2011到历年高考数学真题(全国卷整理版)
- 格式:docx
- 大小:1.12 MB
- 文档页数:21
2011年全国统一高考数学试卷(文科)(大纲版)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)3.(5分)设向量、满足||=||=1,•=﹣,|+2|=()A..B.C.、D..4.(5分)若变量x、y满足约束条件,则z=2x+3y的最小值为()A.17B.14C.5D.35.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b36.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.57.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.98.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.19.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种10.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.11.(5分)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4B.C.8D.12.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1﹣x)10的二项展开式中,x的系数与x9的系数之差为:.14.(5分)已知a∈(π,),tanα=2,则cosα=.15.(5分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为.16.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=.三、解答题(共6小题,满分70分)17.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,(Ⅰ)求B;(Ⅱ)若A=75°,b=2,求a,c.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.20.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.21.(12分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)证明:曲线y=f(x)在x=0处的切线过点(2,2);(Ⅱ)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.22.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.2011年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}【考点】1H:交、并、补集的混合运算.【专题】11:计算题.【分析】先根据交集的定义求出M∩N,再依据补集的定义求出∁U(M∩N).【解答】解:∵M={1,2,3},N={2,3,4},∴M∩N={2,3},则∁U(M∩N)={1,4},故选:D.【点评】本题考查两个集合的交集、补集的定义,以及求两个集合的交集、补集的方法.2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)【考点】4R:反函数.【专题】11:计算题.【分析】由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注明反函数的定义域(即原函数的值域).【解答】解:∵y=(x≥0),∴x=,y≥0,故反函数为y=(x≥0).故选:B.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)设向量、满足||=||=1,•=﹣,|+2|=()A..B.C.、D..【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】11:计算题.【分析】由|+2|==,代入已知可求【解答】解:∵||=||=1,•=﹣,|+2|===故选:B.【点评】本题主要考查了向量的数量积性质的基本应用,属于基础试题4.(5分)若变量x、y满足约束条件,则z=2x+3y的最小值为()A.17B.14C.5D.3【考点】7C:简单线性规划.【专题】31:数形结合.【分析】我们先画出满足约束条件的平面区域,然后求出平面区域内各个顶点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值.【解答】解:约束条件的平面区域如图所示:由图可知,当x=1,y=1时,目标函数z=2x+3y有最小值为5故选:C.【点评】本题考查的知识点是线性规划,其中画出满足约束条件的平面区域是解答本题的关键.5.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b3【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b 推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.6.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5【考点】85:等差数列的前n项和.【专题】11:计算题.,S k,将S k+2﹣S k=24转化为关于k 【分析】先由等差数列前n项和公式求得S k+2的方程求解.【解答】解:根据题意:S k+2=(k+2)2,S k=k2∴S k﹣S k=24转化为:+2(k+2)2﹣k2=24∴k=5故选:D.【点评】本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.7.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.9【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】56:三角函数的求值.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选:C.【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.8.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=()A.2B.C.D.1【考点】MK:点、线、面间的距离计算.【专题】11:计算题.【分析】根据线面垂直的判定与性质,可得AC⊥CB,△ACB为直角三角形,利用勾股定理可得BC的值;进而在Rt△BCD中,由勾股定理可得CD的值,即可得答案.【解答】解:根据题意,直二面角α﹣l﹣β,点A∈α,AC⊥l,可得AC⊥面β,则AC⊥CB,△ACB为Rt△,且AB=2,AC=1,由勾股定理可得,BC=;在Rt△BCD中,BC=,BD=1,由勾股定理可得,CD=;故选:C.【点评】本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.9.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种【考点】D3:计数原理的应用.【专题】11:计算题.【分析】本题是一个分步计数问题,恰有2人选修课程甲,共有C42种结果,余下的两个人各有两种选法,共有2×2种结果,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,∵恰有2人选修课程甲,共有C42=6种结果,∴余下的两个人各有两种选法,共有2×2=4种结果,根据分步计数原理知共有6×4=24种结果故选:B.【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.10.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.【考点】3I:奇函数、偶函数;3Q:函数的周期性.【专题】11:计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.11.(5分)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4B.C.8D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】圆在第一象限内,设圆心的坐标为(a,a),(b,b),利用条件可得a 和b分别为x2﹣10x+17=0 的两个实数根,再利用韦达定理求得两圆心的距离|C1C2|=•的值.【解答】解:∵两圆C1、C2都和两坐标轴相切,且都过点(4,1),故圆在第一象限内,设两个圆的圆心的坐标分别为(a,a),(b,b),由于两圆都过点(4,1),则有=|a|,|=|b|,故a和b分别为(x﹣4)2+(x﹣1)2=x2的两个实数根,即a和b分别为x2﹣10x+17=0 的两个实数根,∴a+b=10,ab=17,∴(a﹣b)2=(a+b)2﹣4ab=32,∴两圆心的距离|C1C2|=•=8,故选:C.【点评】本题考查直线和圆相切的性质,两点间的距离公式、韦达定理的应用,属于基础题.12.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.【解答】解:∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=∴圆N的半径为则圆的面积为13π故选:D.【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1﹣x)10的二项展开式中,x的系数与x9的系数之差为:0.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数分别取1;9求出展开式的x的系数与x9的系数;求出两个系数的差.=(﹣1)r C10r x r【解答】解:展开式的通项为T r+1所以展开式的x的系数﹣10x9的系数﹣10x的系数与x9的系数之差为(﹣10)﹣(﹣10)=0故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知a∈(π,),tanα=2,则cosα=﹣.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】先利用α的范围确定cosα的范围,进而利用同脚三角函数的基本关系,求得cosα的值.【解答】解:∵a∈(π,),∴cosα<0∴cosα=﹣=﹣故答案为:﹣【点评】本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号.15.(5分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE 与BC所成的角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题;31:数形结合;35:转化思想.【分析】根据题意知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,解三角形即可求得结果.【解答】解:连接DE,设AD=2易知AD∥BC,∴∠DAE就是异面直线AE与BC所成角,在△RtADE中,由于DE=,AD=2,可得AE=3∴cos∠DAE==,故答案为:.【点评】此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.16.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=6.【考点】KC:双曲线的性质.【专题】16:压轴题.【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.【解答】解:不妨设A在双曲线的右支上∵AM为∠F1AF2的平分线∴=又∵|AF1|﹣|AF2|=2a=6解得|AF2|=6故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.三、解答题(共6小题,满分70分)17.(10分)设等比数列{a n}的前n项和为S n,已知a2=6,6a1+a3=30,求a n和S n.【考点】88:等比数列的通项公式;89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】设出等比数列的公比为q,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n项和的公式即可.【解答】解:设{a n}的公比为q,由题意得:,解得:或,当a1=3,q=2时:a n=3×2n﹣1,S n=3×(2n﹣1);当a1=2,q=3时:a n=2×3n﹣1,S n=3n﹣1.【点评】此题考查学生灵活运用等比数列的通项公式及前n项和的公式化简求值,是一道基础题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,(Ⅰ)求B;(Ⅱ)若A=75°,b=2,求a,c.【考点】HU:解三角形.【专题】11:计算题.【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得cosB的值,进而求得B.(Ⅱ)利用两角和公式先求得sinA的值,进而利用正弦定理分别求得a和c.【解答】解:(Ⅰ)由正弦定理得a2+c2﹣ac=b2,由余弦定理可得b2=a2+c2﹣2accosB,故cosB=,B=45°(Ⅱ)sinA=sin(30°+45°)=sin30°cos45°+cos30°sin45°=故a=b×==1+∴c=b×=2×=【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【考点】C5:互斥事件的概率加法公式;CN:二项分布与n次独立重复试验的模型.【专题】5I:概率与统计.【分析】(I)设该车主购买乙种保险的概率为P,由相互独立事件概率公式可得P(1﹣0.5)=0.3,解可得p,先求出该车主甲、乙两种保险都不购买的概率,由对立事件的概率性质计算可得答案.(II)该地的3位车主中恰有1位车主甲、乙两种保险都不购买,是一个n次独立重复试验恰好发生k次的概率,根据上一问的结果得到该地的一位车主甲、乙两种保险都不购买的概率,代入公式得到结果.【解答】解:(I)设该车主购买乙种保险的概率为p,根据题意可得p×(1﹣0.5)=0.3,解可得p=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8(II)每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率P=C31×0.2×0.82=0.384.【点评】本题考查互斥事件的概率公式加法公式,考查n次独立重复试验恰好发生k次的概率,考查对立事件的概率公式,是一个综合题目.20.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】11:计算题;14:证明题.【分析】(1)利用线面垂直的判定定理,即证明SD垂直于面SAB中两条相交的直线SA,SB;在证明SD与SA,SB的过程中运用勾股定理即可(Ⅱ)求AB与平面SBC所成的角的大小即利用平面SBC的法向量,当为锐角时,所求的角即为它的余角;当为钝角时,所求的角为【解答】(Ⅰ)证明:在直角梯形ABCD中,∵AB∥CD,BC⊥CD,AB=BC=2,CD=1∴AD==∵侧面SAB为等边三角形,AB=2∴SA=2∵SD=1∴AD2=SA2+SD2∴SD⊥SA同理:SD⊥SB∵SA∩SB=S,SA,SB⊂面SAB∴SD⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则A(2,﹣1,0),B(2,1,0),C(0,1,0),作出S在底面上的投影M,则由四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB 为等边三角形知,M点一定在x轴上,又AB=BC=2,CD=SD=1.可解得MD=,从而解得SM=,故可得S(,0,)则设平面SBC的一个法向量为则,即取x=0,y=,z=1即平面SBC的一个法向量为=(0,,1)又=(0,2,0)cos<,>===∴<,>=arccos即AB与平面SBC所成的角的大小为arcsin【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.21.(12分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)证明:曲线y=f(x)在x=0处的切线过点(2,2);(Ⅱ)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;16:压轴题.【分析】(Ⅰ)求出函数f(x)在x=0处的导数和f(0)的值,结合直线方程的点斜式方程,可求切线方程;(Ⅱ)f(x)在x=x0处取得最小值必是函数的极小值,可以先通过讨论导数的零点存在性,得出函数有极小值的a的大致取值范围,然后通过极小值对应的x0∈(1,3),解关于a的不等式,从而得出取值范围【解答】解:(Ⅰ)f′(x)=3x2+6ax+3﹣6a由f(0)=12a﹣4,f′(0)=3﹣6a,可得曲线y=f(x)在x=0处的切线方程为y=(3﹣6a)x+12a﹣4,当x=2时,y=2(3﹣6a)+12a﹣4=2,可得点(2,2)在切线上∴曲线y=f(x)在x=0的切线过点(2,2)(Ⅱ)由f′(x)=0得x2+2ax+1﹣2a=0 (1)方程(1)的根的判别式①当时,函数f(x)没有极小值②当或时,由f′(x)=0得故x0=x2,由题设可知(i)当时,不等式没有实数解;(ii)当时,不等式化为a+1<<a+3,解得综合①②,得a的取值范围是【点评】将字母a看成常数,讨论关于x的三次多项式函数的极值点,是解决本题的难点,本题中处理关于a的无理不等式,计算也比较繁,因此本题对能力的要求比较高.22.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【考点】9S:数量积表示两个向量的夹角;KH:直线与圆锥曲线的综合.【专题】15:综合题;16:压轴题;35:转化思想.【分析】(1)要证明点P在C上,即证明P点的坐标满足椭圆C的方程,根据已知中过F且斜率为﹣的直线l与C交于A、B两点,点P满足,我们求出点P的坐标,代入验证即可.(2)若A、P、B、Q四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);∴+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)∴p的坐标为(﹣,﹣1)代入①方程成立,所以点P在C上.(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.设线段AB的中点坐标为(,),即(,),则过线段AB的中点且垂直于AB的直线方程为:y﹣=(x﹣),即y=x+;③∵P关于点O的对称点为Q,故0(0.0)为线段PQ的中点,则过线段PQ的中点且垂直于PQ的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2=,y1+y2=1∴A,B也是在圆⑤上的.∴A、P、B、Q四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.。
