PKPM砌体计算实例
- 格式:doc
- 大小:727.50 KB
- 文档页数:14
PKPM(2010版)学习交流(砌体结构部分)砌体结构(masonry structure) 是由块材和砂浆砌筑而成的墙,柱作为建筑物主要受力构件的结构。
包括砖结构、石结构和其它材料的砌块结构。
分为无筋砌体结构和配筋砌体结构。
砌体结构在我国应用很广泛,砌体结构的有点是取材方便,有较好的稳定性及保温隔热性能,节约水泥和钢材。
缺点是自重大、体积大,砌筑工作繁重,原材料占用良田。
由于砖、石、砌块和砂浆间粘结力较弱,因此无筋砌体的抗拉、抗弯及抗剪强度都很低。
由于其组成的基本材料和连接方式,决定了它的脆性性质,从而使其遭受地震时破坏较重,抗震性能很差。
因此对多层砌体结构抗震设计需要采用构造柱、圈梁及其它拉结等构造措施以提高其延性和抗倒塌能力。
对于我们检测单位,常见的砌体结构分为两种,纯砌体结构、底框形式砌体结构。
计算砌体结构的承载力验算,我们一般采用PKPM来进行计算。
第1步:“轴线输入”利用作图工具绘制建筑物整体的平面定位轴线。
这些轴线可以是与墙、梁等长的线段也可以是一整条建筑轴线。
可为各标准层定义不同的轴线,即各层可有不同的轴线网格,拷贝某一标准层后,其轴线和构件布置同时被拷贝,用户可对某层轴线单独修改。
第2步:“网点生成”是程序自动将绘制的定位轴线分割为网格和节点。
凡是轴线相交处都会产生一个节点,轴线线段的起止点也做为节点。
这里用户可对程序自动分割所产生的网格和节点进行进一步的修改、审核和测试。
网格确定后即可以给轴线命名。
删除不无用的节点。
第3步:“构件定义”是用于定义全楼所用到的全部柱、梁、墙、墙上洞口及斜杆支撑的截面尺寸,以备下一步骤使用。
第4步:“楼层定义”是依照从下至上的次序进行各个结构标准层平面布置。
凡是结构布置相同的相邻楼层都应视为同一标准层,只需输入一次。
由于定位轴线和网点业已形成,布置构件时只需简单地指出哪些节点放置哪些柱;哪条网格上放置哪个墙、梁或洞口。
第5步:“荷载定义”是依照从下至上的次序定义荷载标准层。
PKPM砌体计算实例为了更好的说明PKPM砌体计算实例,我们将选取一个具体的案例进行分析。
假设我们要计算一个砌体墙的承载能力和变形情况。
1.基本信息我们假设要计算的是一面无加强的砌体墙,墙长为10米,墙高为3米,墙厚为0.4米。
砌体的强度等级为MU10。
2.材料属性根据砌体材料的具体参数,我们可以得到如下结果:-砌体单位体积重量:18kN/m³;-砌体抗压强度:5MPa;-砌体抗折强度:0.4MPa;-砌体与刚性材料的摩擦系数:0.63.荷载条件假设在砌体墙上施加的荷载包括自重、活载和风载。
具体的荷载参数如下:-砌体墙的自重:γG=18×0.4=7.2kN/m²;-活载荷载:q=2.5kN/m²;-风荷载:P=1.0kN/m²,计算地区的风荷载系数K2=1.24.承载能力计算根据PKPM砌体计算规范,我们可以按照以下步骤来计算砌体墙的承载能力:a.计算砌体的标准状态下的抗压强度:fstd = 0.6 × 5 = 3MPa;b.计算砌体的标准状态下的抗折强度:fbstd = 0.7 × 0.4 = 0.28MPa;c.计算砌体墙的承载力:承载力= (1 / γG + 1 / q + 1 / P) / Astd,其中Astd为砌体的面积;承载力=(1/7.2+1/2.5+1/1)/(10×3)=0.046kPa。
5.变形计算根据PKPM砌体计算规范,我们可以按照以下步骤来计算砌体墙的变形情况:a.计算刚度系数:刚度系数=Σ(β×Eh×A×ΔP)/Δh,其中β为比例系数;假设β=1/3,A为砌体的面积,ΔP为施加的单位荷载,Δh为砌体的高度;刚度系数=(1/3×0.5×5×(10×3))/(3)=8.333kN/m;b.计算砌体墙的最大变形:最大变形=(承载力×L^4)/(384×E×I),其中L为砌体的长度,E为弹性模量,I为矩形截面的惯性矩;弹性模量E=0.4×MU10=4MPa,矩形截面的惯性矩I=(0.4×(10×3)^3)/12=6m^4;最大变形= (0.046 × 10^4) / (384 × 4 × 6) = 0.04mm。
