战。
本文在国内外相关研究工作的基础上,针对MIMO信道容量理论进行深入研究。
本文综述了MIMO技术信道容量的分析并进行了合理的MIMO信道仿真,并总结了现代无线信道传输的特点,包括无线信道的传播方式、衰落特性。
在此基础上,对MIMO系统信道相关性问题进行详细描述了并进行了合理的分析。
【关键词】MIMO 无线信道信道容量信道仿真相关性ABSTRACTIn modern times mobile communication has become more and more inseparable from the people's life, but the mobile communication technology development encountered bottleneck. Limited frequency resource, and the increasing user demand become the main contradiction in the mobile communication technology. In the development of future mobile communication, how to effectively raise the data transfer rate of the wireless link becomes the key issue in the challenging. MIMO technology can without any increase in the transmission channel bandwidth is linear growth under the premise of making the whole system capacity, which makes the technology become one of the choice of the modern wireless communication technology. MIMO technology is realized the high speed data transmission in wireless communication, improve the transmission quality and important way to increase the system capacity.MIMO technology thoroughly breaks the mode of traditional wireless communications, since it requires multiple transmit and receive antennas to simultaneously transmit and receive data information in the same time, which challenges all the aspects of wireless communications including system architecture, analytical methods, modulation, coding, detection, channel estimation, multiple access, and so on. On the basis current research works, this paper investigates MIMO channel capacity. This paper reviews the technology of MIMO channel capacity analysis and reasonable simulation of MIMO channel and summarizes the characteristics of modern wireless channel transmission, including the mode of transmission, fading characteristics of wireless. On this basis, the channel correlation problem of MIMO system are described in detail and analyzed reasonably.【key words】MIMO Wireless channel Channel capacity Correlation Channel simulation目录前言 (1)第一章MIMO技术概述 (3)第一节MIMO系统发展概述 (3)一、MIMO技术研究背景 (3)二、MIMO应用前景 (3)三、MIMO技术发展存在的问题 (4)第二节MIMO技术简介 (6)本章小结 (7)第二章无线信道传播的基本特征 (8)第一节无线信道传播特点 (8)一、无线信道传播方式 (8)二、无线信道传播扩展方式 (9)第二节无线衰落信道的基本特征 (11)一、大尺度衰落特性 (11)二、小尺度衰落特性 (12)第三节两种典型的无线衰落信道 (13)一、瑞利衰落信道 (13)二、莱斯衰落信道 (14)本章小结 (16)第三章MIMO系统的容量 (17)第一节MIMO信道建模的概述 (17)第二节恒参信道条件下的MIMO信道容量分析 (17)第三节信道容量的仿真结果比较 (21)本章小结 (23)第四章MIMO信道的相关性研究 (24)第一节MIMO系统相关性的概述 (24)第二节MIMO相关信道模型 (27)第三节相关信道下容量的分析 (28)本章小结 (29)结论 (33)致谢 .................................................................................................... 错误!未定义书签。