2011-2018高考真题全国卷文科数学试题分类汇编含答案第一章 集合与常用逻辑用语1.(2011全国1文1)已知集合,,,则的子集共有( ).A.个B.个C.个D.个 2.(2012全国文1)已知集合,,则( ).A. B. C. D. 3.(2013全国I 文1)已知集合,则( ).A. B. C. D. 4.(2013全国II 文1)已知集合,,则( ).A. B. C. D.5(2014新课标Ⅰ文1)已知集合,,则( )A. B. C. D.6.(2014新课标Ⅱ文1)已知集合,,则( )A. B. C. D. 7. (2015全国I 文1)已知集合,则集合中元素的个数为( ).A. 5B. 4C. 3D. 28. (2015全国II 文1)已知集合,,则( ). A. B. C. D. 9. (2016全国I 文1)设集合,,则(B )10.(2016全国II 文1)已知集合,则(D )(A ) (B ) (C ) (D ) 11.(2017全国I 文1)已知集合A ={}|2x x <,B ={}|320x x ->,则 ( A ){}0,1,2,3,4M ={}1,3,5N =P MN =P 2468{}220A x x x =<--{}11B x x =<<-A B ⊂≠B A ⊂≠A B =AB =∅{}{}21234A B x x n n A ===∈,,,,,A B ={}14,{}23,{}916,{}12,{}|31M x x =-<<{}3,2,1,0,1N =---MN ={}2,1,0,1--{}3,2,1,0---{}2,1,0--{}3,2,1---{|13}M x x =-<<{|21}N x x =-<<MN =(2,1)-(1,1)-(1,3))3,2(-{}2,0,2A =-{}2|20B x x x =--=AB =∅{}2{}0{}2-{32,},{6,8,10,12,14}A x x n n B ==+∈=N A B {|12}A x x =-<<{}03B x x =<<=B A ()13,-()10,-()02,()23,{1,3,5,7}A ={|25}B x x =≤≤A B ={123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},A .{1,3}B .{3,5}C .{5,7}D .{1,7}A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R12(2017全国II 文1设集合{}{}123234A B ==,,, ,,, 则=AB (A )A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,13.【2018全国一文1】已知集合{}02A =,,{}21012B =--,,,,,则A B =(A )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 14.【2018全国二文2】已知集合,,则(C )A .B .C .D .15.【2018全国三1】已知集合,,则(C )A .B .C .D .16.(2014新课标Ⅱ文3)函数在处导数存在,若;是的极值点,则( )A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件17.(2013全国I 文5)已知命题;命题,则下列命题中为真命题的是( ).A. B. C. D. 18.(2014新课标Ⅰ文14)甲.乙.丙三位同学被问到是否去过,,三个城市时, 甲说:我去过的城市比乙多,但没去过城市; 乙说:我没去过城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为.第一章 集合答案 BBACB BDABD AAACC CBA{}1,3,5,7A ={}2,3,4,5B =AB ={}3{}5{}3,5{}1,2,3,4,5,7{|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}()f x 0x x =0:()0p f x '=0:q x x =()f x p q p q q p q q :2<3x x p x ∀∈R ,32:1q x x x ∃∈=-R ,p q ∧p q ⌝∧p q ∧⌝p q ⌝∧⌝A B C B C第2章 复数1.(2011·新课标全国高考文科·T2)复数512ii=-( ) A. B. C. D. 2.(2012全国文2)复数的共轭复数是( ). A. B. C. D. 3.(2013全国II 文2)( ). A.B.D. 4.(2014新课标Ⅰ文3)设,则( ) A.B.D.5.(2011全国文2)复数( ). A. B. C. D. 6.(2013全国I 文2)( ).A. B. C. D. 7.(2014新课标Ⅱ文2)( )A. B. C. D. 8. (2015全国I 文3)已知复数满足,则( ). A.B. C. D.9. (2015全国II 文2)若为实数,且,则( ). A.B. C. D.10. (2016全国I 文2)设的实部与虚部相等,其中a 为实数,则a =( )2i -12i -2i -+12i -+3i2iz -+=+2i +2i -1i -+1i --21i=+211i 1iz =++z =12225i12i=-2i -12i -2i -+12i -+()212i1i +=-11i 2--11i 2-+11i 2+11i 2-13i 1i+=-12i +12i -+12i -12i --z (1)i 1i z -=+z =2i --2i -+2i -2i +a 2i3i 1ia +=++a =4-3-34(12i)(i)a ++11.(2016全国II 文2)设复数z 满足,则= ( )(A )(B )(C )(D )12. (2017全国I 文3)下列各式的运算结果为纯虚数的是 ( ) A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)13.(2017全国II 文2)(1+i )(2+i )= ( )A.1-iB. 1+3iC. 3+iD.3+3i14.(2017全国3文3)下列各式的运算结果为纯虚数的是 ( ) A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)15.(2018全国I 文2)设1i2i 1iz -=++,则z = ( ) A .0B .12C .1 D16.【2018全国2卷1】A .B .C .D .17.【2018全国3卷2】 A .B .C .D .第2章 复数答案 CDCBC BBCDA CCBAC DDi 3i z +=-z 12i -+12i -32i +32i -()i 23i +=32i -32i +32i --32i -+()()1i 2i +-=3i --3i -+3i -3i +A .-3 B .-2 C .2 D .3第3章 平面向量1.(2011全国文13)已知与为两个不共线的单位向量,为实数,若向量与向量垂直, 则.2.(2012全国文15)已知向量夹角为,且,,则3.(2013全国I 文13)已知两个单位向量的夹角为,,若,则4.(2013全国II 文14)已知正方形的边长为,为的中点,则__.5.(2014新课标Ⅱ文4)设向量满足( )A. B. C. D.6.(2014新课标Ⅰ文6)设分别为的三边的中点,则( )A.B.C. D. 7.(2015全国II 文7)已知三点,,,则外接圆的圆心到原点的距离为( ).A. B.C. D. 8.(2015全国I 文2) 已知点,向量,则向量( ).A. B. C. D. 9.(2015全国II 文4)向量,,则( ). A.B. C. D.10.(2016全国文15)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =11.(2016全国II 文13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.12.(2017全国文13)已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =____________. 13.(2017全国II 文)设非零向量a ,b 满足+=-b b a a 则( )A a ⊥b B. =b a C. a ∥b D. >b a14.(2018全国1文7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = ( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + a b k +a b k -a b k =,a b 451=a 2-=a b =b ,a b 60()1t t =+-c a b 0⋅=b c t =ABCD 2E CD AE BD ⋅=,a b +=a b -a b ⋅=a b 1235F E D ,,ABC △AB CA BC ,,=+2121()1,0A (B (C ABC △3532135234(0,1),(3,2)A B ()4,3AC =--BC =()7,4--()7,4()1,4-()1,4()1,1=-a ()1,2=-b ()2+⋅=a b a 1-012开始结束开始结束答案:1、 1 , 2、,3、3 ,4、2, 5A ,6A ,7B ,8A , 9C ,1011 -6 12 7 13 A第4章 算法初步1.(2013全国II 文7)执行右面的程序框图,如果输入的,那么输出的( ).A. B. C. D. 2.(2013全国I 文7)7. 执行右面的程序框图,如果输入的,则输出的属于( ).A.B.C.D. 3.(2014新课标Ⅰ文9)执行如图所示的程序框图,若输入的分别为1,2,3,则输出的( )A. B. C. D.第3题 第2题 第1题4.(2011全国文5)执行如图所示的程序框图,如果输入的是6,则输出的是( ). A. B. C.D.=b 23-4N =S =1111234+++1111232432+++⨯⨯⨯111112345++++111112324325432++++⨯⨯⨯⨯⨯⨯[]13t ∈-,s []34-,[]52-,[]43-,[]25-,,,a b k M =20372165158N p 120720144050405.(2014新课标Ⅱ文8)执行如下图所示程序框图,如果输入的均为,则输出的( ) A. B. C. D.6.(2012全国文6)如果执行下边的程序框图,输入正整数和市属,输出,则 ( )A.为的和B.为的算术平均数 C.和分别是中最大的数和最小的数 D.和分别是第4题 第5题 6题7.(2015全国I 文9)执行如下图所示的程序框图,如果输入的,则输出的( ).A. 5B. 6C.D.8. (2015全国II 文8)如下图所示,程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的.分别为14.18,则输出的( ). A. B. C. D.9.(2016全国I 文10).执行下面的程序框图,如果输入的 n =1,则输出的值满足( )(A ) (B ) (C ) ( D ),x t 2S =4567()2N N …12,,...,N a a a ,A B A B +12,,...,N a a a 2A B+12,,...,N a a a A B 12,,...,N a a a A B 12,,...,N a a a 0.01t =n =78a b a =024140,1,x y ==,x y 2y x =3y x =4y x =5y x =第7题 第8题 第9题 10.(2017全国I 文10)如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入 ( )A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2答案:BADBD CCBCDnm1S=1,n=0,m=12?输入t否第5章 三角函数与解三角形1.(2014全国I 文2)若,则()A. B. C. D. 2.(2011全国文11)设函数,则(). A.在单调递增,其图象关于直线对称 B.在单调递增,其图象关于直线对称 C.在单调递减,其图象关于直线对称 D.在单调递减,其图象关于直线对称 3. .在函数①,②,③,④中,最小正周期为的所有函数为()A.①②③B. ①③④C. ②④D. ①③4.(2014新课标Ⅱ文14)函数的最大值为5.(2012全国文9)已知,直线和是函数图像的两条相邻的对称轴,则(). A.B. C. D.6.(2015全国I 文8) 函数的部分图像如图所示,则的单调递减区间为(). A. B.C. D.7.(2013全国II 文16)函数的图象向右平移个tan 0α>sin 0α>cos 0α>sin 20α>cos20α>ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()f x π0,2⎛⎫ ⎪⎝⎭π4x =()f x π0,2⎛⎫ ⎪⎝⎭π2x =()f x π0,2⎛⎫ ⎪⎝⎭π4x =()f x π0,2⎛⎫ ⎪⎝⎭π2x =cos 2y x =cos y x =cos 26y x π⎛⎫=+ ⎪⎝⎭tan 24y x π⎛⎫=- ⎪⎝⎭π()sin()2sin cos f x x x ϕϕ=+-0ω>0ϕ<<π4x π=4x 5π=()()sin f x x ωϕ=+ϕ=4π3π2π43π()cos()f x x ωϕ=+()f x ()13π,π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132π,2π44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()13,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ()132,244k k k ⎛⎫-+∈ ⎪⎝⎭Z cos(2)(ππ)y x ϕϕ=+-剟π2单位后,与函数的图象重合,则_________. 8.(2011全国1文7)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则().A. B. C. D. 9.(2013全国II 文6)已知,则().A.B.C. D.10.(2013全国I 文9)函数在的图象大致为().11.(2013全国I 文16)设当时,函数取得最大值,则.12.(2015全国II 文11)如图所示,长方形的边,,是的中点,点沿着,与运动,记.将动点到,两点距离之和表示为的函数,则的图像大致为().πsin 23y x ⎛⎫=+⎪⎝⎭ϕ=θx 2y x =cos2θ=45-35-35452sin 23α=2πcos 4α⎛⎫+= ⎪⎝⎭16131223()()1cos sin f x x x =-[]ππ-,D.C.B.A.x θ=()sin 2cos f x x x =-cos θ=ABCD 2AB =1=BC O AB P BC CD DA BOP x ∠=P A B x ()f x ()y f x =A. B. C. D.13.(2013全国II 文4)的内角的对边分别为,已知,,,则的面积为().A. B.C.14.(2015全国II 文17)中,是上的点,平分,. ,求.15.(2011全国文15)中,,,,则的面积为.16.(2013全国I 文10)已知锐角的内角的对边分别为,,,,则().A. B. C. D.17.(2014新课标Ⅱ文17)(本小题满分12分)四边形的内角与互补,,,.(1)求和;(2)求四边形的面积.424424424424ABC △,,A B C ,,a b c 2b =π6B =π4C =ABC△2121ABC △D BC AD BAC ∠2BD DC =60BAC =B ∠ABC △120B =7AC =5AB =ABC △ABC △A B C ,,a b c ,,223cos cos20A A +=7a =6c =b =10985ABCD A C 1AB =3BC =2CD DA ==C BD ABCD18.(2012全国文17)已知分别为△三个内角的对边, (1)求;(2)若,△.19.(2014新课标Ⅰ文16)如图所示,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高20. (2015全国I 文17)已知分别为内角的对边,.(1)若,求;(2)设,且的面积.21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=(),,a b c ABC ,,A B C sin cos c C c A =-A 2a =ABC ,b c MN A C A M 60MAN ∠=︒C 45CAB ∠=︒75MAC ∠=︒C 60MCA ∠=︒100m BC =MN =,,a b c ABC △,,A B C 2sin 2sin sin B A C =a b =cos B 90B ∠=a =ABC △a =2c =2cos 3A =A BC .2D .322. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)= 24 (2017全国I 文8).函数sin21cos xy x=-的部分图像大致为A .B .C .D .25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 ( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= ( )A .15BCD .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.π435π4A . y =2sin(2x +π4)B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)高考真题试题详解1.解析由得是第一.三象限角,若是第三象限角,则A ,B 错; 由知,C 正确;取时,,D 错.故选C. 评注本题考查三角函数值的符号,判定时可运用基本知识.恒等变形及特殊值等多种方法,具有一定的灵活性.2.解析因为,当时,,故在单调递减. 又当是的一条对称轴.故选D.3.解析①,最小正周期为;②由图像知的最小正周期为;③的最小正周期;④的最小正周期.因此选A.评注本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图像判断其最小正周期. 4.解析,所以.5.分析利用三解函数的对称轴求得周期.解析由题意得周期,所以,即,所以,所以 ,.因为,所以. 所以,所以.故选A. 6.解析由图可知,得,.画出图中函数的一条对称轴,如图tan 0α>ααsin 22sin cos ααα=sin 20α>απ32211cos 22cos 121022αα⎛⎫=-=⨯-=-< ⎪⎝⎭ππππ()sin 2cos 2sin 2cos 24444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭π02x <<02πx <<()f x x =π0,2⎛⎫⎪⎝⎭π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =()y f x =cos 2cos 2y x x ==πcos y x =ππcos 26y x ⎛⎫=+⎪⎝⎭2ππ2T ==πtan 24y x ⎛⎫=- ⎪⎝⎭π2T =()()sin 2sin cos sin cos cos sin 2sin cos f x x x x x x ϕϕϕϕϕ=+-=+-=()sin cos cos sin sin 1x x x ϕϕϕ-=-…()max 1f x =512ππ2π44T ⎛⎫=-=⎪⎝⎭2π2πω=1ω=()sin()f x x ϕ=+ππsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭5π5πsin 144f ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭0πϕ<<ππ5π444ϕ<+<ππ42ϕ+=π4ϕ=511244T =-=2T =2ππTω==()f x 0x x =所示.由图可知,则,可得,则,得.