砌体地下室外墙(挡土墙)验算:
已知地下室370mm厚挡土墙,高2.5m墙背直立、光滑、填土面水平。
填土的物理力学指标如下:r=18kN/m³. 计算过程:
土压力为:q=Ko r H
Ko=0.5,r=18kN/m³,现在标高-1.090处加圈梁,所以H取两圈梁之间的高度1.5m,故q=0.5x18x1.5=13.5(kN/m)
上下有圈梁约束,墙体按固端考虑,则在三角形侧向土压力作用下:弯矩 Ma=rG1/20L²=1.2x1/20x13.5x1.5²=1.82(kN/m)剪力 Va= rG7/20L=1.2x7/20x13.5x1.5=8.5(kN)受弯、受剪承载力计算:墙体MU10烧结页岩实心砖,M10水泥砂浆,370mm墙厚 M≤ftmW, V≤fvbz
砌体沿齿缝弯曲抗拉强度设计值 ftm=0.8x0.33=0.264(Mpa)
抗剪强度设计值 fv=0.8x0.17=0.136(Mpa)
取1m宽墙体计算单元且按矩形截面计算:
截面抵抗距 W=bh²/6=1000x370²/6=22.82x1000000 (mm³)截面内力臂 z=2h/3=2x370/3=246(mm)
砌体受弯承载力 ftmW=0.264x22.82x1000000=6.0(kN/m)> Ma=1.82(kN/m)
砌体受剪承载力 fvbz=0.136x1000x246=33.45(kN)> Va=8.5(kN)综上所诉:370mm厚地下室外墙(挡土墙)受弯、受剪承载力均满足要求。
用pkpm对面层或板墙加固后砌体结构的抗震计算震动对建筑结构的破坏是地震的主要损害原因。
随着社会经济的发展,人们越来越重视建筑结构耐震性能的提高。
而墙体是建筑结构的重要部分,其耐震性能直接影响到建筑结构的抗震能力。
为了提高砌体结构抗震性能,我们可以采用外加固措施,可以是面层加固或板墙加固。
在建筑砌体结构中,只有一定程度的面层加固后,才能满足抗震设计要求。
面层加固是指在砌块结构的外部应用一定厚度的水泥石英砂浆,使其表面的砌体结构能够得到均匀的加固,具有一定的抗拉强度、抗压强度和抗剪强度,从而提高砌体结构的耐震性能。
板墙加固是指将墙体的外表面安装有一定厚度的钢筋砼,使其具有较高的抗拉强度、抗压强度和抗剪强度,从而提高砌体结构的抗震能力。
PKPM(Performance Based Design)是一种基于性能的设计技术,是由于它能够更好地模拟及优化建筑结构抗震性能并反映出结构性能及其破坏方式,而被实际应用于建筑抗震设计中。
PKPM可以用来预测建筑结构对地震应力的反应,从而得出表面层加固或板墙加固结构的抗震计算结果。
使用PKPM进行面层加固或板墙加固后砌体结构的抗震计算,可以利用面层加固或板墙加固形式,计算出砌体结构在发生地震时的受力状况,从而得出砌体结构的抗震能力。
例如,在PKPM计算中,可以计算出砌体结构在发生地震时的抗剪性能、抗压性能,以及结构的受力状态等。
另外,PKPM还可以考虑到地震波的传播路径,以及地面涡度的影响,使砌体结构抗震能力得到更好的模拟。
使用PKPM预测面层加固或板墙加固后砌体结构的抗震能力时,需要结合实测地震动信息进行计算,以考虑地震波在发生时各地区呈现的不同特性。
同时,需要准确输入建筑物结构的几何参数,以及材料力学性能参数,以反映不同结构类型及材料性能的影响。
本文从建筑砌体结构的耐震性能的角度出发,针对面层加固或板墙加固后砌体结构的抗震性能,对使用PKPM计算抗震能力进行了简要介绍。
程序适用于12层以下任意平面布置的砌体结构及底框-抗震墙砌体结构的计算。
底框-抗震墙砌体结构层数为1或2。
一、砌体结构抗震验算(1)砌体结构抗震验算的计算过程用底部剪力法计算各层地震力——按楼面刚度和墙体侧向刚度分配地震剪力到每个墙段——导算楼面荷载和墙体自重计算墙体压应力——按墙体截面的抗震受剪承载力计算公式验算个墙段的受剪承载力。
