电子与通信-信息论与编码
- 格式:doc
- 大小:134.50 KB
- 文档页数:16
信息理论与编码第一讲1、信息论与编码的关系(重要)信息论研究的是编码极限,首先要通讯就要编码,编码有各种方法,选取好的,压缩数据,从编码有效性来说,数据最短的最好,信息论告诉我们什么样的情况数据最短。
2、编码与通讯的关系通讯就是把信息从A点传到B点的过程,信息要进行传递必须把信息加载到一定载体上而把信息指代给载体的过程就是编码,如果要通讯就一定要进行编码。
3、什么是摩尔斯码?摩尔斯码是人类第一个使用的编码,摩尔斯码是由点和划来表示常用的英文字母、标点符号以及10个阿拉伯数字的编码,通过这个编码就可以把通常的电报内容用电码形式传递出来。
4、SOS的含义这三个救急信号是摩尔斯码里的“———”,不是英文缩写。
5、信息论的发展简史1917年频分复用(载波);1924年采样定理;模拟—数字信号1932年摩尔斯电报系统;1948年Shannon发表论文“通讯的数学理论”,从而“信息论”诞生了。
6、什么是加密编码?举例说明。
7、编码需要解决通讯中的哪三个问题?1)压缩数据;2)检错和纠错;3)通讯过程中的加密。
8.加密编码在信息通讯中的作用。
举例说明(重要)1)网上银行数字证书2)二次世界大战美国人没有破译日本人的密码就会有更多人牺牲IT时代信息的保密十分重要1、什么是信息科学、信息论信息科学是研究所有信息现象的一门学科,信息论研究通讯中的信息传递、加密、压缩、纠错。
2、信息论和信息科学的关系、区别(重要)信息论只要讲通讯里的信息处理问题(如信息传递、加密、收缩、纠错),范围窄;信息科学讲的是所有领域的信息处理问题,例如知识论等,范围广。
信息论是信息科学中的一部分。
3、信息科学研究的范围和具体内容信息科学研究通信中的信息和信息的获取、传递、认知、再生、施效、组织等所有信息现象。
第三讲1、信息的定义(重要)维纳的信息定义——信息就是信息,不是物质也不是能量。
仙农的定义——用来减少随机不定性的东西。
我们自己的定义——信息是内容和载体的统一体,指代了内容的载体就是信息。
信息论与编码信息论与编码是计算机科学、信号处理、通信等领域研究的重要内容。
它是通信原理、符号编码、数字信号处理、信息安全等学科的基础,也是计算机科学及其相关领域的重要方法和工具。
一般而言,信息论是一门与数据传输相关的学科,它研究的主要内容是信息的编码、转换以及数据传输失真的评估和抑制。
信息论的主要概念是信息量,这是一种衡量信息传输效率的指标,它表示发送者可以从被发送消息中获得的信息。
编码是指把信息从一种形式转换成另一种形式来进行信息传输。
编码和信息论之间有着密切的联系,因为编码可以把源信息转换成可传输的信号,这可显著降低传输中的信息丢失。
另外,编码还具有加密的功能,即增加发送和接收的隐私性和安全性,从而防止被盗用。
信息论和编码的结合使传输信息的速率、质量、容量等因素都得到了极大的提高。
在现代通信技术中,随着技术发展节省空间、改善质量和提高数据速率等方面,信息论和编码技术都变得越来越重要。
具体来说,信息论主要包括信息熵(Entropy),信息量(Information),香农编码(ShannonCoding)和信道容量(ChannelCapacity)等概念,而编码主要涉及数据编码(DataCoding),符号编码(SymbolCoding),纠错编码(ErrorCoding)和时间码(TimeCoding)等概念。
信息的熵是衡量信息量的量度,它可以度量一段信息在传输中可能单位时间所达到的最大速率。
而在符号编码中,编码器会根据符号出现的概率将信息转换成最短的比特序列,从而有效地减少传输时的信息丢失。
除此之外,纠错编码技术也可以有效地提高传输的可靠性,尤其是在无线通信领域,很多现代无线通信设备都采用了纠错编码技术。
另外,时间码也可以帮助传输系统更好的处理时延的问题。
有些时间码是可以精确知道传输信息的起点和终点的,它可以使得信号的传输更加有效,在节省时间和空间的同时提高了传输效率。