由,得的单调递减区间为. 故选D.7.分析先进行平移,得出的三角函数与所给的三角函数进行比较,求出的值. 解析:的图象向右平移个单位得到的图象,整理得.因为其图象与的图象重合,所以,所以,即.又因为,所以. 8.解析设为角终边上任意一点,则. 当时,;当时,.因此.故选B.9.分析结合二倍角公式进行求解.解析:因为,所以故选A. 10.分析先利用函数的奇偶性排除B ,再利用特殊的函数值的符号排除A ,而最后答案的选择则利用了特定区间上的极值点.解析:在上,因为,所以是奇函数,所以的图象关于原点对称,排除B.取,则,排除A.因为,所以令,则或. 034x =3πcos 14ϕ⎛⎫+=-⎪⎝⎭3π2ππ4k ϕ+=+()π2π4k k ϕ=+∈Z ()πcos π4f x x ⎛⎫=+ ⎪⎝⎭π2ππ2ππ4k x k ++剟()f x 132244k xk -+剟ϕ()cos 2y x ϕ=+2πcos 22y x ϕ⎡π⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦()cos 2y x ϕ=-π+sin 23y x π⎛⎫=+ ⎪⎝⎭2k ϕππ-π=-+π322k ϕππ=+π-+π322k ϕ5π=+π6ϕ-ππ≤<5ϕπ=6(,2)(0)P t t t ≠θcos θ=0t>cos θ=0t<cos θ=223cos 22cos 1155θθ=-=-=-2sin 23α=221cos 211sin 213cos .42226αααπ⎛⎫++- ⎪π-2⎛⎫⎝⎭+==== ⎪⎝⎭[],-ππ()()()()()1cos sin 1cos sin f x x x x x -=---=--=⎡⎤⎣⎦()()1cos sin x x f x --=-()f x ()f x 2x π=1cos 10f ππ⎛⎫⎛⎫=-= ⎪ ⎪22⎝⎭⎝⎭>()()1cos sin f x x x =-()()sin sin 1cos cos f x x x x x '=⋅+-2221cos cos cos 2cos cos 1.x x x x x =-+-=-++()0f x '=cos 1x =1cos 2x =结合,求得在上的极大值点为,靠近,故选C. 11.分析先利用三角恒等变换求得函数的最大值,再利用方程思想求解. 解析:, 则所以,所以, 所以又因为时,取得取大值,所以.又,所以即.12.解析由已知可得,当点在边上运动时,即时,;当点在边上运动时,即,时,当时,; 当点在边上运动时,即时,.从点的运动过程可以看出,轨迹关于直线对称,,且轨迹非直线型.故选B. 评注本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想. 13.分析先由正弦定理解出的值,再运用面积公左求解. 解析:因为,,所以 由正弦定理,得,即所以.故选B. 14.分析 (1)根据题意,由正弦定理可得.[],x ∈-ππ()f x (]0,π23ππsin 2cos y x x x x ⎫=-=⎪⎭cos sin αα=)()sin cos cossin .y x x ααα=-=-x ∈R x α-∈R max y =x θ=()f x ()sin 2cos fθθθ=-=22sin cos 1θθ+=sin cos θθ⎧=⎪⎪⎨⎪=⎪⎩cos θ=P BC π04x剟PA PB +=tan x P CD π3π44x 剎?π2x ≠PA PB +=π2x =PA PB +=P AD 3ππ4x 剎?tan PA PB x +=P π2x =ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭c 6B π=4C π=7.A B C πππ=π--=π--=6412sin sin b c B C =2sin sin c =ππ64212=c =117sin 212212ABC S bc A π==⨯⨯=△sin 1sin 2B DC C BD ∠==∠(2)由诱导公式可得,由(1)可知,所以,. 解析 (1)由正弦定理得,,.因为平分,,所以. (2)因为,,所以.由(1)知,所以,即. 评注三角是高中数学的重点内容,在高考中主要利用三角函数,三角恒等变换及解三角形的正弦定理及余弦定理,在求解时,注意角的转化及定理的使用.15.解析由余弦定理知,即,解得.故.故答案为. 16.分析先求出角的余弦值,再利用余弦定理求解.解析:由得,解得.因为是锐角,所以.又,所以,所以或.又因为,所以.故选D.17.解析(1)由题设及余弦定理得,①. ②由①,②得,故,()1sin sin sin 22C BAC B B B ∠=∠+∠=∠+∠2sin B ∠=sin C ∠tan 3B ∠=30B ∠=sin sin AD BD B BAD =∠∠sin sin AD DCC CAD=∠∠AD BAC ∠2BD DC =sin 1sin 2B DC C BD ∠==∠()180C BAC B ∠=-∠+∠60BAC ∠=()1sin sin sin 2C BAC B B B ∠=∠+∠=∠+∠2sin sin B C ∠=∠tan 3B ∠=30B ∠=2222cos120AC AB BC AB BC =+-⋅249255BC BC =++3BC =11sin120532224ABC S AB BC =⋅=⨯⨯⨯=△4A 223cos cos 20A A +=2223cos 2cos 10A A +-=1cos 5A =±A 1cos 5A =2222cos a b c bc A =+-214936265b b =+-⨯⨯⨯5b =135b =-0b >5b >2222cos 1312cos BD BC CD BC CD C C =+-⋅=-2222cos 54cos BD AB DA AB DA A C =+-⋅=+1cos 2C =60C =BD =(2)四边形的面积评注本题考查余弦定理的应用和四边形面积的计算,考查运算求解能力和转化的思想,把四边形分割成两个三角形是求面积的常用方法.18.解析(1)由.由于,所以. 又,故. (2)的面积,故.而,故 . 解得.19.解析在中,,,所以. 在中,,,从而,由正弦定理得,,因此.在中,,,由得,故填.20. 解析(1)由正弦定理得,.又,所以,即.则. (2)解法一:因为,所以,即,亦即.又因为在中,,所以,则,得.所以为等腰直角三角形,得,所以. 解法二:由(1)可知,①因为,所以,②将代入得,则,所以.ABCD 1111sin sin 1232sin 60232222S AB DA A BC CD C ⎛⎫=⋅+⋅=⨯⨯+⨯⨯= ⎪⎝⎭sin cos c C c A =-sinA C -cos sin sin 0A C C -=sin 0C ≠π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<π3A =ABC △1sin 2S bc A ==4bc =2222cos a b c bc A =+-228b c +=2b c ==Rt ABC △45CAB ∠=100BC =m AC =m AMC △75MAC ∠=60MCA ∠=45AMC ∠=sin 45sin 60AC AM=AM=m Rt MNA △AM =m 60MAN∠=sin 60MNAM=150MN ==m 15022b ac =a b =22a ac=2a c =22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅90B ∠=()2sin 12sin sin 2sin sin 90B A C A A ===-2sin cos 1A A =sin 21A =ABC △90B ∠=090A <∠<290A ∠=45A ∠=ABC △a c ==112ABC S ==△22b ac =90B ∠=222a c b +=②①()20a c -=a c ==112ABC S ==△21. (2015全国I 文4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=答案:D解析:本题考察余弦定理,根据题目条件画出图形可以列出等式,带入已知条件化简可得,解得.22. (2016全国I 文6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为答案:D解析:该函数的周期为,所以函数向右平移,得,化简可得y =2sin(2x –π3).23. (2016全国I 文14)已知θ是第四象限角,且sin (θ+)=,则tan (θ–)=.答案: 解析:本题考察同角的三角函数关系,三角函数的符号判断以及诱导公式的运用:,因为θ是第四象限角,且,所以也在第四象限,即,所以24 (2017全国I 文8).函数sin21cos xy x=-的部分图像大致为a =2c =2cos 3A =2222cos a b c bc A =+-23830b b --=3b =2T ππω==4π2sin(2())46y x ππ=-+π435π443-cos()4πθ-=3cos()sin()4245πππθθ+-=+=cos()4πθ-=354πθ-4sin()45πθ-=-sin()44tan()43cos()4πθπθπθ--=--ABC .2D .3A . y =2sin(2x +π4) B . y =2sin(2x +π3)C . y =2sin(2x –π4)D . y =2sin(2x –π3)A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C .25. (2017全国I 文15).已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.26.(2018全国I 文8).已知函数()222cos sin 2f x x x =-+,则 B A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为427.(2018全国I 文11).已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= BA .15B C D .128.(2018全国I 文16).△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为.第6章 极坐标与参数方程1.(2013全国2文23)动点都在曲线(为参数)上,对应参数分别为与(),为的中点.(1)求的轨迹的参数方程;(2)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.2.(2014新课标Ⅱ文23)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆的极坐标方程为,.(1)求的参数方程;(2)设点在上,在处的切线与直线垂直,根据(1)中你得到的参数方程,确定的坐标.P Q ,2cos 2sin x tC :y t=⎧⎨=⎩t t α=2t α=0<<2παM PQ M M d a M xOy x C 2cos ρθ=0,2θπ⎡⎤∈⎢⎥⎣⎦C D C CD :2l y =+D3(2012全国文23)已知曲线的参数方程是为参数,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为.(1)求点的直角坐标; (2)设为上任意一点,求的取值范围.4.(2015全国II 文23) 在直线坐标系中,曲线:(为参数,)其中.(1) 求与交点的直角坐标;1C 12cos ,:3sin ,x C y ϕϕ=⎧⎨=⎩(ϕ)x 2C 2ρ=ABCD 2C ,,,A B C D A π2,3⎛⎫⎪⎝⎭,,,A B C D P 1C 2222PA PB PC PD +++xOy 1C cos sin x t y t αα=⎧⎨=⎩t 0t ≠0πα剟2C 3C5.(2015全国I 文23)在直角坐标系中,直线:,圆:,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求的极坐标方程. (2)若直线的极坐标方程为,设与的交点为,求的面积.6.(2011全国文23))在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线.(1)求的方程;(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.xOy 1C 2x =-2C ()()22121x y -+-=12,C C 3C ()π4θρ=∈R 2C 3C ,M N 2C MN △xOy 1C 2cos ,22sin .x y αα=⎧⎨=+⎩αM 1C P 2OP OM =P 2C 2C O x π3θ=1C A 2C B AB7(2013全国I 文23)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标8(2016全国卷1 23.)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy 中,曲线C 1的参数方程为(t 为参数,a >0)。
参考公式:如果事件A 、B 互斥,那么球的表面积公式()()()P A B P A P B 24S R如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么334VRn 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(0,1,2,)k kn kn nP k C p p k n …普通高等学校招生全国统一考试一、选择题1、复数131i i=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A0或3B 0或3C 1或3D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B3C2D 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A)(B )(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
2011年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数z=1+i,为z 的共轭复数,则z•﹣z﹣1=()A.﹣2i B.﹣i C.i D.2i2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)3.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b34.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.55.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.96.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.17.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种8.(5分)曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()A.B.C.D.19.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.10.(5分)已知抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,则cos∠AFB=()A.B.C.D.11.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π12.(5分)设向量,,满足||=||=1,=﹣,<﹣,﹣>=60°,则||的最大值等于()A.2B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)的二项展开式中,x的系数与x9的系数之差为.14.(5分)已知α∈(,π),sinα=,则tan2α=.15.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=.16.(5分)已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.三、解答题(共6小题,满分70分)17.(10分)△ABC的内角A、B、C的对边分别为a、b、c.已知A﹣C=,a+c=b,求C.18.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.19.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.20.(12分)设数列{a n}满足a1=0且.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记,证明:S n<1.21.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.22.(12分)(Ⅰ)设函数,证明:当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:.2011年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数z=1+i,为z 的共轭复数,则z•﹣z﹣1=()A.﹣2i B.﹣i C.i D.2i【考点】A5:复数的运算.【专题】11:计算题.【分析】求出复数z的共轭复数,代入表达式,求解即可.【解答】解:=1﹣i,所以=(1+i)(1﹣i)﹣1﹣i﹣1=﹣i故选:B.【点评】本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.2.(5分)函数y=(x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)【考点】4R:反函数.【专题】11:计算题.【分析】由原函数的解析式解出自变量x的解析式,再把x 和y交换位置,注明反函数的定义域(即原函数的值域).【解答】解:∵y=(x≥0),∴x=,y≥0,故反函数为y=(x≥0).故选:B.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b﹣1C.a2>b2D.a3>b3【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1满足a>b,但a=b+1即a>b推不出a>b+1,故a>b+1是a>b成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.4.(5分)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8B.7C.6D.5【考点】85:等差数列的前n项和.【专题】11:计算题.【分析】先由等差数列前n项和公式求得S k+2,S k,将S k+2﹣S k=24转化为关于k的方程求解.【解答】解:根据题意:S k+2=(k+2)2,S k=k2∴S k+2﹣S k=24转化为:(k+2)2﹣k2=24∴k=5故选:D.【点评】本题主要考查等差数列的前n项和公式及其应用,同时还考查了方程思想,属中档题.5.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于()A.B.3C.6D.9【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】56:三角函数的求值.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选:C.【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.6.