(2)砌体结构抗震验算的计算内容验算每一大片墙体的抗震受剪承载力,计算对象包括门窗洞口在内的大片墙体,求出每一片墙体在抗震受剪时考虑压力影响的沿阶梯形截面坡坏的抗震抗剪强度。
计算结果是抗力与效应的比值。
验算各门窗间墙段的抗震受剪承载力,当墙段的抗震受剪承载力不满足时,将计算出墙段所需水平配筋的总截面面积。
(3)参数输入地下室结构嵌固高度(mm)<3层:当有地下室或者有半地下室时,输入地下室或半地下室至计算水平地震力的地平面的高度,该高度值小于房屋3层高度。
(当输入的嵌固高度大于0时,在计算基底总地震力时不计算地平面以下结构部分的重力荷载代表值,在计算各层的地震力和地震剪力时,结构总高度将减去高高度值)。
施工质量控制等级:1,2,3级对砌体的强度作相应的调整系数为1.05,1.00,0.89。
砂浆类型:选择水泥砂浆对砌体的抗压强度(*0.9)、抗剪强度(*0.8)。
(4)计算结果黄色数据:是个大片墙包括门窗洞口的抗震验算结果,数值结果是抗力与荷载效应的比值,标注方向与该片墙的轴线垂直。
计算结果小于一,不满足抗震强度要求,用红色显示。
兰色数据:是个门窗间墙段的验算结果。
标注方向与该墙段平行。
不满足用红色显示,旁边括号给出层间竖向截面中所需水平钢筋的总截面面积(mm*mm)。
白色数据:为混凝土剪力墙的剪力设计值(kn),可以根据次值对墙体进行配筋。
(5)墙体剪力设计值计算结果各大片墙剪力设计值垂直于该墙比标注,各墙段平行标注,都为白色。
二、底框-抗震墙结构的计算(1)底框-抗震墙结构的计算过程和内容1.计算底框-抗震墙的填充墙和其他各层砖墙的抗震承载力,以及底框结构中的混凝土剪力墙的剪力设计值。
砖混结构设计实例某三层砖混结构,标准层平面布置如下图所示:楼面荷载分别是:一层,恒活载是5kN/m2,3kN/m2;二层,恒活载是3kN/m2,2.5 kN/m2;屋面,恒活载是3kN/m2,2.5 kN/m2。
抗震设防烈度(0.10g),设计地震分组为第一组,场地类别Ⅱ类,风荷载标准值0.4 kN/m2,地面粗糙类别为B类,梁柱墙洞口的定义如上图所示。
楼板为130厚预制板,梁柱的混凝土强度为C25,其余值从略。
现要求对其进行结构设计,并进行抗震验算。
操作步骤如下:依次执行PMCAD主菜单1完成建筑模型与荷载输入。
(1)进入如下界面:(2)首先进行轴线的输入,对于规则的轴线网一般利用正交轴网来完成(3)在菜单“楼层的定义”中完成墙,梁,柱,洞口的布置,其中“本层信息”时必须设定的参数。
柱的截面类型如上图所示,选定截面后进行具体尺寸的定义,材料类别默认为混凝土当柱的截面为L型或T型时,除了进行沿轴偏心,偏轴偏心外,一般尚应需要进行轴转角的设置,可在相应的文本框内输入相应数值进行定义在进行洞口的布置是应注意底部标高的定义,只有门洞时0.00mm,窗洞口的底部标高应根据建筑设计进行定义。
万一疏忽错误时还可以对其进行重新修改,界面如下所示:点击“本层信息”定义层高,混凝土强度,钢筋的类别,保护层厚度等参数,在“荷载定义”中进行柱间荷载,梁间荷载,等等定义,其中楼面恒载和活载的定义,主要是定义标准层的荷载,对于个别房间的荷载还可以在后面菜单中进行修改,对于楼梯间的荷载可以先定义为楼面荷载,然后通过将楼板的厚度改为0,同时通过指定屈服方式,把荷载的传导至梯梁。
(4)在“设计参数”中定义:结构体系,结构主要材料,地震信息,风荷载信息,和绘图参数。
(5)对于含有多个标准层的结构模型,可以在参数设置前或后,进行多个标准层的定义,定义界面如下所示:(6)完成上面步骤后,可完成如此模型的定义(7)对上面各标准层定义无误后进行楼层的组装,如下所示:(8)最终模型如下所示(9)退出“主菜单一”(10)进入“主菜单二”结构楼面布置信息,利用“预制板”进行预制板的布置,在没有进行该菜单时,结构的楼面是现浇板,当执行此命令时,预制板自动完成替换;利用“修改板厚”来完成楼梯间,楼面板的修改,将板厚改成0;利用“砖混圈梁”完成圈梁的布置,(11)利用“悬挑楼板”进行,雨篷板的定义,根据提示依次完成各步骤:(12)对于楼梯荷载向梯梁,的传力方式采用,将板厚改为0,在后续菜单中进行“导荷方式”命令的修改:(13)利用菜单“砖混圈梁”完成圈梁的布置,在此定义圈梁的主筋,箍筋,箍筋间距,圈梁位置等等,同时也定义构造柱的配筋参数,砖混结构构造柱在建立模型时按普通框架柱输入,在完成“画结构平面图”后,通过主菜单“画砖混节点大样”中重新生成选项来完成普通框架柱向砖混构造柱的转化。