MIMO 系统的原理及容量分析张大朋(班级:011291,学号:01129016)Email:captaindp@ 电话:187xxxxxxxxProject website:摘 要:本文简要讨论了无线通信系统中多输入多输出(Multiple Input Multiple Output,MIMO )这一技术的原理及性能。
通过分析MIMO 系统的原理和在平坦衰落信道与频率选择性衰落信道条件下的容量,及与传统的单输入多输出(Single Input Multiple Output,SIMO )系统容量的比较,论证了这一技术对无线通信的系统容量的提高。
关键词:MIMO ;系统容量;无线通信Principle and Capacity Analysis of MIMO SystemDapeng Zhang(Class:011291,Student No:01129016)Email: captaindp@ Telephone number:187xxxxxxxxProject website:Abstract:This article briefly discusses the instrument and performance of Multiple-Input Multiple-Output( MIMO) in wireless communication system.By analyzing the principle and the performance of MIMO systems in the condition of flat fading channel and frequency selective fading channel capacity and comparing MIMO with Single Input Multiple Output(SIMO) system,proving that this technology improved the capacity of wireless communications.Key words:MIMO;system capacity;wireless communications1 引言在传统的无线通信系统中,发射端和接收端通常是各使用一根天线,这种单天线系统也称为单输入和单输出(Single Input Single Output ,SISO )。
对于这样的系统,C.E.Shannon (1916-2001)于1948年在《通信的数学理论》]1[中提出了一个信道容量的计算公式:)/1(log 2N S B C +=,其中B 代表信道带宽,N S /代表接收端信噪比。
用B 归一化后,得到的带宽利用率)/1(log 2N S +=η,它确定了在有噪声的信道中进行可靠通信的上限速率。
以后的电信工作者无论使用怎样的调制方案和信道编码方法,只能一点点地接近它,却无超越它,Shannon 速率成了现代无线通信发展的一大瓶颈。
提高频谱使用效率的一种重要方法是采用分集技术。
单输入多输出(Single Input Multiple Output,SIMO )系统采用最佳合并的接收分集技术,通常能够改善接收端信噪比(Signal Noise Ratio ,SNR ),从而提高信道的容量和频谱的使用效率。
在多输入单输出(Multiple Input Single Output,MISO )系统,如果发射端不知道信道的状态信息,无法在发射天线中采用波束形成技术和自适应分配发射功率,信道容量的提高不明显。
SIMO 和MISO 技术的发展自然演变成多输入多输出(Multiple Input Multiple Output ,MIMO )技术,即在无线链路的两端都使用多根天线,Bell 实验室的学者E.Telatar ]2[和J.Foshinin ]3[分别证明了MIMO 系统与SIMO 和MISO 系统相比,可以取得巨大的信道容量,也突破了传统的SISO 信道容量的瓶颈,将信道容量提升了几个数量级,是C.E.Shannon 信道容量的推广。
由于MIMO 技术良好的性能,已经在第三代移动通信信通和第四代移动通信系统中得到了应用,并且在IEEE 802.11n 协议中也得到了应用。
本文主要讨论MIMO 系统的工作原理、信道模型和信道容量。
2 工作原理2.1MIMO 技术的发展及系统模型SISO 信道即传统无线信道,如图1所示,其信道冲激响应可以表示为∑=-=L i i t j i t e t t h i 1),()]([),(),(ττδταττψ(1)无线信道发射机 接收机图1 SISO 天线系统原理其中,),(τψt i 代表信道中的多径引入的总相移,),(ταt i 为幅度,)(t i τ为第i 条路径的实验。
采用R n 副接收天线的SIMO 信道,如图2所示,可视为R n 个SISO 标量信道组合而成的向量信道,可写作如下形式:T n t h t h t h t h R )],(),( ),([),(21ττττ⋯⋯= (2)无线信道发射机 接收机图2 SIMO 天线系统原理其中,),(τt h m 为第m 个SISO 子信道的冲激响应。