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.1【考点】MK:点、线、面间的距离计算.【专题】11:计算题;13:作图题;35:转化思想.【分析】画出图形,由题意通过等体积法,求出三棱锥的体积,然后求出D到平面ABC的距离.【解答】解:由题意画出图形如图:直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离转化为三棱锥D﹣ABC的高为h,所以AD=,CD=,BC=由V B﹣ACD=V D﹣ABC可知所以,h=故选C.【点评】本题是基础题,考查点到平面的距离,考查转化思想的应用,等体积法是求解点到平面距离的基本方法之一,考查计算能力.7.(5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【考点】D3:计数原理的应用.【专题】11:计算题.【分析】本题是一个分类计数问题,一是3本集邮册一本画册,让一个人拿一本画册有4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42种,根据分类计数原理得到结果.【解答】解:由题意知本题是一个分类计数问题,一是3本集邮册一本画册,从4位朋友选一个有4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42=6种,根据分类计数原理知共10种,故选:B.【点评】本题考查分类计数问题,是一个基础题,这种题目可以出现在选择或填空中,也可以出现在解答题目的一部分中.8.(5分)曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()A.B.C.D.1【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式,然后求出与y轴和直线y=x的交点,根据三角形的面积公式求出所求即可.【解答】解:∵y=e﹣2x+1∴y'=(﹣2)e﹣2x∴y'|x=0=(﹣2)e﹣2x|x=0=﹣2∴曲线y=e﹣2x+1在点(0,2)处的切线方程为y﹣2=﹣2(x﹣0)即2x+y﹣2=0令y=0解得x=1,令y=x解得x=y=∴切线与直线y=0和y=x围成的三角形的面积为×1×=故选:A.【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及两直线垂直的应用等有关问题,属于基础题.9.(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.【考点】3I:奇函数、偶函数;3Q:函数的周期性.【专题】11:计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.10.(5分)已知抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,则cos∠AFB=()A.B.C.D.【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】根据已知中抛物线C:y2=4x的焦点为F,直线y=2x﹣4与C交于A,B两点,我们可求出点A,B,F的坐标,进而求出向量,的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【解答】解:∵抛物线C:y2=4x的焦点为F,∴F点的坐标为(1,0)又∵直线y=2x﹣4与C交于A,B两点,则A,B两点坐标分别为(1,﹣2)(4,4),则=(0,﹣2),=(3,4),则cos∠AFB===﹣,故选:D.【点评】本题考查的知识点是直线与圆锥曲线的关系,其中构造向量然后利用向量法处理是解答本题的重要技巧.11.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为()A.7πB.9πC.11πD.13π【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先求出圆M的半径,然后根据勾股定理求出求出OM的长,找出二面角的平面角,从而求出ON的长,最后利用垂径定理即可求出圆N的半径,从而求出面积.【解答】解:∵圆M的面积为4π∴圆M的半径为2根据勾股定理可知OM=∵过圆心M且与α成60°二面角的平面β截该球面得圆N∴∠OMN=30°,在直角三角形OMN中,ON=∴圆N的半径为则圆的面积为13π故选:D.【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.12.(5分)设向量,,满足||=||=1,=﹣,<﹣,﹣>=60°,则||的最大值等于()A.2B.C.D.1【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】11:计算题;16:压轴题.【分析】利用向量的数量积求出的夹角;利用向量的运算法则作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.【解答】解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选:A.【点评】本题考查向量的数量积公式、向量的运算法则、四点共圆的判断定理、三角形的正弦定理.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)的二项展开式中,x的系数与x9的系数之差为0.【考点】DA :二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出通项,令x 的指数分别取1,9求出x的系数与x9的系数;求出值.【解答】解:展开式的通项为令得r=2;令得r=18∴x的系数与x9的系数C202,C2018∴x的系数与x9的系数之差为C202﹣C2018=0故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5分)已知α∈(,π),sinα=,则tan2α=﹣.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】11:计算题.【分析】利用题目提供的α的范围和正弦值,可求得余弦值从而求得正切值,然后利用二倍角的正切求得tan2α.【解答】解:由α∈(,π),sinα=,得cosα=﹣,tanα==∴tan2α==﹣故答案为:﹣【点评】本题考查了二倍角的正切与同角三角函数间的基本关系,是个基础题.15.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=6.【考点】KC:双曲线的性质.【专题】16:压轴题.【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.【解答】解:不妨设A在双曲线的右支上∵AM为∠F1AF2的平分线∴=又∵|AF1|﹣|AF2|=2a=6解得|AF2|=6故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.16.(5分)已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题;31:数形结合.【分析】由题意画出正方体的图形,延长CB、FE交点为S连接AS,过B作BP⊥AS连接PE,所以面AEF与面ABC所成的二面角就是:∠BPE,求出BP与正方体的棱长的关系,然后求出面AEF与面ABC所成的二面角的正切值.【解答】解:由题意画出图形如图:因为E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,延长CB、FE交点为S连接AS,过B作BP⊥AS连接PE,所以面AEF与面ABC所成的二面角就是∠BPE,因为B1E=2EB,CF=2FC1,所以BE:CF=1:2所以SB:SC=1:2,设正方体的棱长为:a,所以AS=a,BP=,BE=,在RT△PBE中,tan∠EPB===,故答案为:【点评】本题是基础题,考查二面角的平面角的正切值的求法,解题的关键是能够作出二面角的棱,作出二面角的平面角,考查计算能力,逻辑推理能力.三、解答题(共6小题,满分70分)17.(10分)△ABC的内角A、B、C的对边分别为a、b、c.已知A﹣C=,a+c=b,求C.【考点】HU:解三角形.【专题】11:计算题.【分析】由A﹣C等于得到A为钝角,根据诱导公式可知sinA与cosC相等,然后利用正弦定理把a+c=b化简后,把sinA换为cosC,利用特殊角的三角函数值和两角和的正弦函数公式把左边变为一个角的正弦函数,给方程的两边都除以后,根据C和B的范围,得到C+=B或C++B=π,根据A为钝角,所以C++B=π不成立舍去,然后根据三角形的内角和为π,列出关于C的方程,求出方程的解即可得到C的度数.【解答】解:由A﹣C=,得到A为钝角且sinA=cosC,利用正弦定理,a+c=b可变为:sinA+sinC=sinB,即有sinA+sinC=cosC+sinC=sin(C+)=sinB,又A,B,C是△ABC的内角,故C+=B或C++B=π(舍去),所以A+B+C=(C+)+(C+)+C=π,解得C=.【点评】此题考查学生灵活运用诱导公式、特殊角的三角函数值以及两角和的正弦函数公式化简求值,是一道中档题.学生做题时应注意三角形的内角和定理及角度范围的运用.18.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(Ⅰ)首先求出购买乙种保险的概率,再由独立事件和对立事件的概率求出该车主甲、乙两种保险都不购买的概率,然后求该车主至少购买甲、乙两种保险中的1种的概率即可.(Ⅱ)每位车主甲、乙两种保险都不购买的概率均相等,故为独立重复试验,X服从二项分布,由二项分布的知识求概率即可.【解答】解:(Ⅰ)设该车主购买乙种保险的概率为P,则P(1﹣0.5)=0.3,故P=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率1﹣0.2=0.8(Ⅱ)甲、乙两种保险都不购买的概率为0.2,X~B(100,0.2)所以EX=100×0.2=20【点评】本题考查对立事件独立事件的概率、独立重复试验即二项分布的期望等知识,考查利用所学知识分析问题、解决问题的能力.19.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】11:计算题;14:证明题.【分析】(1)利用线面垂直的判定定理,即证明SD垂直于面SAB中两条相交的直线SA,SB;在证明SD与SA,SB的过程中运用勾股定理即可(Ⅱ)求AB与平面SBC所成的角的大小即利用平面SBC的法向量,当为锐角时,所求的角即为它的余角;当为钝角时,所求的角为【解答】(Ⅰ)证明:在直角梯形ABCD中,∵AB∥CD,BC⊥CD,AB=BC=2,CD=1∴AD==∵侧面SAB为等边三角形,AB=2∴SA=2∵SD=1∴AD2=SA2+SD2∴SD⊥SA同理:SD⊥SB∵SA∩SB=S,SA,SB⊂面SAB∴SD⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则A(2,﹣1,0),B(2,1,0),C(0,1,0),作出S在底面上的投影M,则由四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形知,M点一定在x轴上,又AB=BC=2,CD=SD=1.可解得MD=,从而解得SM=,故可得S (,0,)则设平面SBC的一个法向量为则,即取x=0,y=,z=1即平面SBC的一个法向量为=(0,,1)又=(0,2,0)cos<,>===∴<,>=arccos即AB与平面SBC所成的角的大小为arcsin【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.20.(12分)设数列{a n}满足a1=0且.(Ⅰ)求{a n}的通项公式;(Ⅱ)设,记,证明:S n<1.【考点】8E:数列的求和;8H:数列递推式;8K:数列与不等式的综合.【专题】11:计算题;16:压轴题.【分析】(Ⅰ)由是公差为1的等差数列,知,由此能求出{a n}的通项公式.(Ⅱ)由==,能够证明S n<1.【解答】解:(Ⅰ)是公差为1的等差数列,,∴(n∈N*).(Ⅱ)==,∴=1﹣<1.【点评】本题考查数列的性质和应用,解题时要注意裂项求和法的合理运用.21.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣的直线l与C交于A、B两点,点P满足.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【考点】9S:数量积表示两个向量的夹角;KH:直线与圆锥曲线的综合.【专题】15:综合题;16:压轴题;35:转化思想.【分析】(1)要证明点P在C上,即证明P点的坐标满足椭圆C的方程,根据已知中过F且斜率为﹣的直线l与C交于A、B两点,点P满足,我们求出点P的坐标,代入验证即可.(2)若A、P、B、Q四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);∴+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)∴p的坐标为(﹣,﹣1)代入①方程成立,所以点P在C上.(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.设线段AB的中点坐标为(,),即(,),则过线段AB的中点且垂直于AB的直线方程为:y﹣=(x﹣),即y=x+;③∵P关于点O的对称点为Q,故0(0.0)为线段PQ的中点,则过线段PQ的中点且垂直于PQ的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2=,y1+y2=1∴A,B也是在圆⑤上的.∴A、P、B、Q四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.22.(12分)(Ⅰ)设函数,证明:当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:.【考点】6B:利用导数研究函数的单调性.【专题】14:证明题;16:压轴题.【分析】(Ⅰ)欲证明当x>0时,f(x)>0,由于f(0)=0利用函数的单调性,只须证明f(x)在[0,+∞)上是单调增函数即可.先对函数进行求导,根据导函数大于0时原函数单调递减即可得到答案.(Ⅱ)先计算概率P=,再证明<<,即证明99×98× (81)(90)19,最后证明<e﹣2,即证>e2,即证19ln>2,即证ln,而这个结论由(1)所得结论可得【解答】(Ⅰ)证明:∵f′(x)=,∴当x>﹣1,时f′(x)≥0,∴f(x)在(﹣1,+∞)上是单调增函数,∴当x>0时,f(x)>f(0)=0.即当x>0时,f(x)>0.(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,连续抽取20次,则抽得的20个号码互不相同的概率为P=,要证P<<.先证:P=<,即证<即证99×98×…×81<(90)19而99×81=(90+9)×(90﹣9)=902﹣92<90298×82=(90+8)×(90﹣8)=902﹣82<902…91×89=(90+1)×(90﹣1)=902﹣12<902∴99×98×…×81<(90)19即P<再证:<e﹣2,即证>e2,即证19ln>2,即证ln>由(Ⅰ)f(x)=ln(1+x)﹣,当x>0时,f(x)>0.令x=,则ln(1+)﹣=ln(1+)﹣>0,即ln>综上有:P<<【点评】本题主要考查函数单调性的应用、函数的单调性与导数的关系等,考查运算求解能力,函数、导数、不等式证明及等可能事件的概率等知识.通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力.祝福语祝你考试成功!。
2011年全国各地高考数学试题(四川卷)数 学(文史类)本试题卷分第一部分(选择题)和第二部分(非选择题)两部分.第1部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案打在答题卡上,在本试题卷、草稿纸上答题无效,满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.参考公式:如果事件A 、B 互斥,那么 球是表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn kn n P k C P P -=-第一部分(选择题 共60分)1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.2.本大题共12小题,每小题5分,共60分.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.若全集{1,2,3,4,5}M =,{2,4}N =,则M N =ð(A)∅ (B){1,3,5} (C){2,4}(D){1,2,3,4,5}答案:B解析:∵{1,2,3,4,5}M =,则M N =ð{1,3,5},选B.2.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,大于或等于31.5的数据约占(A)211 (B) 13(C)12 (D)23答案:B解析:大于或等于31.5的数据共有12+7+3=22个,约占221663=,选B.3.圆22460x y x y +-+=的圆心坐标是(A)(2,3) (B)(-2,3) (C)(-2,-3) (D)(2,-3) 答案:D解析:圆方程化为22(2)(3)13x y -++=,圆心(2,-3),选D.4.函数1()12x y =+的图象关于直线y =x 对称的图象像大致是答案:A解析:1()12x y =+图象过点(0,2),且单调递减,故它关于直线y =x 对称的图象过点(2,0)且单调递减,选A. 5.“x =3”是“x 2=9”的(A)充分而不必要的条件(B)必要而不充分的条件(C)充要条件(D)既不充分也不必要的条件答案:A解析:若x =3,则x 2=9,反之,若x 2=9,则3x =±,选A. 6.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是(A)12l l ⊥,23l l ⊥13//l l ⇒(B)12l l ⊥,23//l l ⇒13l l ⊥(C)233////l l l ⇒1l ,2l ,3l 共面(D)1l ,2l ,3l 共点⇒1l ,2l ,3l 共面答案:B解析:由12l l ⊥,23//l l ,根据异面直线所成角知1l 与3l 所成角为90°,选B. 7.如图,正六边形ABCDEF 中,BA CD EF ++=(A)0 (B)BE (C)AD(D)CF答案:D解析:BA CD EF CD DE EF CF ++=++=,选D.8.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A)(0,]6π(B)[,)6ππ(C)(0,]3π(D)[,)3ππ答案:C解析:由222sin sin sin sin sin A B C B C ≤+-得222a b c bc ≤+-,即222122b c a bc +-≥,∴1cos 2A ≥,∵0A π<<,故03A π<≤,选C.9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6=(A)3 × 44(B)3 × 44+1(C)44(D)44+1答案:A解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A.10.