pkpm砌体计算及结果PKPM砌体计算及结果砌体工程是建筑工程的重要组成部分,而PKPM砌体计算是砌体工程设计中的一项关键任务。
PKPM是指由中国建筑科学研究院开发的一套砌体结构计算软件,具有强大的计算功能和高效的处理速度。
本文将介绍PKPM砌体计算的基本原理和计算结果。
一、PKPM砌体计算的基本原理PKPM砌体计算是基于砌体结构力学理论进行的,通过对砌体结构的力学性能进行分析和计算,确定其受力状况和承载能力。
具体而言,PKPM砌体计算主要包括以下几个方面的内容:1. 砌体材料特性的输入:PKPM砌体计算需要输入砌体的材料参数,如砌块的弹性模量、泊松比、抗压强度等。
这些参数是砌体计算的基础,直接影响到计算结果的准确性。
2. 砌体结构的建模与分析:根据实际工程需要,将砌体结构进行建模,并对其进行分析。
通过输入墙体的几何尺寸、砌体的类型和厚度等参数,可以对砌体结构进行静力学分析,确定其受力状况。
3. 砌体结构的受力计算:基于建模和分析的结果,进行砌体结构的受力计算。
这包括对砌体结构的荷载计算、应力分析和变形计算等。
通过计算,可以得到砌体结构在不同荷载条件下的应力和变形情况。
4. 砌体结构的承载能力评估:根据受力计算的结果,对砌体结构的承载能力进行评估。
这包括对砌体结构的抗震性能、承载力和刚度等指标的评估。
通过评估,可以确定砌体结构是否满足设计要求。
二、PKPM砌体计算的结果通过PKPM砌体计算,可以得到砌体结构在不同荷载条件下的受力情况和承载能力。
根据计算结果,可以对砌体结构进行优化设计和合理布置,以确保其安全可靠。
1. 砌体结构的应力分布:PKPM砌体计算可以确定砌体结构在不同荷载条件下的应力分布情况。
这包括砌体结构的轴力、剪力和弯矩等应力参数。
通过分析应力分布,可以判断砌体结构的受力状况和承载能力。
2. 砌体结构的变形情况:PKPM砌体计算可以计算砌体结构在荷载作用下的变形情况。
这包括砌体结构的沉降、位移和变形等参数。
砌体地下室外墙(挡土墙)验算:
已知地下室370mm厚挡土墙,高2.5m墙背直立、光滑、填土面水平。
填土的物理力学指标如下:r=18kN/m³. 计算过程:
土压力为:q=Ko r H
Ko=0.5,r=18kN/m³,现在标高-1.090处加圈梁,所以H取两圈梁之间的高度1.5m,故q=0.5x18x1.5=13.5(kN/m)
上下有圈梁约束,墙体按固端考虑,则在三角形侧向土压力作用下:弯矩 Ma=rG1/20L²=1.2x1/20x13.5x1.5²=1.82(kN/m)剪力 Va= rG7/20L=1.2x7/20x13.5x1.5=8.5(kN)受弯、受剪承载力计算:墙体MU10烧结页岩实心砖,M10水泥砂浆,370mm墙厚 M≤ftmW, V≤fvbz
砌体沿齿缝弯曲抗拉强度设计值 ftm=0.8x0.33=0.264(Mpa)
抗剪强度设计值 fv=0.8x0.17=0.136(Mpa)
取1m宽墙体计算单元且按矩形截面计算:
截面抵抗距 W=bh²/6=1000x370²/6=22.82x1000000 (mm³)截面内力臂 z=2h/3=2x370/3=246(mm)
砌体受弯承载力 ftmW=0.264x22.82x1000000=6.0(kN/m)> Ma=1.82(kN/m)
砌体受剪承载力 fvbz=0.136x1000x246=33.45(kN)> Va=8.5(kN)综上所诉:370mm厚地下室外墙(挡土墙)受弯、受剪承载力均满足要求。