总之,信息论和编码技术在计算机科学、信号处理和通信等有关领域都有广泛的应用,它们为信息传输提供了卓越的支持,也为信息传输的准确性提供了强有力的技术支持。
信息论与编码考研专业课资料信息论与编码是计算机科学与技术、通信工程等专业中的一门重要课程,它研究了信息传输和存储中的编码理论和方法。
在信息时代的背景下,信息论与编码的知识对于数据的传输和存储具有重要意义。
本文将介绍信息论与编码的基本概念、原理和应用,以及相关的考研专业课资料。
一、信息论与编码的基本概念信息论是以量化信息的度量为基础,研究信息的传输、存储和处理等问题的科学。
信息论的核心思想是信息的度量和编码理论。
而编码是将信息从一种形式转换为另一种形式的过程。
信息论与编码通过对信息传输和存储的分析和优化,提高了信息的传输效率和存储效率。
信息论的基本概念包括信息熵、信源编码、信道编码和误差控制编码等。
信息熵是评价信息源中信息量的度量,代表了信息的平均不确定性。
信源编码则是通过对信息源输出进行编码,从而减少信息的冗余度。
信道编码是为了提高信道传输的可靠性,通过引入冗余信息来进行差错检测和纠正。
误差控制编码则是为了在数据传输中检测和纠正错误。
二、信息论与编码的原理信息论与编码的原理主要包括熵编码、区块编码和线性编码等。
1. 熵编码是一种无损数据压缩技术,它通过将出现频率高的符号用较少的比特表示,将出现频率低的符号用较多的比特表示,从而达到压缩数据的目的。
常见的熵编码算法包括霍夫曼编码、算术编码等。
2. 区块编码是将一组数据同时进行编码的方法。
这种编码的特点是能够利用区块内数据的关联性,从而进一步提高编码的效率。
常见的区块编码方法包括字典编码、预测编码等。
3. 线性编码是一种常见的信道编码方法,它通过引入冗余信息来检测和纠正传输中的误差。
线性编码的原理是通过将多个数据比特映射到一个码字上,从而提高信道传输的可靠性。
常见的线性编码方法包括海明码、卷积码等。
三、信息论与编码的应用信息论与编码在许多领域具有广泛的应用,下面简单介绍几个典型的应用领域。
1. 数据压缩:信息论与编码可以用于数据压缩领域,通过熵编码等方法对数据进行压缩,从而减少数据的存储和传输成本。
信息论与编码技术在通信系统中的应用研究近年来,随着信息技术的飞速发展,通信系统在我们的日常生活中起着重要的作用。
信息论与编码技术作为通信系统中的核心理论和技术之一,为提高通信系统的性能和可靠性起到了关键作用。
本文将对信息论与编码技术在通信系统中的应用进行研究和探讨。
首先,我们需要了解信息论的基本概念和原理。
信息论是由克劳德·香农于20世纪40年代提出的,用于研究信息在传输过程中的编码、传输、解码等问题。
香农提出了信息熵的概念,即衡量信息中包含的不确定性的度量。
信息越不确定,则熵越大。
通过熵的计算,我们可以评估通信系统的传输效率和容量。
在通信系统中的应用中,编码技术起到了至关重要的作用。
编码技术通过将信息数据转化为具有特定结构的码字,实现了对信息的压缩和传输。
编码技术分为源编码和信道编码两大类。
在源编码中,通过选择合适的编码算法和数据压缩方法来减少信息的冗余度,从而有效降低传输数据量。
常见的源编码技术包括哈夫曼编码、算术编码、字典编码等。
信道编码则是为了增强通信系统对信道噪声和失真的容忍度,提高信号传输的可靠性和容量。
常见的信道编码技术有奇偶校验码、海明码、卷积码等。
信息论和编码技术在无线通信系统中的应用尤为重要。
无线通信系统受到多径衰减、多径干扰、信噪比下降等因素的影响,导致信号传输质量下降。
通过信息论和编码技术的应用,可以有效地抵抗这些干扰,提高通信系统的性能和可靠性。
例如,对于多径衰减问题,可以使用信道编码技术来解决。
通过合适的编码算法和解码算法,可以对受损的信号进行纠错,恢复原始信息。
另外,在无线通信系统中,频谱资源是宝贵的,如何更好地利用频谱资源也是一个重要的问题。
通过源编码技术的应用,我们可以将信息数据进行压缩,减少传输数据的量,从而优化频谱资源的利用。