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为(A)4650元 (B)4700元 (C)4900元 (D)5000元 答案:C 解析:设派用甲型卡车x (辆),乙型卡车y (辆),获得的利润为u (元),450350u x y =+,由题意,x 、y 满足关系式12,219,10672,08,07,x y x y x y x y +≤⎧⎪+≤⎪⎪+≥⎨⎪≤≤⎪≤≤⎪⎩作出相应的平面区域,45035050(97)u x y x y =+=+在由12,219x y x y +≤⎧⎨+≤⎩确定的交点(7,5)处取得最大值4900元,选C. 11.在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为 (A)(2,9)-- (B)(0,5)- (C)(2,9)- (D)(1,6)- 答案:A解析:令抛物线上横坐标为14x =-、22x =的点为(4,114)A a --、(2,21)B a -,则2AB k a =-,由22y x a a '=+=-,故切点为(1,4)a ---,切线方程为(2)60a x y ---=,该直线又和圆相切,则d =,解得4a =或0a =(舍去),则抛物线为2245(2)9y x x x =+-=+-,定点坐标为(2,9)--,选A.12.在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b =α,从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则mn=(A)215 (B)15 (C)415 (D)13答案:B解析:∵以原点为起点的向量(,)a b =α有(2,1)、(2,3)、(2,5)、(4,1)、(4,3)、(4,5)共6个,可作平行四边形的个数2615n C ==个,结合图形进行计算,其中由(2,1)(4,1)、(2,1)(4,3)、(2,3)(4,5)确定的平行四边形面积为2,共有3个,则31155m n ==,选B.第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.13.9(1)x +的展开式中3x 的系数是_________.(用数字作答)答案:84解析:∵9(1)x +的展开式中3x 的系数是639984C C ==.14.双曲线2216436x y -=上一点P 到双曲线右焦点的距离是4,那么P 到左准线的距离是____.答案:16 答案:16解析:离心率54e =,设P 到右准线的距离是d ,则454d =,则165d =,则P 到左准线的距离等于2641616105⨯+=.15.如图,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________. 答案:32π解析:如图,设球一条半径与圆柱相应的母线夹角为α,圆柱侧面积24s i n 24c o S παα=⨯⨯⨯=32sin 2πα,当4πα=时,S 取最大值32π,此时球的表面积与该圆柱的侧面积之差为32π.16.函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x +1(x ∈R )是单函数.下列命题:①函数2()f x x =(x ∈R )是单函数; ②指数函数()2x f x =(x ∈R )是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠; ④在定义域上具有单调性的函数一定是单函数.其中的真命题是_________.(写出所有真命题的编号) 答案:②③④解析:对于①,若12()()f x f x =,则12x x =±,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题共l2分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还车的概率分别为12、14;两人租车时间都不会超过四小时.(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.本小题主要考查相互独立事件、互斥事件等概念及相关概率计算,考查运用所学知识和方法解决实际问题的能力.解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A 、B ,则111()1424P A =--=,111()1244P A =--=.答:甲、乙在三小时以上且不超过四小时还车的概率分别为14、14.(Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C ,则1111111111113()()()()4244222442444P C =⨯+⨯+⨯+⨯+⨯+⨯=.答:甲、乙两人所付的租车费用之和小于6元的概率为3418.(本小题共l2分)已知函数73()sin()cos()44f x x x ππ=++-,x ∈R .(Ⅰ)求()f x 的最小正周期和最小值;(Ⅱ)已知4cos()5βα-=,4cos()5βα+=-,02παβ<<≤.求证:2[()]20f β-=.本小题考查三角函数的性质,同角三角函数的关系,两角和的正、余弦公式、诱导公式等基础知识和基本运算能力,函数与方程、化归与转化等数学思想.(Ⅰ)解析:7733()sin cos cos sin cos cos sin sin4444f x x x x x ππππ=+++x x 2sin()4x π=-,∴()f x 的最小正周期2T π=,最小值min ()2f x =-.(Ⅱ)证明:由已知得4cos cos sin sin 5αβαβ+=,4cos cos sin sin 5αβαβ-=-两式相加得2cos cos 0αβ=,∵02παβ<<≤,∴cos 0β=,则2πβ=.∴22[()]24sin 204f πβ-=-=.19.(本小题共l2分)如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .(Ⅰ)求证:PB 1∥平面BDA 1;(Ⅱ)求二面角A -A 1D -B 的平面角的余弦值;本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力. 解法一:(Ⅰ)连结AB 1与BA 1交于点O ,连结OD ,∵C 1D ∥平面AA 1,A 1C 1∥AP ,∴AD =PD ,又AO =B 1O , ∴OD ∥PB 1,又OD ⊂面BDA 1,PB 1⊄面BDA 1, ∴PB 1∥平面BDA 1.(Ⅱ)过A 作AE ⊥DA 1于点E ,连结BE .∵BA ⊥CA ,BA ⊥AA 1,且AA 1∩AC =A , ∴BA ⊥平面AA 1C 1C .由三垂线定理可知BE ⊥DA 1.∴∠BEA 为二面角A -A 1D -B 的平面角. 在Rt △A 1C 1D 中,1A D ==,又1111122AA D S AE ∆=⨯⨯=,∴AE =. 在Rt △BAE 中,BE ==,∴2cos 3AH AHB BH ∠==.故二面角A -A 1D -B 的平面角的余弦值为23. 解法二:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A 1-B 1C 1A ,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .(Ⅰ)在△P AA 1中有1112C D AA =,即1(0,1,)2D .∴1(1,0,1)A B =,1(0,1,)A D x =,1(1,2,0)B P =-.设平面BA 1D 的一个法向量为1(,,)a b c =n ,则11110,10.2A B a c A D b c ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令1c =-,则11(1,,1)2=-n . ∵1111(1)2(1)002B P ⋅=⨯-+⨯+-⨯=n ,∴PB 1∥平面BA 1D ,(Ⅱ)由(Ⅰ)知,平面BA 1D 的一个法向量11(1,,1)2=-n .又2(1,0,0)=n 为平面AA 1D 的一个法向量.∴12121212cos ,3||||312⋅<>===⋅⨯n n n n n n .故二面角A -A 1D -B 的平面角的余弦值为23. 20.(本小题共12分)已知{}n a 是以a 为首项,q 为公比的等比数列,n S 为它的前n 项和.(Ⅰ)当1S 、3S 、4S 成等差数列时,求q 的值;(Ⅱ)当m S 、n S 、l S 成等差数列时,求证:对任意自然数k ,m k a +、n k a +、l k a +也成等差数列. 本小题考查等比数列和等差数列的基础知识以及基本运算能力和分析问题、解决问题的能力.解:(Ⅰ)由已知,1n n a aq -=,因此1S a =,23(1)S a q q =++,234(1)S a q q q =+++.当1S 、3S 、4S 成等差数列时,1432S S S +=,可得32aq aq aq =+.化简得210q q --=.解得q =. (Ⅱ)若1q =,则{}n a 的每项n a a =,此时m k a +、n k a +、l k a +显然成等差数列.若1q ≠,由m S 、n S 、l S 成等差数列可得2m l n S S S +=,即(1)(1)2(1)111m l n a q a q a q q q q ---+=---. 整理得2m l n q q q +=.因此,11()22k m l n k m k l k n k a a aq q q aq a -+-++++=+==. 所以,m k a +、n k a +、l k a +也成等差数列.21.(本小题共l2分)过点C (0,1)的椭圆22221(0)x y a b a b+=>>,椭圆与x 轴交于两点(,0)A a 、(,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(I)当直线l 过椭圆右焦点时,求线段CD 的长; (Ⅱ)当点P 异于点B 时,求证:OP OQ ⋅为定值. 本小题主要考查直线、椭圆的标准方程及基本性质等基本知识,考查平面解析几何的思想方法及推理运算能力.解:(Ⅰ)由已知得1,c b a ==解得2a =,所以椭圆方程为2214x y +=.椭圆的右焦点为,此时直线l 的方程为 1y x =+,代入椭圆方程得270x -=,解得120,x x ==,代入直线l 的方程得 1211,7y y ==-,所以1,)7D -,故16||7CD =. (Ⅱ)当直线l 与x 轴垂直时与题意不符.设直线l 的方程为11(0)2y kx k k =+≠≠且.代入椭圆方程得22(41)80k x kx ++=.解得12280,41kx x k -==+,代入直线l 的方程得2122141,41k y y k -==+,所以D 点的坐标为222814(,)4141k kk k --++.又直线AC 的方程为12x y +=,又直线BD 的方程为12(2)24ky x k +=+-,联立得4,2 1.x k y k =-⎧⎨=+⎩因此(4,21)Q k k -+,又1(,0)P k-.所以1(,0)(4,21)4OP OQ k k k⋅=--+=.故OP OQ ⋅为定值. 22.(本小题共l4分)已知函数21()32f x x =+,()h x =(Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值;(Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24f x h a x h x --=---;(Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6f n h n h h h n -+++≥.本小题主要考查函数导数的应用、不等式的证明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力.解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥,2()312F x x '∴=-+.令()0F x '∴=,得2x =(2x =-舍去).当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<,故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=.(Ⅱ)方法一:原方程可化为42233log [(1)]log ()log (4)24f x h a x h x --=---,即为4222log (1)log log log x -==且,14,x a x <⎧⎨<<⎩①当14a <≤时,1x a <<,则14a xx x--=-,即2640x x a -++=, 364(4)2040a a ∆=-+=->,此时3x ==±∵1x a <<,此时方程仅有一解3x =-②当4a >时,14x <<,由14a xx x--=-,得2640x x a -++=,364(4)204a a ∆=-+=-,若45a <<,则0∆>,方程有两解3x = 若5a =时,则0∆=,方程有一解3x =; 若1a ≤或5a >,原方程无解.方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-,即2221log (1)log log 2x -+10,40,0,(1)(4).x x a x x x a x ->⎧⎪->⎪⇔⎨->⎪⎪--=-⎩214,(3) 5.x x a a x ⎧<<⎪⇔<⎨⎪=--+⎩ ①当14a <≤时,原方程有一解3x = ②当45a <<时,原方程有二解3x = ③当5a =时,原方程有一解3x =;④当1a ≤或5a >时,原方程无解.(Ⅲ)由已知得(1)(2)()]12h h h n n +++=+++,11()()66f n h n -.设数列{}n a 的前n 项和为n S ,且1()()6n S f n h n =-(*n ∈N )从而有111a S ==,当2100k ≤≤时,1k k k a S S-=-=又1[(4(46k a k k+-2216=106=>. 即对任意2k ≥时,有k a >,又因为11a ==,所以1212n a a a n +++≥+++.则(1)(2)()n S h h h n ≥+++,故原不等式成立.。
2011年全国各地高考数学试题及解答分类汇编大全(07数系的扩充与复数的引入)一、选择题:1. (2011安徽文、理)设 i 是虚数单位,复数ai i1+2-为纯虚数,则实数a 为( ) (A )2 (B) -2 (C) 1-2 (D) 121.A 【解析】本题主要考察复数的乘法运算和复数的概念。
法一:()()()()()ai i ai a a i i i i 1+2+1+2-+2+1==2-2-2+5g 为纯虚数,所以,a a 2-=0=2; 法二:()i a i ai i i-1+=2-2-为纯虚数,所以a =2,答案为A. 法三: 设()ai bi b R i1+∈2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A. 【技巧点拨】复数运算乘法是本质,除法中的分母“实化”也是乘法,同时注意提取公因式,因式分解等变形技巧的运用。
2. (2011北京文、理)复数212i i-=+ ( ) (A)i (B )i - (C)4355i -- (D)4355i -+ 2.【答案】A2.【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i i i i ---------+====++----,选A 。
3. (2011福建理) i 是虚数单位,若集合S=}{1.0.1-,则( ) A.i S ∈ B.2i S ∈ C. 3i S ∈ D.2S i ∈ 3.解析:由21i S =-∈得选项B 正确。
4. (2011福建文) i 是虚数单位1+i 3等于( )A.iB.-iC.1+i D .1-i4. 解析:1+i 3=1-I ,答案应选D 。
5.(2011广东文)设复数z 满足1iz =,其中i 为虚数单位,则z =( )A .i -B .iC .1-D .15. 解析:(A ).1()i z i i i i -===-⨯-6.(2011广东理)设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =( )A .1i +B .1i -C .22i +D .22i -解析:(B ).22(1)11(1)(1)i z i i i i -===-++-7. (2011湖北理)i 为虚数单位,则=⎪⎭⎫⎝⎛-+201111i i ( )A.i -B.1-C.iD.17.【答案】A7. 解析:因为()i i i i i =-+=-+221111,所以i i i i i i -====⎪⎭⎫ ⎝⎛-++⨯3350242011201111,故选A .8.(2011湖南文、理)若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=-8.答案:C8. 解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。
2011年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有 A .2个 B .4个 C .6个 D .8个 2.复数512ii=-A .2i -B .12i -C . 2i -+D .12i -+3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是 A .3y x =B .||1y x =+C .21y x =-+D .||2x y -=4.椭圆221168x y +=的离心率为A .13B .12C .33D .225.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 A .120 B . 720 C . 1440 D . 50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12C .23D .347.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A . 45-B .35-C .35D .458.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧 视图可以为9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为 A .18 B .24C . 36D . 4810.在下列区间中,函数()43xf x e x =+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A .10个B .9个C .8个D .1个二、填空题:本大题共4小题,每小题5分. 13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量ka-b 垂直,则k=_____________. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD . (I )证明:PA BD ⊥;(II )设PD=AD=1,求棱锥D-PBC 的高.19.(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:(I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.20.(本小题满分12分) 在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.21.(本小题满分12分) 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.24.(本小题满分10分)选修4-5:不等式选讲 设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试文科数学试卷参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题(13)1 (14)-6 (15)4315 (16)31三、解答题 (17)解:(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++= )21(n +++-=2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n (18)解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E 。