结构专业设计计算书项目名称:单位工程:1#单身宿舍设计阶段:施工图工程号:S1078-752.2-结第1本,共1本(由页至页)2011年12月28日本工程电算选用软件(√)一、荷载计算:1、楼面荷载:1.1 恒载:二至六层:卫生间、盥洗室、阳台,地面砖防水楼面,L06J002页45—楼17:100厚楼板恒载=25×0.1+25×0.01+25×0.03+20×0.03=4.1 kN/m2,取4.5 kN/m2。
二至六层:走廊、宿舍、楼梯间,地面砖楼面,L06J002页45—楼15:100厚楼板恒载=25×0.1+25×0.01+20×0.03=3.35 kN/m2,取4.0 kN/m2。
22、屋面荷载:水泥砂浆平屋面,L06J002—屋15,(保温层为80厚泡沫玻璃板,防水层为2道3厚高聚物改性沥青防水卷材)120厚砼楼板:25×0.12=3.0 kN/m21:8水泥珍珠岩找坡层:10×(0.04+20.39/2×2%+0.04)/2=1.5kN/m220厚1:3水泥砂浆找平层:20×0.20=0.4 kN/m23厚高聚物改性沥青防水卷材:0.1 kN/m280厚泡沫玻璃板保温层:0.4 kN/m220厚1:3水泥砂浆找平层20×0.20=0.4 kN/m23厚高聚物改性沥青防水卷材:0.1 kN/m220厚1:2.5水泥砂浆:20×0.025=0.5 kN/m2总计 6.4kN/m2----------------------------------------------------------------------------------------------------- 恒载7.0kN/m2活载0.5kN/m23、风压:W0=0.40 kN/m2(50年一遇)。
PKPM砌体计算实例砖墙的计算设计在土建领域中是一个非常重要的内容。
PKPM砌体计算软件是一种常用的砌体墙结构计算软件,本文将通过一个实例来介绍PKPM砌体计算软件的使用。
实例介绍一处建筑的外墙采用砖砌体结构,砌体筒体砖和空心砖混用。
设计要求砌体墙抗震能力符合地震烈度为6度的要求。
墙体参数为:长度8m,高度6m,砖墙宽度为240mm,砖的强度等级为MU5,龙骨钢筋直径为12mm。
本次设计使用的PKPM砌体计算软件版本为V5.0。
软件使用方法第一步:新建工程在PKPM砌体计算软件中,首先需要新建一个工程。
在软件菜单栏中选择“项目”-“新建工程”,并填写工程相关信息。
填写完成后,点击“确定”按钮,进入到工程主界面。
第二步:添加墙体结构在工程界面中,需要添加砌体墙结构。
在左侧的工程结构树中右键点击“结构”-“新建”-“砌体墙”,即可添加砌体墙结构。
在弹出的对话框中,填写砌体墙的参数信息,如墙体长度、高度、厚度等。
第三步:添加材料参数在工程结构树中,右键点击“材料”-“新建”,即可添加砖墙材料参数。
在弹出的对话框中,填写砌体墙使用的材料参数,如砖的强度等级、龙骨钢筋直径等。
第四步:建立荷载组合在工程结构树中,右键点击“荷载”-“荷载组合”-“新建”,即可建立荷载组合。
在弹出的对话框中,选择地震作用荷载,并设置地震烈度为6度。
第五步:分析计算在完成上述步骤后,即可进行分析计算。
在工程结构树中,右键点击“计算”,即可进行砌体墙结构的计算分析。
根据PKPM砌体计算软件的计算结果,建筑砖墙结构符合地震烈度为6度的要求。
在实际设计中,需要根据具体的建筑结构要求和相关标准进行计算和设计。
本文通过一个实例介绍了PKPM砌体计算软件的使用方法。
对于工程建设领域的工作者来说,掌握这种计算软件的使用方法非常重要。
在实际设计和施工中,能够运用计算软件进行设计和分析,可以更好地提高工程质量和效率。
一.工程概况1.建筑名称:北京体育大学6号学生公寓2.结构类型:砌体结构3.层数:4层,层高:2.8m。
4.开间:3.6m,进深:5.7m。
5.建筑分类为二类,耐火等级为二级,抗震设防烈度为八度。
设计地震分组为第一组。
6.天然地面下5 ~ 10m无地下水,冰冻深度为地面以下2~ 4m处,口类场地。