此外,信息论和编码技术还可以应用于安全通信领域。
随着信息技术的不断发展,通信数据的安全性问题日益突出。
为保护通信数据的机密性,我们可以采用加密技术。
《信息论与编码》课程教学大纲一、课程基本信息课程代码:16052603课程名称:信息论与编码英文名称:Information Theory and Coding课程类别:专业课学时:48学分:3适用对象:信息与计算科学考核方式:考试先修课程:数学分析、高等代数、概率论二、课程简介《信息论与编码》是信息科学类专业本科生必修的专业理论课程。
通过本课程的学习,学生将了解和掌握信息度量和信道容量的基本概念、信源和信道特性、编码理论等,为以后深入学习信息与通信类课程、为将来从事信息处理方面的实际工作打下基础。
本课程的主要内容包括:信息的度量、信源和信源熵、信道及信道容量、无失真信源编码、有噪信道编码等。
Information Theory and Coding is a compulsory professional theory course for undergraduates in information science. Through this course, students will understand and master the basic concepts of information measurement and channel capacity, source and channel characteristics, coding theory, etc., lay the foundation for the future in-depth study of information and communication courses, for the future to engage in information processing in the actual work.The main contents of this course include: information measurement, source and source entropy, channel and channel capacity, distortion-free source coding, noisy channel coding, etc。
信息论与编码第四版总结信息论与编码是信息科学领域的重要课程,旨在研究信息的度量、传输和存储等问题。
第四版教材在前三版的基础上,进一步深化了信息论和编码理论的内容,同时也引入了更多的实际应用案例。
本总结将对该教材的内容进行概括和总结。
一、信息论基础1. 信息的基本概念:教材首先介绍了信息的定义、度量和性质,强调了信息在决策和交流中的重要性。
2. 熵的概念:熵是信息论中的一个基本概念,用于描述随机事件的不确定性。
教材详细介绍了离散和连续熵的概念和计算方法。
3. 信道容量:信道容量是信息传输中的极限性能,用于描述在理想条件下,信道能够传输的最大信息量。
教材介绍了信道容量的计算方法和影响因素。
二、编码理论1. 信源编码:信源编码的目标是减少信息中的冗余,从而减小存储和传输的代价。
教材介绍了各种信源编码方法,如霍夫曼编码、算术编码等。
2. 信道编码:信道编码是为了提高信息传输的可靠性而采取的措施。
教材详细介绍了常见的信道编码方法,如奇偶校验、里德-所罗门码等。
3. 纠错编码:纠错编码是信道编码的一个重要分支,能够实现信息传输的错误检测和纠正。
教材介绍了常见的纠错编码方法,如循环冗余校验、LDPC(低密度奇偶校验)等。
三、实际应用教材通过实际案例,展示了信息论与编码理论在通信、数据压缩、网络安全等领域的应用。
例如,通过分析无线通信中的信道特性,得出信道容量和编码方案的选择;通过数据压缩算法的比较,得出适合特定应用的编码方法;通过网络安全中的错误检测和纠正技术,提高网络通信的可靠性。