2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .62.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x≠0) C .2x -1(x ∈R) D .2x -1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦ B .33,84⎡⎤⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦ 9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 B.3 C.3 D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12 B.2 CD .212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C .f(x)的最大值为2 D .f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________. 14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C=14,求C .19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C:2222=1x ya b(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A.3. 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y⇒x =121y -(y >0),因此f -1(x )=121x -(x >0).故选A. 6. 答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D. 8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---.故12314PA PA k k =-. ∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BDCH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则=2AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 12CH , ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k (+),x 1x 2=4.①由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12. 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当t =.∴g (t )max ,即f (x )的最大值为9.故选C. 二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示. ∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4,∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点, 则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE =2R .又OK ⊥EK ,∴32=OE ·sin 60°=22R ⋅∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1. 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=11+2242⨯=, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P ,故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连结FG ,则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD .所以∠AFG 为二面角A -PD -C 的平面角.连结AG ,EG ,则EG ∥PB .又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =,EG =12PB =1,故AG 3.在△AFG 中,FG =12CD =,AF =AG =3,所以cos ∠AFG =22223FG AF AG FG AF +-=-⨯⨯因此二面角A -PD -C 的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB |=2,则A (,0,0),D (0,,0),C (,0),P (0,0).PC =(,),PD =(0,,).AP =,0),AD =,,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x ,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m+q=0,m-p=0.取m=1,得p=1,q=-1,故n2=(1,1,-1).于是cos〈n1,n2〉=1212||||3=-·n nn n.由于〈n1,n2〉等于二面角A-PD-C的平面角,所以二面角A-PD-C的大小为π-20.解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”.则A=A1·A2.P(A)=P(A1·A2)=P(A1)P(A2)=14.(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”.则P(X=0)=P(B1·B2·A3)=P(B1)P(B2)·P(A3)=18,P(X=2)=P(1B·B3)=P(1B)P(B3)=14,P(X=1)=1-P(X=0)-P(X=2)=1151848--=,EX=0·P(X=0)+1·P(X=1)+2·P(X=2)=98.21.(1)解:由题设知ca=3,即222a ba+=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|=-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=23 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111 422(1)n n n k n a a n k k -=⎡⎤-+=+⎢⎥+⎣⎦∑ =2121211ln 21n n k n k n k k k k k --==++>(+)∑∑ =ln 2n -ln n =ln 2.所以21ln 24n n a a n-+>. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4 D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x 5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±. 5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x ) 即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-2,-2)上为减函数,在(-2,-2)上为增函数,在(-2∴f (-2=[1-(-22][(-2)2+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2)+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=. 故PA=2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA=4. 18. (1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧+=⎪⎨-+=⎪⎩可取n =,1,-1).故cos 〈n ,1AC 〉=11A CA C⋅n n =. 所以A 1C 与平面BB 1C 1C 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M,解得k=4±. 当k=4时,将4y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当k =时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4.从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=2.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0. 由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.1122⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
2011年~2015年全国1、2卷高考数学真题分类汇编(理科)第一章 集合与常用逻辑用语第一节 集合题型1 集合的基本概念1. (2012全国理1)已知集合{}1,2,3,4,5A =,(){},,,B x y x A y A x y A =∈∈-∈,则B中所含元素的个数为( ).A. 3B. 6C. 8D.10题型2 集合间的基本关系2.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B 3.(2013全国Ⅱ理1)已知集合(){}{}21<410123M x x x N =-∈=-R ,,,,,,,则M N =I ( ).A. {}012,,B. {}1012-,,,C. {}1023-,,,D. {}0123,,, 4.(2014全国Ⅰ理1).已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)5.(2014全国Ⅱ理1)设集合{}0,1,2M =,{}2=320N x x x -+≤,则M N =I(A) {}1 (B) {}2 (C) {}0,1 (D) {}1,26. (2015全国Ⅱ理1).已知集合{}2,1,0,2A =--,()(){}120B x x x =-+<,则A B =I ( ).A.{}1,0-B.{}0,1C.{}1,0,1-D.{}0,1,2题型3 集合的运算第二节 命题及其关系、充分条件与必要条件题型4 四种命题及关系题型5 充分条件、必要条件、充要条件的判断与证明 题型6 充分条件、必要条件中的含参数问题第三节 简单的逻辑联结词、全称量词与存在量词题型7 判断含逻辑联结词的命题的真假 题型8 全(特)称命题的否定7. (2015全国I 理3)设命题:p n ∃∈N ,22n n >,则p ⌝为( ). A .n ∀∈N ,22n n > B .n ∃∈N ,22n n „ C .n ∀∈N ,22n n „ D .n ∃∈N ,22n n =题型9 根据命题真假求参数的范围第一章 试题详解1.分析 利用集合的概念及其表示求解. 解析 因为(){},,,B x y x A y A x y A =∈∈-∈,{}1,2,3,4,5A =,所以2,1x y ==;3,1,2x y ==;4,1,2,3x y ==;5,1,2,3,4x y ==.所以()(){()()()()()2,1,3,1,3,2,4,1,4,2,4,3,5,1,B =()()()}5,2,5,3,5,4,所以B 中所含元素的个数为10.故选D. 2.答案:B解析:∵x (x -2)>0,∴x <0或x >2. ∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.3.分析 先求出集合M ,然后运用集合的运算求解.解析:集合{}13,M x x x =-∈R <<,所以{}0,1,2M N =I ,故选A. 4.【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<, ∴A B ⋂={}21x x -≤≤,选A..5.解析:∵{}{}2=32012N x x x x x -+≤=≤≤,∴M N =I {}1,2 答案:D6. 解析对于B 集合,由已知得,{}21B x x =-<<,由数轴可得{}1,0A B =-I . 故选A.t1501401301201101000.0300.0250.0200.0150.010频率/组距评注常规考题,比较容易.考查不等式解集和集合的交运算,注意A 集合中的元素是数,B 集合是数的范围,用数轴较直观.7.解析 否命题是对原命题的条件与结论同时否定,因为存在的否定是任意,大于的否定是小于等于,所以:p n ⌝∀∈N ,22nn ….故选C .第二章 函数第一节 函数的概念及其表示题型10 映射与函数的概念题型11 同一函数的判断 题型12 函数解析式的求法1.(2013全国II 理 19)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150x ≤≤)表示市场需求量,T 表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;题型13 函数定义域的求解 题型14 函数值域的求解第二节 函数的基本性质—奇偶性、单调性、周期性题型15 函数的奇偶性2.(2011全国理2).下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ). A.3y x = B.||1y x =+ C.21y x =-+ D.||2x y -=3.(2013课标全国Ⅰ,理16)若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.4.(2014全国Ⅰ理3)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数5.(2015全国Ⅰ理13).若函数()()2ln f x x x a x =++为偶函数,则a = .题型16 函数的单调性(区间)6.(2011全国卷理2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ). A.3y x = B.||1y x =+ C.21y x =-+ D.||2x y -=7.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ).A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列题型17 函数的周期性 题型18 函数性质的综合8.(2014全国Ⅱ理科15)已知偶函数()f x 在[0,)+∞单调递减,(2)0f =.若(1)0f x ->,则x 的取值范围是 .第三节 二次函数与幂函数题型19 二次函数图像的应用题型20 二次函数、一元二次方程、二次不等式的关系 题型21 二次方程()200ax bx c a ++=≠的实根分布及条件 题型22 二次函数“动轴定区间”、“定轴动区间”问题 题型23 二次函数恒成立问题 题型24 幂函数的定义及其图像 题型25 幂函数性质的综合应用第四节 指数函数与对数函数题型26 指(对)运算及指(对)方程、不等式9.(2015全国Ⅱ理5) 设函数()()2111log 2,12,x x x f x x -⎧+-<⎪=⎨⎪⎩…,则()()22log 12f f -+=( )A.3B. 6C. 9D. 12题型27 指数函数、对数函数的图像及性质10.(2012全国理12)设点P在曲线1e2xy=上,点Q在曲线()ln2y x=上,则PQ的最小值为().A. 1ln2- B. ()21ln2- C. 1ln2+ D.()21ln2+11.(2013全国Ⅱ理8)设357log6log10log14a b c===,,则().A. >>c b a B. >>b c a C. >>a cb D. >>a b c题型28 指数函数与对数函数中的恒成立问题第五节函数的图像及应用题型29 知式选图(识图)题型30 函数图像的应用12.(2011全国理12)函数11yx=-的图像与函数2sinπy x=(24x-剟)的图像所有交点的横坐标之和等于().A.2B.4C.6D.813(2012全国理10)已知函数()1()ln1f xx x=+-,则()y f x=的图像大致为().A. B. C. D.14(2015全国Ⅱ理10) 如图,长方形ABCD的边2AB=,1BC=,O是AB的中点,点P 沿着边,BC CD与DA运动,记BOP x∠=.将动点P到,A B两点距离之和表示为x的函数()f x,则()y f x=的图像大致为().xPOD CBA2π3π4π2π4y O x2xO y π4π23π4π2xO y π4π23π4π2π3π4π2π4y O xA. B. C. D.第六节 函数的综合题型31 函数与数列的综合 题型32 函数与不等式的综合 题型33 函数中的创新题第二章 试题详解 第三章 导数与定积分第一节 导数的概念与运算题型34 导数的定义 题型35 求函数的导数 题型36 导数的几何意义15(2011全国理21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (1)求a ,b 的值;16(2014全国Ⅱ理8)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = (A) 0(B) 1(C) 2(D) 317(2015全国Ⅰ理20)在直角坐标系xOy 中,曲线2:4x C y =与直线():0l y kx a a =+>交于M ,N 两点.(1)当0k =时,分别求C 在点M 和N 处的切线方程;18(2015全国Ⅰ理21)已知函数()314f x x ax =++,()ln g x x =-.(1) 当a 为何值时,x 轴为曲线()y f x =的切线;第二节 导数的应用题型37 利用导函数研究函数的图像19.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值; 20(2013全国Ⅱ理10) 已知函数()32f x x ax bx c =+++,下列结论中错误的是( ).A. ()000x f x ∃∈=R ,B. 函数()y f x =的图象是中心对称图形C. 若0x 是()f x 的极小值点,则()f x 在区间()0x -∞,单调递减D. 若0x 是()f x 的极值点,则()00f x '=题型38 利用导数研究函数的单调性21. (2012全国理21)已知函数()f x 满足121()'(1)e (0)2x f x f f x x -=-+.(1)求()f x 的解析式及单调区间;(2)若21()2f x x ax b ++…,求(1)a b +的最大值22(2013全国Ⅱ理10) 已知函数()32f x x ax bx c =+++,下列结论中错误的是( ).A. ()000x f x ∃∈=R ,B. 函数()y f x =的图象是中心对称图形C. 若0x 是()f x 的极小值点,则()f x 在区间()0x -∞,单调递减D. 