7.外墙采用240厚页岩煤阡石多孔砖,内墙采用150厚陶粒空心砌块。
8.楼、地、屋面采用钢筋混凝土现浇板,条形基础,基础顶标高-1.000m。
墙体采用页岩煤阡石多孔砖,内墙、厨、厕及阳台处隔墙为200厚,其余墙体厚度均为240。
砖块强度采用MU15 ,±0.000以下采用M7.5混合砂浆。
±0.000以上采用M5混合砂浆。
构造柱设置见建筑图。
二.静力计算方案本工程横墙最大间距S max=7.2m,小于刚性方案横墙最大间距S max=32m,静力计算方案属于刚性方案。
本工程横墙厚度为240mm > 180mm,所有横墙水平截面的开洞率均小于50%, 横墙为刚性横墙。
本工程外墙水平截面开洞率小于2/3,层高2.8m ,4层总高度为11.2m,屋面自重大于0.8kN/m2,本地区基本风压为0.45kN /m2,按规范4.2.6条,可不考虑风荷载影响。
三.墙身高厚比验算1.允许高厚比[0]本工程采用采用砂浆最低强度等级为M5.0,查书表3-4,墙身允许高厚比[0]=24。
2 .由建筑图纸所示,外横墙取22轴和@、@轴间墙体验算,内横墙取£6轴和@、且轴 间墙体验算。
外纵墙取C 轴和16 ~位轴间门厅处墙体验算,内纵墙取E 轴和16 ~旦轴 间门厅处墙体验算。
1 )外横墙:S=5.7+1.8=7.5m , H=2.8+0.45+0.5=3.75m , 2H =7.5m , 2H>S查表 3-3 H 0=0.4S+0.2HH 0=3.75m , h=240mm , N =1.2 ,b H / 3 75N =1 - 0.4 — = 0.824 , p = H -=——=15.632 Sh 0.24叫N 2[p ]=1.2 x 0.824 x 24=23.73P =15.63 < N 1N 2[P]=23.73,满足要求。
用pkpm对面层或板墙加固后砌体结构的抗震计算PKPM是一款常用的结构分析软件,可以用于进行建筑结构的抗震计算。
在进行面层或板墙加固后砌体结构的抗震计算时,我们需要进行以下几个步骤:第一步:建立模型在PKPM软件中,首先需要建立一个合适的模型。
在面层或板墙加固后的砌体结构中,可以将砌体墙、面层结构和可能的加固材料(如钢筋、钢板等)分别建模,然后将它们组合到一个整体模型中。
第二步:输入材料参数对于不同的材料(如砌体墙、面层结构、加固材料等),需要输入相应的材料参数,包括弹性模量、泊松比、抗拉强度、抗压强度等。
这些参数可以通过材料试验、设计规范或相关文献来确定。
第三步:定义荷载在抗震计算中,需要定义适当的荷载。
一般来说,可以考虑自重、活载、雪载、风载等荷载。
对于地震荷载,可以根据设计规范或地震波进行推算。
第四步:施加边界条件在进行抗震计算时,需要为模型施加适当的边界条件。
常见的边界条件包括固定边界条件、弹簧边界条件、自由边界条件等。
通过施加不同的边界条件,可以模拟建筑结构在地震中的实际行为。
第五步:进行计算分析在PKPM软件中,可以进行静力分析、模态分析和时程分析等不同的计算分析。
静力分析主要考虑建筑结构在静力荷载下的受力情况;模态分析可以得到结构的振型和频率等信息;时程分析可以模拟地震过程对建筑结构的影响。
根据实际情况,可以选择适当的计算分析方法。
第六步:评估结果在进行抗震计算后,可以根据分析结果进行相应的评估。
可以评估结构的刚度、变形、位移、层间剪力等参数,以及承受地震作用下的性能等级。
评估结果可以作为后续设计和施工的依据。
需要注意的是,在进行面层或板墙加固后砌体结构的抗震计算时,应遵循相关的设计规范和标准,结合实际情况进行合理的参数选择和计算分析。
此外,PKPM软件只是一个工具,正确使用和解读分析结果需要结构工程师具备相应的专业知识和经验。
pkpm砌体计算及结果PKPM砌体计算及结果砌体结构是建筑工程中常见的一种结构形式,它由砖块、石块等材料按一定规则砌筑而成。
在砌体结构设计中,PKPM砌体计算是一种常用的计算方法,它可以帮助工程师准确计算砌体结构的承载能力和稳定性。
本文将介绍PKPM砌体计算的原理和步骤,并给出一个实际案例的计算结果。