四、总结第四版信息论与编码教材在前三版的基础上,进一步深化了信息论和编码理论的内容,引入了更多的实际应用案例。
通过学习该教材,我们可以掌握信息论的基本概念和熵的计算方法,了解信源编码、信道编码和纠错编码的方法和原理,并掌握信息论与编码理论在通信、数据压缩、网络安全等领域的应用。
总之,信息论与编码是一门非常重要的课程,对于理解信息的度量、传输和存储等问题具有重要意义。
信息论与编码信息论与编码是一个涉及信息传输和存储的学科领域,它涵盖了多个核心概念和技术。
下面是一些与信息论与编码相关的知识:1.信息熵:信息熵是信息的不确定性度量,用于衡量随机变量的平均信息量。
当一个事件的发生概率较低时,它包含的信息量较大,而当一个事件的发生概率较高时,它包含的信息量较少。
信息熵越高,表示信息的不确定性越大。
2.哈夫曼编码:哈夫曼编码是一种无损编码方法,它通过将频率较高的符号表示为短码,而将频率较低的符号表示为长码,从而达到压缩数据的目的。
哈夫曼编码的核心思想是用较少的比特表示常见的符号,用较多的比特表示不常见的符号,以实现数据压缩。
3.纠错码:纠错码是一种编码技术,旨在通过引入冗余信息来检测和纠正在传输过程中出现的错误。
纠错码能够通过添加校验位或冗余比特,在接收端对数据进行恢复和纠正,从而提高通信的可靠性。
4.调制技术:调制技术是将数字信号转换为模拟信号或其他形式的信号,以适应不同的通信媒介和传输条件。
调制技术能够将数字信号转换为能够在传输介质上传输的模拟信号,如调幅调制(AM)、调频调制(FM)和相移键控调制(PSK)等。
5.信道容量:信道容量是信息论中的一个重要概念,表示信道在理论上可以达到的最高传输速率。
信道容量取决于信道的带宽、信噪比以及任何潜在的干扰,它描述了信道所能达到的最高信息传输速率的界限。
6.数据压缩:数据压缩是利用信息论和编码技术来减少数据存储和传输所需的比特数。
数据压缩分为无损压缩和有损压缩两种方式。
无损压缩能够完全还原原始数据,如ZIP压缩算法;而有损压缩则会在一定程度上减少数据的质量,如JPEG图像压缩。
了解这些信息论与编码的相关知识,能够帮助我们更好地理解信息的传输和存储过程,以及如何进行数据的压缩和错误纠正,为技术和应用提供基础和指导。
教案信息论与编码课程目标:本课程旨在帮助学生理解信息论的基本原理,掌握编码技术的基本概念和方法,并能够应用这些知识解决实际问题。
教学内容:1.信息论的基本概念:信息、熵、信源、信道、编码等。
2.熵的概念及其计算方法:条件熵、联合熵、互信息等。
3.信源编码:无失真编码、有失真编码、哈夫曼编码等。
4.信道编码:分组码、卷积码、汉明码等。
5.编码技术的应用:数字通信、数据压缩、密码学等。
教学方法:1.讲授:通过讲解和示例,向学生介绍信息论与编码的基本概念和原理。
2.案例分析:通过分析实际问题,让学生了解信息论与编码的应用。
3.实践操作:通过实验和练习,让学生掌握编码技术的具体应用。
1.引入:介绍信息论与编码的基本概念和重要性,激发学生的学习兴趣。
2.讲解:详细讲解信息论的基本原理和编码技术的基本方法,包括信源编码和信道编码。
3.案例分析:通过分析实际问题,让学生了解信息论与编码的应用,如数字通信、数据压缩等。
4.实践操作:通过实验和练习,让学生亲自动手实现编码过程,加深对知识点的理解。
5.总结:回顾本课程的内容,强调重点和难点,提供进一步学习的建议。
教学评估:1.课堂参与度:观察学生在课堂上的表现,包括提问、回答问题、参与讨论等。
2.作业完成情况:评估学生对作业的完成情况,包括正确性、规范性和创新性。
3.实验报告:评估学生的实验报告,包括实验结果的正确性、实验分析的深度和实验报告的写作质量。
1.教材:选用一本适合初学者的教材,如《信息论与编码》。
2.参考文献:提供一些参考文献,如《信息论基础》、《编码理论》等。
3.在线资源:提供一些在线资源,如教学视频、学术论文等。
教学建议:1.鼓励学生积极参与课堂讨论和提问,提高他们的学习兴趣和主动性。