若0x 是()f x 的极值点,则()00f x '=23(2013全国Ⅱ理16)等差数列{}n a 的前n 项和为n S ,已知1015025S S ==,,则n nS 的最小值为 . 24. (本小题共12分)已知函数()()e ln xf x x m =-+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明()>0f x .25设函数()'f x 是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时, ()()'0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ). A. ()(),10,1-∞-U B. ()()1,01,-+∞U C. ()(),11,0-∞--U D. ()()0,11,+∞U26设函数()2emxf x x mx =+-.(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增; (1)证明:因为()2e mxf x x mx =+-,题型39 函数的极值与最值 (27)27.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围. 28.已知函数()()e ln x f x x m =-+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;29.设函数()'f x 是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时, ()()'0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ). A. ()(),10,1-∞-U B. ()()1,01,-+∞U C. ()(),11,0-∞--U D. ()()0,11,+∞U30.设函数()2emxf x x mx =+-.(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;题型40 方程解(函数零点)的个数问题31. (2014全国Ⅰ理11)已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x>0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)32(2015全国Ⅱ理21)已知函数()314f x x ax =++,()ln g x x =-.(1)当a 为何值时,x 轴为曲线()y f x =的切线;(2)用{}min ,m n 表示m ,n 中的最小值,设函数()()(){}min ,h x f x g x =()0x >,讨论()h x 零点的个数.题型41 利用导数证明不等式33.设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.题型42 不等式恒成立与存在性问题 (30)34(2015全国Ⅰ理12)设函数()()e21xf x x ax a =--+,其中1a <,若存在唯一的整数0x 使得()00f x <,则a 的取值范围是( ). A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭35(2015全国Ⅱ理21)设函数()2emxf x x mx =+-.(1)证明:()f x 在(),0-∞单调递减,在()0,+∞单调递增;(2)若对于任意[]12,1,1x x ∈-,都有()()121e f x f x --…,求m 的取值范围.题型43 导数在实际问题中的应用第三节 定积分和微积分基本定理题型44 定积分的计算36(2011全国理9)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为( ).A.103B.4C.163D.6题型45 求曲边梯形的面积第三章 试题详解1.分析 (1)根据题意购进了130t ,应分两段进行求解;解析:解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-. 当[]130,150X ∈时,50013065000T =⨯=.所以80039000,100130,65000,130150.X X T X -⎧=⎨⎩≤≤≤<2.【解析】四个选项中的偶函数只有B ,C ,D ,故排除A ,当x ∈(0,)+∞时,三个函数分别为1y x =+单调递增,21y x =-+单调递减,122xxy -⎛⎫== ⎪⎝⎭单调递减.故选择B .3.答案:16解析:∵函数f (x )的图像关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0, 得x 1=-2-5,x 2=-2,x 3=-2+5.易知,f (x )在(-∞,-2-5)上为增函数,在(-2-5,-2)上为减函数,在(-2,-2+5)上为增函数,在(-2+5,+∞)上为减函数.∴f (-2-5)=[1-(-2-5)2][(-2-5)2+8(-2-5)+15] =(-8-45)(8-45) =80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15] =-3(4-16+15) =-9.f (-2+5)=[1-(-2+5)2][(-2+5)2+8(-2+5)+15] =(-8+45)(8+45) =80-64=16. 故f (x )的最大值为16. 4.【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C. 5.解析 由题意可知函数()2ln y x a x =++是奇函数,所以()2ln x a x +++()2ln 0x a x -++=,即 ()22ln ln 0a x x a +-==,解得1a =.6.【解析】四个选项中的偶函数只有B ,C ,D ,故排除A ,当x ∈(0,)+∞时,三个函数分别为1y x =+单调递增,21y x =-+单调递减,122xxy -⎛⎫== ⎪⎝⎭单调递减.故选择B .综上可知:a ∈[-2,0]. 7.答案:B8.解析:∵()f x 是偶函数,∴(1)0(1)0(2)f x f x f ->⇔->=,又∵()f x 在[0,)+∞单调递减,∴12x -<,解之:13x -<< 答案:(1,3)-9. 解析 由题意可得,2(2)1log 4123f -=+=+=.又由22log 12log 21>=, 故有2222212log log 121log 12log 2log 622(log 12)22226f --=====,所以有2(2)(log 12)369f f -+=+=.故选C.评注 本题是一个涉及指数、对数和分段函数的综合题,考察面很广,但运算难度不大, 需要考生熟知基本的概念、性质和运算.10.分析 利用互为反函数的函数的图像性质结合导数求解. 解析 由题意知函数1e 2xy =与ln(2)y x =互为反函数,其图像关于直线y x =对称,两曲线上点之间的最小距离是y x =与1e 2x y =上点的最小距离的2倍,设1e 2x y =上点()00,x y 处的切线与y x =平行,有01e 12x =,0ln 2x =,01y =,所以y x =与1e 2xy =上点的最小距离是()21ln 22-,所求距离为()()21ln 2221ln 22-⨯=-.故选B. 11.分析 结合对数的运算性质进整理,利用对数函数的性质求解.解析:3333log 6log 3log 21log 2,a ==+=+5555log 10log 5log 21log 2,b ==+=+7777log 14log 7log 21log 2,c ==+=+因为357log 2log 2log 2,>>所以a b c >>,故选D.12.【解析】本题考查利用数形结合思想求解函数交点个数问题.在同一直角坐标系中画出两个函数的图像(注意利用函数图像变换观点求作函数图像!111(1)y x x ==---可看作由函数1y x=-向右平移一个单位得到)利用两个函数有共同的对称中心(1,0),设8个交点的横坐标分别为1x ,2x ,…,8x ,结合函数图像,由对称性得18272,2,x x x x +=+=⋅⋅⋅,故所有交点的横坐标之和等于8.13分析 结合函数的图像,利用特殊函数值结合排除法求解. 解析 当1x =时,10ln 21y =<-,排除A ;当0x =时,y 不存在,排除D ;当x 从负方向无限趋近0时,y 趋向于-∞,排除C.故选B. 14. 解析 由已知可得,当P 点在BC 边上运动时,即π04x 剟时,2tan 4tan PA PB x x +=++; 当P 点在CD 边上运动时,即π3π44x 剎?,π2x ≠时, 22111111tan tan PA PB x x ⎛⎫⎛⎫+=-++++ ⎪ ⎪⎝⎭⎝⎭;当π2x =时,22PA PB +=;当P 点在AD 边上运动时,即3ππ4x 剎?时,2tan 4tan PA PB x x +=+-.从点P 的运动过程可以看出,轨迹关于直线π2x =对称,ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, 且轨迹非直线型,故由此知选B.评注 本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想.15.解析(1)()()221ln 1x a x xb f x xx ⎛⎫⎪⎝⎭+-=-'+,由于直线230x y +-=的斜率为12-,且过点()1,1,故()()11112f f ⎧⎪⎨⎪⎩==-',即1122b a b ⎧⎪⎨⎪⎩=-=-,解得1a =,1b = 16解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a = 答案:D17.解析 (1)由题意知,0k =时,联立24y a x y =⎧⎪⎨=⎪⎩,解得()2,M a a ,()2,N a a -.又2xy '=,在点M 处,M k a =,切线方程为()2y a a x a -=-,即0ax y a --=,在点N 处,N k a =-,切线方程为()2y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=和0ax y a ++=.18解析 (1)由题意知,0k =时,联立24y a x y =⎧⎪⎨=⎪⎩,解得()2,M a a ,()2,N a a -.又2xy '=,在点M 处,M k a =,切线方程为()2y a a x a-=-,即0ax y a --=,在点N 处,N k a =-,切线方程为()2y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=和0ax y a ++=.19.分析 (1)利用所给的点及切线方程列出方程组求解字母的取值;(2)构造函数,利用导数求解函数的最大值,求解时需要注意分类讨论. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.20.分析 结合函数与导数的基础知识进行逐个推导.解析:A 项,因为函数()f x 的值域为R ,所以一定存在0x ∈R ,使()00f x =.A 正确.B 项,假设函数()32f x x ax bx c =+++的对称中心为(),m n ,按向量(),m n =--a 将函数的图象平移,则所得函数()y f x m n =+-是奇函数.所以()()20f x m f x m n ++-+-=,化简得()23230m a x m am bm c n +++++-=.上式对x ∈R 恒成立,故30m a +=,得3a m =-,323a n m am bm c f ⎛⎫=+++=- ⎪⎝⎭,所以函数()32f x x ax bx c =+++的对称中心为,33a a f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,故()y f x =的图象是中心对称图形.B 正确.C 项,由于()232f x x ax b '=++是二次函数,()f x 有极小值点0x ,必定有一个极大值点1x ,若10x x <,则()f x 在区间()0,x -∞上不单调递减.C 错误.D 项,若0x 是极值点,则一定有()00f x '=.故选C. 21解析 (1)由已知得1'()'(1)e(0)x f x f f x -=-+,所以'(1)'(1)(0)1f f f =-+,即(0)1f =.又1(0)'(1)e f f -=,所以'(1)e f =.从而21()e 2xf x x x =-+.由于'()e 1x f x x =-+,故当 (),0x ∈-∞时,'()0f x <;当()0,x ∈+∞时,'()0f x >.从而,()f x 单调递减区间为(),0-∞,单调递增区间为()0,+∞.(2)由已知条件得()e 1xa xb -+… ()*①若10a +<,则对任意实数b ,当0x <,且11b x a -<+时,可得()e 1xa xb -+<,因此()*式不成立.②若10a +=,则()10a b +=.③若10a +>,设()()g =e 1xx a x -+,则()()g'=e 1xx a -+.当(),ln(1)x a ∈-∞+时, '()0g x <;当()ln(1),x a ∈++∞时,'()0g x >.从而()g x 在(),ln(1)a -∞+上单调递减,在()ln(1),a ++∞上单调递增.故()g x 有最小值()ln(1)1(1)ln(1)g a a a a +=+-++.所以21()2f x x ax b ++…等价于1(1)ln(1)b a a a +-++„ ()**.因此22(1)(1)(1)ln(1)a b a a a ++-++„.设22()(1)(1)ln(1)h a a a a =+-++,则 ()'()(1)12ln(1)h a a a =+-+.所以()h a 在121,e 1⎛⎫-- ⎪⎝⎭上单调递增,在12e 1,⎛⎫-+∞ ⎪⎝⎭上单调递减,故()h a 在12e 1a =-处取得最大值.从而 ()h a e 2„,即()e 12a b +b?.当12e 1a =-,12e2=b 时,()**式成立,故21()2f x x ax b ++….综上得,(1)a b +的最大值为e 2. 22.分析 结合函数与导数的基础知识进行逐个推导.解析:A 项,因为函数()f x 的值域为R ,所以一定存在0x ∈R ,使()00f x =.A 正确.B 项,假设函数()32f x x ax bx c =+++的对称中心为(),m n ,按向量(),m n =--a 将函数的图象平移,则所得函数()y f x m n =+-是奇函数.所以()()20f x m f x m n ++-+-=,化简得()23230m a x m am bm c n +++++-=.上式对x ∈R 恒成立,故30m a +=,得3a m =-,323a n m am bm c f ⎛⎫=+++=- ⎪⎝⎭,所以函数()32f x x ax bx c =+++的对称中心为,33a a f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,故()y f x =的图象是中心对称图形.B 正确.C 项,由于()232f x x ax b '=++是二次函数,()f x 有极小值点0x ,必定有一个极大值点1x ,若10x x <,则()f x 在区间()0,x -∞上不单调递减.C 错误.D 项,若0x 是极值点,则一定有()00f x '=.故选C. 23.分析 先根据已知条件求出首项和公差,代入n nS 再运用导数知识进行求解.解析:设等差数列{}n a 的首项为1a ,公差为d ,由等差数列前n 项和可得11109100,215141525,2a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩ 解得13,2.3a d =-⎧⎪⎨=⎪⎩所以()()222232311111032333n n n n nS n a d n n n n -=+=-+-=-, 所以()2203n n nS n '=-,令()0n nS '=,解得0n =(舍去)或203n =.当203n >时,n nS 是单调递增的;当2003n <<时,n nS 是单调递减的,故当7n =时, n nS 取最小值,所以()23min11077=4933n nS ⨯=⨯--.24.分析 (1)先根据极值点确定出m 的值,然后运用导数求出函数的单调区间,要注意定义域; 解析:(1)解:()1e xf x x m'=-+.由0x =是()f x 的极值点得()00f '=,所以1m =. 于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1e 1xf x x '=-+.函数()1e 1x f x x '=-+在()1,-+∞上单调递增,且()00f '=,因此当()1,0x ∈-时,()0f x '<;当()0,x ∈+∞时,()0f x '>.所以,()f x 在()1,0-上单调递减,在()0,+∞上单调递增.25 解析 由题意,设函数()()f x g x x =,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x ∈R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞上单调递增,且有(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >. 综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-U ,故选A . 评注 本题用导数来研究函数的性质,注意构造函数()g x ,然后用其对称性和奇偶性对单调性的影响,必要时可以用图像来辅助说明. 26解析:求导得,()'e2mxf x m x m =+-()e 12mx m x =-+.若0m …,则当(),0x ∈-∞时,e 10mx-„,()'0f x <;当()0,x ∈+∞时,e10mx-…,()'0f x >.若0m <,则当(),0x ∈-∞时,e 10mx ->>,()'0f x <; 当()0,x ∈+∞时,e 10mx -<<,()'0f x >. 所以()f x 在(),0-∞上单调递减,在()0,+∞上单调递增.27.分析 (1)利用所给的点及切线方程列出方程组求解字母的取值;(2)构造函数,利用导数求解函数的最大值,求解时需要注意分类讨论.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立. ②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立. ③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2].28解析:先根据极值点确定出m 的值,然后运用导数求出函数的单调区间,要注意定义域; (1)解:()1e xf x x m'=-+.由0x =是()f x 的极值点得()00f '=,所以1m =. 于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1e 1xf x x '=-+.函数()1e 1x f x x '=-+在()1,-+∞上单调递增,且()00f '=,因此当()1,0x ∈-时,()0f x '<;当()0,x ∈+∞时,()0f x '>.所以,()f x 在()1,0-上单调递减,在()0,+∞上单调递增.29解析 由题意,设函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x ∈R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞上单调递增,且有(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >. 综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-U ,故选A . 评注 本题用导数来研究函数的性质,注意构造函数()g x ,然后用其对称性和奇偶性对单调性的影响,必要时可以用图像来辅助说明.【答案】:B31【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a =,当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭;且(0)10f =>,()f x 有小于零的零点,不符合题意。