一、PKPM砌体计算的原理PKPM砌体计算是基于国内最常用的结构计算软件PKPM(普通结构分析与设计软件)开发的一种砌体计算方法。
它通过输入砌体的材料参数、几何尺寸和荷载等信息,利用有限元分析原理进行计算,得出砌体结构的应力、变形等结果。
二、PKPM砌体计算的步骤1. 输入参数:首先,需要准备砌体的材料参数,如砖块的抗压强度、抗拉强度、抗剪强度等;然后,需要确定砌体的几何尺寸,如墙体的高度、厚度、宽度等;最后,需要考虑墙体所承受的荷载情况,如自重、风荷载、地震荷载等。
2. 建立模型:根据输入的参数,利用PKPM软件建立砌体的有限元模型。
模型中包括砖块的单元、墙体的单元以及墙体与地基的连接单元。
3. 定义边界条件:根据实际情况,定义墙体的边界条件,如固定边界、自由边界等。
4. 设置荷载:根据输入的荷载信息,设置墙体所承受的各种荷载,如自重、风荷载、地震荷载等。
5. 进行计算:利用PKPM软件进行计算,得出砌体结构的应力、变形等结果。
6. 分析结果:根据计算结果,可以评估砌体结构的承载能力和稳定性,判断是否满足设计要求。
如果不满足要求,可以通过调整砌体的材料参数、几何尺寸或增加加固措施来改善结构性能。
三、实际案例的计算结果以某个高层建筑的外墙砌体为例,假设砌体的几何尺寸为长10米、高20米、厚0.4米,使用的是抗压强度为10MPa的砖块。
考虑到该建筑的地理位置和设计要求,设置的荷载为自重、风荷载和地震荷载。
经过PKPM砌体计算,得出以下结果:1. 最大应力:砌体结构中最大的应力出现在顶部,为8MPa,小于砖块的抗压强度,符合设计要求。
某幢民房计算实例房屋概况:两层带阁砖混结构楼房,东西长11.64m,南北长9.74m,一层层高3.90m,二层层高3.50m,阁楼层屋脊高2.30m。
该房屋采用墙下混凝土条形基础,上部结构由扁砌实墙承重,预制多孔板楼盖,屋盖采用横墙搁置木檩条,木椽条,望砖基层,平瓦双坡屋面。
一层平面示意图二层平面示意图结构验算:一、新建工程→砌体结构→砌体结构建模与荷载输入二、轴线输入1、正交轴网:2、输入开间与进深:三、楼层定义1、本层信息注:1、底层标准层层高需加上基础高度;2、阁楼层为坡屋面时阁楼层层高需折算成阁楼层檐口高加上屋脊高的1/3~1/2。
2、柱、主梁、墙、洞口的布置(1)定义柱、主梁、墙、洞口的截面尺寸及材料类别注:1、布置时需注意墙、柱、梁、洞口的偏心(默认居中);2、洞口布置时一面墙只能布置一个洞口,若需要布置多个洞口时需增加节点和注意两个洞口之间墙段的距离;3、窗洞布置时需注意底部标高。
3、楼板生成(1)生成楼板注:1、生成楼板时默认生成现浇板;2、楼梯间板厚修改为0;3、若本层无现浇板或预制板则需布置全房间洞;(2)布预制板注:1、布预制板时需注意板的宽度、方向(承重墙不同);2、屋面为平瓦屋面时,屋面板布置参考布预制板;四、荷载输入1、恒活设置注:1、恒载取值为现浇板、板底粉刷、板面找平粉刷等的自重(若有设计图纸则参考设计图纸,若无设计图纸参考荷载规范和经验取值);2、活载取值参考荷载规范(住宅一般取2.0,上人屋面取2.0,不上人屋面取0.5);2、楼面荷载(荷载查改)注:1、楼梯间恒载取值一般为7.0(参考荷载规范);2、卫生间、阳台、过道等活载取2.5(参考荷载规范);3、住宅楼梯间活荷载取2.0,其它取3.5(参考荷载规范)。
3、梁间荷载注:1、梁间荷载取值为墙体扣除洞口后的梁间均布线荷载2、(墙体体积-洞口体积)*墙体容重/墙段长度五、添加新标准层注:1、增加新标准层全部复制后进行修改,重复步骤三~四;六、设计参数1、总信息2、材料信息3、地震信息注:1、参数选取参考抗震设计规范;2、计算振型个数为层数*3;4、风荷载信息注:1、参数选取参考荷载规范;七、楼层组装1、楼层组装2、整楼模型3、保存→退出→存盘退出八、砌体信息及计算1、参数定义(砌体信息)2、材料强度3、受压计算。
pkpm砌体结构计算结果PKPM砌体结构计算结果PKPM砌体结构计算结果可以提供砌体结构的强度分析。