2.在讲解过程中,尽量使用简单的语言和生动的例子,帮助学生更好地理解复杂的概念。
3.鼓励学生进行实践操作,通过实验和练习,加深对知识点的理解。
4.提供一些实际问题,让学生运用所学知识解决,培养他们的应用能力。
信息论与编码在生活中的应用
1. 数据压缩:通过使用编码技术,可以将大量的数据压缩成较小的文件,使得数据更加容易传输和存储。
现实中的应用包括压缩软件、视频、音频、图像等。
2. 通信系统:信息论也被广泛应用于现代通信系统中,例如数据传输、无线通信等。
通过编码技术,可以使得数据传输更加可靠、安全和高效。
3. 错误校验和纠错码:信息论的原理也用于错误校验和纠错码中。
例如,Reed-Solomon纠错码可以通过添加冗余信息以纠正数据传输中的错误。
4. 网络安全:信息论技术可以用于加密和解密数据,从而保护个人隐私和商业机密。
例如,AES加密算法和RSA公钥加密算法。
5. 生物信息学:在生物信息学中,信息论被广泛应用于基因序列分析和DNA编码等方面。
6. 图像处理:信息论和编码技术也被广泛应用于数字图像处理和压缩。
例如,JPEG和PNG图像压缩算法。
7. 智能手机:现代智能手机中广泛运用信息论和编码技术,例如移动通信、GPS跟踪和即时通讯等。
8. 人工智能:信息论和编码技术也被广泛应用于人工智能中,例如机器学习、深度学习和数据挖掘等。
信息理论与编码信息理论与编码是通信领域中的两个非常重要的学科,它们的发展对于现代通信技术的发展起到了至关重要的作用。
本文将从信息的概念入手,分别介绍信息理论和编码理论的基本概念、发展历程、主要应用以及未来发展的前景和挑战。
一、信息的概念信息可以理解为一种可传递的事实或知识,它是任何通信活动的基础。
信息可以是文字、图像、音频、视频等形式,其载体可以是书本、报纸、电视、广告、手机等媒介。
信息重要性的意义在于它不仅可以改变人的思想观念、决策行为,还可以推动时代的发展。
二、信息理论信息理论是由香农在1948年提出的,目的是研究在通信过程中如何尽可能地利用所传输的信息,以便提高通信的效率和容错性。
信息理论的核心是信息量的度量,即用信息熵来度量信息的多少。
信息熵越大,信息量越多,反之就越少。
比如一篇内容丰富的文章的信息熵就比较大,而一张黑白的图片的信息熵就比较小。
同时,信息熵还可以用来计算信息的编码冗余量,从而更好地有效利用信道带宽。
信息理论具有广泛的应用,特别是在数字通信系统中,例如压缩编码、纠错编码、调制识别等。
通过利用信息理论的相关技术,我们可以在有限的带宽、时间和功率条件下,实现更高效的数据传输。
三、编码理论编码理论是在通信领域中与信息理论密切相关的一门学科。
其核心在于如何将所传输的信息有效地编码,以便提高信息的可靠性和传输效率。
编码技术主要分为三类:信源编码、信道编码和联合编码。
信源编码,也称数据压缩,是通过无损压缩或有损压缩的方式将数据压缩到最小,以便更加高效地传输和存储。
常见的信源编码算法有赫夫曼编码、算术编码、LZW编码等。
信道编码则是为了提高错误率而采用的一种编码方法。
通过添加冗余信息,例如校验和、海明码等技术,可以实现更高的错误检测和纠正能力。
联合编码则是信源编码和信道编码的组合。
它的核心思想是将信源编码和信道编码结合起来,以得到更加高效的编码效果。
编码理论在现代通信系统中具有广泛的应用,包括数字电视、移动通信、卫星通信、互联网数据传输等。
信息论与编码技术简介信息论与编码技术是计算机科学与通信工程领域中非常重要的研究方向,对于数字通信、数据压缩、错误检测与纠正等问题具有重要意义。
信息论是研究信息传输、存储和处理的数学理论,而编码技术则是利用信息论的基本原理设计和实现高效的编码方案。
本文将对信息论和编码技术进行介绍,并介绍其中的一位杰出研究者朱春华的贡献。
信息论信息论是由克劳德·香农于1948年提出的,他在论文《通信的数学原理》中系统地提出了信息论的基本概念和理论框架。
信息论主要研究信息传输的性质和限制,以及如何通过编码和解码来实现有效地信息传输。