2011年全国各地高考数学试题及解答分类汇编大全(14统计、统计案例、算法初步、框图、推理与证明)一、选择题:1. (2011北京文)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为( )(A)2 (B)3 (C)4 (D)51.【答案】C【解析】执行三次循环,12S A =≤=成立,112p =+=,1131122S P =+=+=,322S A =≤=成立,213p =+=,3131112236S P =+=+=,1126S A =≤=成立,314p =+=1111112566412S p =+=+=,25212S A =≤=不成立,输出4p =,故选C2.(2011北京理)执行如图所示的程序框图,输出的s 值为( )(A )-3 (B )-12(C )13 (D )22.【答案】D【解析】:循环操作4次时S 的值分别为11,,3,232--,选D 。
3. (2011福建文)某校选修乒乓球课程的学生中,高一年级有30名, 高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A. 6B. 8C. 10D.12解析:由30:406:,n =可得8n =,答案应选B 。
4. (2011福建文)阅读右图所示的程序框图,运行相应的程序,输出的结果是( )A.3B.11C.38D.1234.解析:110,12310,a a =<=+=<2321110,11a a =+=>=,答案应选B 。
5. (2011广东理) 设S 是整数集Z 的非空子集,如果S b a ∈∀,,有S ab ∈,则称S 关于数的乘法是封闭的,若T,V 是Z 的两个不相交的非空子集,T ∪V=Z, 且T c b a ∈∀,,,有T c ab ∈,;V z y x ∈∀,,,有V xyz ∈,则下列结论恒成立的是( )A. T,V 中至少有一个关于乘法是封闭的B. T,V 中至多有一个关于乘法是封闭的C. T,V 中有且只有一个关于乘法是封闭的D. T,V 中每一个关于乘法是封闭的5. 解析:(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ,若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D 。
2011年高考数学试题及答案(以下为2011年高考数学试题及答案,仅供参考)第一部分:选择题1. 已知函数 f(x) = 2x^2 + 3x - 2,那么 f(-1) 的值为多少?A. -2B. 0C. 2D. 4答案:A2. 已知等差数列 {an} 的公差 d = 4,a1 = 3,a3 = 9,那么 a10 的值为多少?A. 20B. 21C. 22D. 23答案:D3. 若sinθ = 3/5,那么cosθ 的值为多少?A. -4/5C. 3/4D. 4/5答案:A4. 已知ΔABC 中,∠B = 90°,AB = 3,BC = 4,那么 AC 的值为多少?A. 5B. 7C. 9D. 12答案:A5. 设函数 f(x) = x^3 - 2x^2 + 5x - 6,那么 f '(x) 的导数为多少?A. 3x^2 - 4x + 5B. 3x^2 - 4x - 5C. x^3 - x^2 + 5D. x^3 - x^2 - 5答案:A第二部分:填空题1. 随机抽取一个数,该数为整数的概率是 _______。
2. 在仅含正整数的数列 {an} 中,已知 a1 = 1,a2 = 2,a(n+1) = an + a(n-1),则 a5 的值为 _______。
答案:73. 下列四个数中,最小的数是 _______。
A. 0.3^0.4B. 0.4^0.3C. 0.2^0.5D. 0.5^0.2答案:C第三部分:解答题1. 解方程 2^x - 4 * 2^(x-1) + 8 * 2^(x-2) = 0。
解答:设 t = 2^x,则原方程可化简为 t - 4t + 8t = 0,即 5t = 0。
因此,t = 0。
代回原方程中,得 2^x = 0。
由指数函数图像可知,2^x 恒大于 0,所以无实数解。
2. 计算以下定积分:∫(0, π/2) sin(x) dx。
解答:∫(0, π/2) sin(x) dx = [-cos(x)](0, π/2)= -cos(π/2) + cos(0)= -0 + 1= 13. 已知等差数列 {an} 的首项 a1 = 2,公差 d = 3,若 a5 和 a9 分别为首次出现的素数,求 a5 的值。
2011年普通高等学校招生全国统一考试1数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C )(B ) 2 (D )3(8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40(9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。
2011年普通高等学校招生全国统一考试1数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C )(B ) 2 (D )3(8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40(9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…普通高等学校招生全国统一考试一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A =,B ={1,m} ,AB =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为D 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin β=3,则cos2α=(A) 5(B)5(C)5(D)5(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14(B)35 (C)34 (D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…2012年普通高等学校招生全国统一考试一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i2、已知集合A={1.3.},B ={1,m} ,AB =A , 则m=A B 0或3 C 1 D 1或3 3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD - A1B 1C 1D 1中 ,AB=2,C C1= E 为CC 1的中点,则直线AC 1与平面BE D的距离为A 2 BC D 1(5)已知等差数列{a n }的前n 项和为Sn ,a 5=5,S 5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=3,则cos2α=(A) -3(B)-9(C) 9(D)3(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x(D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1(D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…2012年普通高等学校招生全国统一考试一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i2、已知集合A={1.3.},B ={1,m} ,AB =A , 则m=A B 0或3 C 1 D 1或3 3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD - A1B 1C 1D 1中 ,AB=2,C C1= E 为CC 1的中点,则直线AC 1与平面BE D的距离为A 2 BC D 1(5)已知等差数列{a n }的前n 项和为Sn ,a 5=5,S 5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=3,则cos2α=(A) -3(B)-9(C) 9(D)3(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x(D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1(D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
动点P从E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为(A)16(B)14(C)12(D)10二。
填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上。
(注意:在试题卷上作答无效)(13)若x,y满足约束条件则z=3x-y的最小值为_________。
(14)当函数取得最大值时,x=___________。
(15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________。
(16)三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=50°则异面直线AB1与BC1所成角的余弦值为____________。
三.解答题:(17)(本小题满分10分)(注意:在试卷上作答无效)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c。
(18)(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小。
19.(本小题满分12分)(注意:在试题卷上作答无效)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。
每次发球,胜方得1分,负方得0分。
设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。
甲、乙的一局比赛中,甲先发球。
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望。
(20)设函数f(x)=ax+cosx,x∈[0,π]。
(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围。
21.(本小题满分12分)(注意:在试卷上作答无效)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y)2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。
22(本小题满分12分)(注意:在试卷上作答无效........) 函数f(x)=x 2-2x -3,定义数列{x n }如下:x 1=2,xn+1是过两点P(4,5)、Q n(xn ,f(x n))的直线PQ n与x 轴交点的横坐标。
(Ⅰ)证明:2≤ x n <x n+1<3; (Ⅱ)求数列{x n }的通项公式。
2011年高考数学(全国卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z的共轭复数,则1zz z --= (A ) -2i (B ) -i (C) i (D) 2i2. 函数)0y x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y xx R =∈ (D) ()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D ) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于(A)2 (B)3 (C) 3(D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B ) 10种 (C) 18种 (D) 20种 8.曲线21xy e=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B) 12 (C) 23(D) 1 9.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C:24y x =的焦点为F,直线24y x =-与C交于A、B 两点,则cos AFB ∠=(A) 45 (B ) 35 (C ) 35- (D ) 45-11.已知平面α截一球面得圆M,过圆心M 且与α成60二面角的平面β截该球面得圆N,脱该球面的半径为4.圆M 的面积为4π,则圆N的面积为(A) 7π (B) 9π (C) 11π (D) 13π 12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值对于(A) 2 (B)(C) (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.13. (201-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,sin 5α=,则tan 2α= .15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分)ABC ∆的内角A、B 、C 的对边分别为,,a b c 。
已知90,A C a c -=+=,求C18.(本小题满分12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。
(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X 的期望。
19.(本小题满分12分)如图,四棱锥S -ABCD 中,//,AB CD BC CD ⊥,侧面SAB 为等边三角形, AB=B C=2,CD =SD=1. (Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成的角的大小。
20.(本小题满分12分)设数列{}n a 满足11110,111n na a a +=-=--(Ⅰ)求{}n a 的通项公式; (Ⅱ)设11n n a b n+-=记1nn kk S b==∑,证明:1n S <。
21.(本小题满分12分)已知O 为坐标原点,F为椭圆22:12y C x +=在y轴正半轴上的焦点,过F 且斜率为2-的直线l 与C交于A、B 两点,点P满足0.OA OB OP ++=(Ⅰ)证明:点P 在C上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P、B 、Q 四点在同一个圆上。
22.(本小题满分12分) (Ⅰ)设函数()()2ln 12xf x x x =+-+,证明:当0x >时,()0f x > (Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p ,证明:1929110p e ⎛⎫<< ⎪⎝⎭2010年普通高等学校招生全国统一考试一.选择题 (1)复数3223ii+=- (A )i (B)i - (C)12-13i (D) 12+13i (2)记cos(80)k -︒=,那么tan100︒=B.C.D.(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A)52 (B) 7 (C) 6 (D) 42 (5)35(1(1+-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D ) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B )35种 (C)42种 (D)48种(7)正方体A BCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为C 23(8)设a=3log 2,b =In2,c=125-,则A a <b<cB b<c <aC c<a<bD c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C上,∠1F p 2F =060,则P 到x轴的距离为(A)2 (B)2(C) (D)(10)已知函数F(x )=|lgx|,若0<a<b ,且f(a)=f(b),则a+2b 的取值范围是(A))+∞ (B))+∞ (C)(3,)+∞ (D )[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A、B 为俩切点,那么PA PB •的最小值为(A) 42-+ (B )32-+ (C) 422-+ (D)322-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C ) 23 (D ) 833二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)(13)1x ≤的解集是 . (14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =,则C 的离心率为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)已知ABC 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18) 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.(19)(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S -ABCD 中,SD ⊥底面ABC D,A B//DC,AD ⊥DC ,AB=AD =1,DC=SD=2,E 为棱SB 上的一点,平面ED C⊥平面SBC .(Ⅰ)证明:S E=2EB;(Ⅱ)求二面角A -DE -C的大小 .(20)(本小题满分12分)(注意:在试题卷上作答.......无效..) 已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB =,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n na a c a +==-. (Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .2009年普通高等学校招生全国统一考试一、选择题(1)设集合A={4,5,7,9},B ={3,4,7,8,9},全集U=A B,则集合[u (AB )中的元素共有(A )3个 (B )4个 (C )5个 (D)6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C){}10x x -〈〈 (D){}0x x 〈 (4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于( (B)2 ((D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。