SIMO 信道的向量信道冲激响应可以从式(1)拓展而得,即∑-=-=10)2()(),(),(L i i t f j i i i i i e a t h ττδαφθτπ (3)其中,i α、i τ与),(i i φθ分别是第i 个多径分量的路径增益、路径延迟与达波方向,i f 是由运动引起的多普频移,i φ是附加相移,),(i i a φθ是阵列操纵矢量。
),(φθa 是阵列结构与达波角的函数可以表示为T M a a a )],(),( 1[),(11φθφθφθ-= (4)其中,T 代表转置运算,其第m 个分量为)cos sin sin cos sin (2),(θτφθφθλπφθm m m y x j m e a ++= (5)向量信道模型是一种有力的工具,它刻画除了空间信道的主要特征。
采用T n 副发射天线的MISO 信道,可视为由T n 个SISO 标量信道组合而成的向量信道,如图3所示,可写作如下形式:)],(),( ),([),(21ττττt h t h t h t h T n = (6)无线信道发射机 接收机图3 MISO 天线系统其中,),(τt h m 为第m 个SISO 子信道的冲激响应。
MISO 信道的向量信道冲激响应也可从式(1)拓展而来,见式(3),只是式中的),(i i φθ不是达波方向,而是去波方向。
采用T n 副发射天线与R n 副接收天线的MIMO 信道,可视为由R T n n ⨯个SISO 标量信道组合而成的矩阵信道,如图4所示,其信道矩阵可写作式(7)的形式,其中,),(τt h mn 表示第n 副发射天线与第m 副接收天线之间的SISO 子信道的冲激响应。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=),(),(),(),(),(),(),(),(),(),(42412222111211ττττττττττt h t h t h t h t h t h t h t h t h t T R T T n n n n H (7) 无线信道发射机 接收机图4 MIMO 天线系统原理3 MIMO 系统的容量3.1 MIMO 与SISO 、SIMO 、MISO 系统容量比较]84[-对于SISO 系统来说,根据Shannon 定理系统的容量为b/s/Hz )1(log 22h C ρ+= (8) 其中,h 是归一化的复信道响应增益;ρ表示接收天线的平均信噪比。
随着接收端天线数目的增加,系统的容量不断增加,由式(1)可以推知,SIMO 系统容量为b/s/Hz )1(log 122∑=+=P i i h C ρ (9)其中,i h 是第i 个发射天线的归一化复信道响应,P 是天线的数目。
式(9)表面其容量随着天线数目的对数增加而增加。
如果采用发射分集技术,当发射分集没有信道状态信息(Channel State Information :CSI )的情况下,对于一个MISO 系统来说,系统容量为b/s/Hz )1(log 122∑=+=P i i h P C ρ (10) 其中,P 是发射天线的数目。
式(10)表面了多发射天线时,在总的发射功率不变的情况下,实际每根天线的信噪比。
由上式可知,P 与系统容量之间成对数关系。
当考虑到同时采用发射分集和接收分集的情况,即MIMO 系统中时,那么对于P 个发射天线和Q 个接收天线的MIMO 系统,其容量公式为b /s /H z )d e t (l o g 2⎥⎦⎤⎢⎣⎡+=*HH I P C Q ρ (11) 其中,H 是Q P ⨯的信道响应矩阵,即式(7),“*”表示共轭转置。
式(10)与式(11)都是假定P 个等功率的不相关的天线的条件下成立的。
那么,在MIMO 系统信号传输过程中,每个子数据流的传输过程是相互独立的,每个接收天线接收到的信号也是相互独立的,没有任何的干扰,这样可以提高接收信号的质量。
一般的地,对于发射天线为P ,接收天线为Q 的MIMO 系统,假定信道为独立的瑞利衰落信道,则信道容量为:b/s/Hz )2/(log )],[m in(2ρB Q P C = (12)其中,B 为信道带宽,ρ为接收平均信噪比。
式(12)表面了,当发射功率和传输带宽固定时,MIMO 系统的最大容量或容量上限随较小天线数目的增加而线性增加。
这可以解释为行列式的运算符产生),min(Q P 个非零的特征值,每个特征值对应一个信噪比。
基于对数函数的特点,系统容量是所有这些特征值的和。
3.2应用注水定理(WF )的MIMO 系统容量通过3.1节可以得知,MIMO 系统提高了比SISO 、SIMO 和MISO 系统大得多的系统容量。
在MIMO 系统中应用注水定理(WF )]8[时,WF 算法的原理是首先把MIMO 信道看成m 个独立并行的子信道,给那些增益大、衰落小的信道分配较多的功率,而给增益小且衰落较多的信道分配相对少的功率,从整体上合理的利用现有资源,从而达到最大的传输容量。
各子信道的增益是由其对于的奇异值来决定的。
——系统模型假设发射天线为P ,接收天线为Q 的MIMO 系统信号模型为n Hx r += (13)这是一个加性高斯白噪声(AWGN )下的平坦性衰落的信道模型。
唯一的干扰来自码间干扰(I nter Symbol Interference:ISI )。
x 是发射符号向量,假定x 的自相关矩阵为R 。