在信息论中,最基本的概念是信息量。
信息量的单位是比特(bit),表示一条信息所携带的信息量。
信息量与信息的概率分布有关,对于概率为p的事件,其信息量为-log(p)。
这意味着,概率越小的事件所携带的信息量越大。
除了信息量,信息论还研究了其他重要概念,如熵、条件熵、互信息等。
熵是用来描述信息源的不确定性的度量,而条件熵是在已知一些先验信息的情况下,对信息源的不确定性进行度量的。
信息论的理论框架不仅可以用于描述信息的传输和存储,还可以用于优化通信系统的设计。
通过研究信道容量和编码理论,我们可以设计出高效的数字通信系统,以尽可能地提高通信速率和可靠性。
编码技术编码技术是利用信息论的基本原理设计和实现高效的编码方案。
编码技术在数字通信、数据压缩、错误检测与纠正等领域具有重要应用。
在数字通信中,编码技术用于将消息转化为数字信号,并通过信道进行传输。
常用的编码技术有霍夫曼编码、香农-法诺编码等。
这些编码技术通过将常用的消息用较短的码字表示,来提高信息传输的效率。
在数据压缩中,编码技术可以将冗余的信息进行压缩,以减少数据的存储和传输量。
编码技术可以通过去除冗余信息和利用统计特性来实现数据的高效压缩。
错误检测与纠正是编码技术的另一个重要应用领域。
在数据传输过程中,由于信道噪声或其他原因,可能会导致传输数据中出现错误。
(浙江工业大学通信工程学院)目录第一章信息理论基础 (3)第1.1节信息论的形成和发展 (3)1.1.1 信息、消息和信号 (3)1.1.2 信息论的发展简史 (3)1.1.3 Shannon对信息论的贡献 (4)第1.2节通信系统的模型 (4)1.2.1 通信系统的一般模型 (4)1.2.2 数字信道的通信系统模型 (5)第1.3节信息论研究的内容 (5)第二章香农信息论对现代社会的影响 (7)第三章信息论与编码技术的应用前景 (10)第四章信息论的主要研究成果 (12)第4.1节语音信号压缩 (12)第4.2节图像信号压缩 (12)第4.3节降低信息传输所需的功率 (12)第4.4节计算机网中数据传输可靠性的保证 (13)结论 (14)参考文献 (15)致谢 (16)(浙江工业大学通信工程学院)【摘要】:信息论与编码是一门运用概率论和数理统计的方法研究通信系统的学科,它构建了通信系统的数学模型,定义了信息的度量规则,数学描述和定量分析了通信系统从信源到信宿的全过程,进而延伸至信息的传输和压缩处理领域。
信息论既是数学的一个分支,又是通信系统的核心研究对象,广泛应用于语音、音频、图像、文件等信号的压缩以及纠错编码等通信领域。
【关键词】:信息传输;信源编码;概率论;数理统计;[Abstract]:Information theory and coding is an appliedinformation theory and coding probability theory and mathematical statistics method to study the subject of the communication system, it builds the mathematical model of the communication system, defines the measurement of information rules, mathematical description and the quantitative analysis of the whole process of the communication system from the source to he, and then extend to information transmission and compression processing rmation theory is a branch of mathematics and communication systems at the core of the research object, are widely used in the speech, audio, images, files, such as signal compression and communication fields, such as error correction coding.