在建筑设计中,砌体结构的强度是关键要素之一。
通过PKPM软件的计算,可以得出砌体结构在不同荷载条件下的承载能力,从而评估其结构的安全性。
这对于建筑设计师和结构工程师来说非常重要,可以帮助他们合理选择砌体材料和尺寸,从而确保建筑的结构安全。
PKPM砌体结构计算结果还可以用于砌体结构的稳定性分析。
在一些高层建筑或特殊结构中,砌体结构的稳定性是需要特别关注的问题。
通过PKPM软件的计算,可以得出砌体结构在不同荷载条件下的稳定性指标,如屈曲荷载和失稳模式等。
这对于结构工程师来说是非常有价值的信息,可以帮助他们设计出更加稳定的砌体结构。
PKPM砌体结构计算结果还可以用于砌体结构的变形分析。
在实际的建筑中,由于荷载作用和温度变化等原因,砌体结构会发生一定的变形。
通过PKPM软件的计算,可以得出砌体结构在不同工况下的变形量和变形形态,从而评估其对建筑功能的影响。
这对于建筑设计师来说是非常重要的信息,可以帮助他们合理选择砌体结构的材料和构造方式,从而控制建筑的变形。
PKPM砌体结构计算结果还可以用于砌体结构的疲劳分析。
在某些特殊情况下,如地震和风载等,砌体结构会受到较大的震动和振动荷载。
通过PKPM软件的计算,可以得出砌体结构在不同震动荷载下的疲劳寿命和疲劳破坏模式,从而评估其在地震和风灾等极端情况下的安全性。
这对于结构工程师来说是非常重要的信息,可以帮助他们评估砌体结构的抗震和抗风性能,从而确保建筑的安全性。
PKPM砌体结构计算结果是砌体结构设计中的重要工具之一。
它可以提供砌体结构的强度、稳定性、变形和疲劳等方面的信息,帮助建筑设计师和结构工程师评估砌体结构的安全性和可靠性。
在实际的工程应用中,我们应该充分利用PKPM软件的计算结果,合理设计和优化砌体结构,从而确保建筑的质量和安全。
某幢民房计算实例
房屋概况:
两层带阁砖混结构楼房,东西长12m,南北长10m,一层层高,二层层高,阁楼层屋脊高。
该房屋采用墙下混凝土条形基础,上部结构由扁砌实墙承重,预制多孔板楼盖,屋盖采用横墙搁置木檩条,木椽条,望砖基层,平瓦双坡屋面。
平面示意图
结构验算:
一、新建工程→砌体结构→砌体结构建模与荷载输入
二、轴线输入
1、正交轴网:
2、输入开间与进深:
三、楼层定义
1、本层信息
注:1、底层标准层层高需加上基础高度;
2、阁楼层为坡屋面时阁楼层层高需折算成阁楼层檐口高加上屋脊高的1/3~1/2。
2、柱、主梁、墙、洞口的布置
(1)定义柱、主梁、墙、洞口的截面尺寸及材料类别
注:1、布置时需注意墙、柱、梁、洞口的偏心(默认居中);
2、洞口布置时一面墙只能布置一个洞口,若需要布置多个洞口时需增加节点和注意两个洞口之间墙段的距离;
3、窗洞布置时需注意底部标高。
3、楼板生成
(1)生成楼板
注:1、生成楼板时默认生成现浇板;
2、楼梯间板厚修改为0;
3、若本层无现浇板或预制板则需布置全房间洞;(2)布预制板
注:1、布预制板时需注意板的宽度、方向(承重墙不同);
2、屋面为平瓦屋面时,屋面板布置参考布预制板;
四、荷载输入
1、恒活设置
注:1、恒载取值为现浇板、板底粉刷、板面找平粉刷等的自重
2、活载取值参考荷载规范(住宅一般取,上人屋面取,不上人屋面取);
2、楼面荷载(荷载查改)
注:1、楼梯间恒载取值一般为(参考荷载规范);
2、卫生间、阳台、过道等活载取(参考荷载规范);
3、住宅楼梯间活荷载取,其它取(参考荷载规范)。
3、梁间荷载
注:1、梁间荷载取值为墙体扣除洞口后的梁间均布线荷载
2、(墙体体积-洞口体积)*墙体容重/墙段长度
五、添加新标准层
注:1、增加新标准层全部复制后进行修改,重复步骤三~四;
六、设计参数
1、总信息
2、材料信息
3、地震信息
注:1、参数选取参考抗震设计规范;
2、计算振型个数为层数*3;4、风荷载信息
注:1、参数选取参考荷载规范;七、楼层组装
1、楼层组装
2、整楼模型
3、保存→退出→存盘退出
八、砌体信息及计算
1、参数定义(砌体信息)
2、材料强度
3、受压计算。