[Key words]:Information transmission; source code; probility theory ; Mathematical statistics;第一章信息理论基础第1.1节信息论的形成和发展1.1.1 信息、消息和信号信息是一种消息,是对物质存在和运动形式的一般描述。
信息存在于客体间的差别中而不是客体本身中,是为了消除不确定性所必须获得的东西。
信息是无形的,具有可共享、无限、可度量等特性。
消息是信息的载荷者。
消息具有不同的形式:文字、符号、数据、语言、图片、视频等。
信号是把消息变换成适合信道传输的物理量,这种物理量就称为信号。
包括声波、光波、电信号、机械信号等。
信号是消息的表现形式,消息是信号的具体内容。
1.1.2 信息论的发展简史1832年莫尔斯电码对shannon编码理论的启发1885年凯尔文研究了一条电缆的极限传信速率1922年卡逊对调幅信号的频谱结构进行研究1924年奈奎斯特证明了信号传输速率和带宽成正比1928年Hartley提出信息应该由随机事件样本空间中元素的个数的对数值来衡量1939年Dudley发明声码器1940维纳将随机过程和数理统计引入通信与控制系1948年shannon发表《通信中的数学模型》1949年shannon发表《保密系统中的通信理论》1950年R.W.Hamming发表了《检错码与纠错码》1952年Fano证明了Fano不等式,给出了shannon信道编码逆定理的证明1952年Huffman提出了Huffman编码1954年P.Elias提出了卷积码1956McMillan证明了Kraft不等式1963年P.Elias提出了算术编码1982年G.Ungerboeck实现了网格编码调制1993年Turbo码的性能已经非常接近于理论极限1.1.3 Shannon对信息论的贡献1948年发表“通信的数学原理”,标志着信息论的诞生;1949年发表“保密通信的信息理论”,首先用信息论的观点对信息保密问题作了全面的论述;1959年发表“保真度准则下的离散信源编码定理”-提出信息率失真理论,为信源压缩编码研究奠定理论基础;1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研究;第1.2节通信系统的模型1.2.1 通信系统的一般模型信源是产生消息的源,消息可以是文字,语言,图像。
离散或者连续,随机发生。
主要研究消息的统计特性和产生信息的速率。
信源编码器:对信源的输出编码,用来压缩信息,去除冗余,提高了传输的有效性。
信道编码器:在进入信道前编码,用来提高抗干扰性,即可靠性。
信道:传输信息的介质。
可以是有线信道也可以是无线信道。
译码器:编码器的逆变换。
信宿:消息传送的归宿。
干扰源:通信系统各处的干扰、噪声的等效集中表现。
1.2.2 数字信道的通信系统模型第1.3节信息论研究的内容狭义信息论(经典信息论)研究信息测度,信道容量以及信源和信道编码理论。
它是C.E.Shannon四十年代末期,以客观概率信息为研究对象,从通信的信息传输问题中总结和开拓出来的理论。
主要研究的问题是信源的描述,信息的定量度量、分析与计算,信道的描述,信道传输的定量度量、分析与计算。
信源、信道与通信系统之间的统计匹配,以及通信系统的优化—Shannon的三个编码定理。
一般信息论研究信息传输和处理问题,除经典信息论外还包括噪声理论,信号滤波和预测,统计检测和估值理论,调制理论,信息处理理论和保密理论广义信息论是除上述内容外,还包括自然和社会领域有关信息的内容,如模式识别,计算机翻译,心理学,遗传学,神经生理学第二章香农信息论对现代社会的影响信息论的理论定义是由当代伟大的数学家美国贝尔实验室杰出的科学家香农在他1948年的著名论文《通信的数学理论》所定义的,它为信息论奠定了理论基础。
后来其他科学家,如哈特莱、维纳、朗格等人又对信息理论作出了更加深入的探讨。
使得信息论到现在形成了一套比较完整的理论体系。
香农(Claude E Shannon)在1948年发表了《通信的一个数学理论》,完整地解决了通讯速度上限的问题。
“信息论”(Information Science)从此诞生。
香农把信息量与信号源的不确定性,也就是各个可能的符号值的几率分布联系起来。
他从直观上给出了信息量需要满足的几个简单的数学性质(如连续性,单调性等),而给出了一个唯一可能的表达形式。
香农开创性地引入了“信息量”的概念,从而把传送信息所需要的比特数与信号源本身的统计特性联系起来。
这个工作的意义甚至超越了通信领域,而成为信息储存,数据压缩等技术的基础。
解决了信号源的数据量问题后,我们就可以来看信道了。
信道(channel)的作用是把信号从一地传到另一地。
在香农以前,那奎斯特已经证明了:信道每秒能传送的符号数是其频宽的一半。
但问题是,即使这些符号,也不是总能正确地到达目的地的。
在有噪声的情况下,信道传送的信号会发生畸变,而使得接收者不能正确地判断是哪个符号被发送,对付噪声的办法是减少每个符号所带的比特数。
除此之外,还有一个对付噪声的办法,就是在所有可能的符号序列中只选用一些来代表信息。
香农却得出了一个非常简明的结论:对于一个信道,有这样一个速率(称为信道的容量):一定有一个方法能在这个速率以下传送数据而误差的几率达到任意小;而超过这个速率的话,误差的几率就一定会大于某个下限。
也就是说,香农同时给出了无错误的条件下传送速度的上限(即不可能超过)和下限(即有办法达到),而这两者是同一个值!不仅结论出乎意料地简单,香农的证明也是如此。
他的基本思路是:噪声使得接收端收到信号后,对于所发送的信号仍然有个不确定性。
也就是说,一个收到的序列可能对应多个发送的序列。
这个对应的个数可以用上面讲到的“典型序列”的个数来估计。
因为如此,我们只能用这多个发送序列之中的一个来作为码字,代表要传送的信息,而其余都弃之不用。
这样才能避免混淆。
所以,我们的传送速率就要降低了。
这个直观解释听起来简化得离谱。
我们知道,随机过程是很复杂的,怎么可能用平均值就搞定呢?然而,香农在数学上严格地证明了这些结论。
关键在于:他考虑序列长度趋向于无穷的情况。
这样,在样本数量趋于无穷的情况下,实际情况偏于平均值的几率趋向于零。
所以说,香农的简化显示他真正抓住了问题的关键。
对于通常遇到的信道,香农定理说:信道容量(即最高传送速率)与频宽成正比,与信噪比的对数(底数为2)成正比。
信噪比是在接收端信号功率与噪声功率的比。
增加发射功率能增加信噪比从而增加容量,但因为是对数关系,不是那么有效。
而增加频宽则是线性地增加容量。
通常,频率较低的频道频宽也小。
如前一讲中提到的调幅(AM)广播,在几百千赫频段,频宽是20千赫。
而调频(FM)广播是在一百兆赫频段,频宽是200千赫。
这就是调频广播音质较好的主要原因。
所以现代的数字通信服务不断往高频段扩展(目前已到2千兆赫)。
当我们听到某个服务能提供更高速率的时候,并不等于它使用了性能更好的技术。
很可能它只是用了更宽的频道而已。
香农完美地给出了信道容量,所以有人说他“开创并结束”了信息论。
但是香农还是留下了一些困难的问题。
比如,当信道随时间变化时,应用香农理论就远不是直截了当的。
最重要的,是为了达到香农极限,我们处理的符号序列必须无限长。
而实际上,信道编码的长度受着传送延迟和系统复杂性的限制。
在这样的限制下,如何达到最高的传送速度?六十年后的今天,人们还在为此奋斗。
第三章信息论与编码技术的应用前景随着Turbo码的研究发展,在3G移动通信系统设计中Turbo码以及Turbo思想越来越多地被用于和其他技术的结合上。