无铅焊点可靠性及验证试验
- 格式:pdf
- 大小:273.62 KB
- 文档页数:4
无铅焊点可靠性分析单位:姓名:时间:无铅焊点可靠性分析摘要:主要介绍了Sn-Ag-Cu合金焊接点发生失效的各种表现形式,探讨失效发生与影响可靠性的各种原因及如保在设计及制程上进行改进以,改善焊点的可靠性,提高产品的质量。
关键词:焊点;失效;质量;可靠性前言:电子产品的“轻、薄、短、小”化对元器件的微型化和组装密度提出了更高的要求。
在这样的要求下,如何保证焊点质量是一个重要的问题。
焊点作为焊接的直接结果,它的质量与可靠性决定了电子产品的质量。
也就是说,在生产过程中,组装的质量最终表现为焊接的质量。
目前,环保问题也受到人们的广泛关注,在电子行业中,无铅焊料的研究取得很大进展,在世界范围内已开始推广应用,无铅焊料与有铅焊料相比,其润湿性差、焊接温度,形成的焊点外观粗糙等不利因素。
因此对其焊点品质也是一个大家很关注的问题。
中将就Sn-Ag-Cu焊料合金的焊点质量和可靠性问题进行探讨。
一、无铅焊点的外观评价在印刷电路板上焊点主要起两方面作用。
一是电连接,二是机械连接。
良好的焊点就是应该是在电子产品的使用寿命周期内,其机械和电气性能都不发生失效。
良好的焊点外观表现为:(1)良好的润湿;(2)适当的焊料,完全覆盖焊盘和焊接部位;(3)焊接部件的焊点饱满且有顺畅连接的边缘;二、寿命周期内焊点的失效形式产品在其整个寿命期间内各个时期的故障率是不同的, 其故障率随时间变化的曲线称为寿命的曲线, 也称浴盆曲线(见下图)如上图所示,产品寿命的曲线总共分为三个阶段早期故障期,偶然故障期,耗损故障期。
1)、早期故障期:在产品投入使用的初期,产品的故障率较高,且具有迅速下降的特征。
这一阶段产品的故障主要是设计与制造中的缺陷,如设计不当、材料缺陷、加工缺陷、安装调整不当等,产品投入使用后很容易较快暴露出来。
可以通过加强质量管理及采用筛选等办法来减少甚至消灭早期故障。
2)、偶然故障期:在产品投入使用一段时间后,产品的故障率可降到一个较低的水平,且基本处于平稳状态,可以近似认为故障率为常数,这一阶段就是偶然故障期。
无铅焊点的可靠性及其验证试验编辑: panda-liu无铅焊点的可靠性及其验证试验by John H. Lau Agilent Technologies, Inc. EMA摘要本研究中对RoHS符合产品的可靠性进行了研究,重点是无铅焊点的可靠性。
焊料在电子组装中是一个电的和机械的―胶水‖。
无铅焊料提供的特性是否会让业界在未来一直依赖它?本文无法给出结论!然而,我们试图帮助所有从事这项工作的人更好地理解为什么或应该如何去做,以便他们在未来能够找出答案。
引言R oHS中规定禁止使用铅(Pb),汞(Hg),镉(Cd),六价铬(Cr6+),PBB(多溴联苯),PBDE(多溴二苯醚)等6 种有害物质,实施日期是2006年7月1日。
这意味着,从这天起,所有的EEE(电气、电子设备),除那些豁免的之外[1,2,3],如果他们含有这6种禁用物质,都不能在欧盟市场上销售。
无-X (如无- 铅)的定义是什么?这6种禁用物质在任何一个EEE的均匀材质中所允许的最大浓度值(MCV)已在EU公报上公布,并在2005 年8月18日立法[4]。
它陈述:条款5(1)(a)规定,铅、汞、六价铬、多溴联苯(PBB),多溴二苯醚(PBDE)均匀材质的MCV 为0.1%重量百分比,镉的MCV为0.01%。
简单地讲,以无铅为例,定义为任何一个EEE在所有的(单个的)均匀材质中,铅含量小于0.1wt%。
什么是均匀材料?它定义为不能进一步分解成不同材料的单一材料。
更多的―均匀材料‖解释,请参看[5]。
本文重点仅讨论Pb有害物质。
当今,焊料合金多半使用的是63Sn37Pb,熔点183℃。
不久前,多于1 0 0种无铅焊料合金存在于世,如[6]中表3.1 所示。
然而,今天电子业界主要的无铅焊料是Sn(3-4)wt%Ag(0.5-0.7)wt%Cu (或简称SAC),熔点217 ℃,比铅锡焊料合金的熔点高34℃。
印制电路板组装采用SAC焊料(替代SnPb)时,元件和PCB将承受更高的焊接温度,且他们在成本、性能和可靠性方面有很大的不同[10]。
无铅焊接的质量和可靠性分析无铅焊接是一种替代传统铅焊接的技术,在电子制造业中越来越受欢迎。
它被广泛应用于手机、计算机、汽车电子等领域,并在一定程度上改善了环境和健康安全问题。
本文将对无铅焊接的质量和可靠性进行分析。
首先,无铅焊接的质量主要取决于焊接接头的可靠性。
与传统的铅焊接相比,无铅焊接在焊接接头的物理性能上存在一些差异。
无铅焊料的熔点较高,焊接温度也相应提高,这可能导致焊接接头出现焊缺、毛刺和冷焊等问题。
因此,在无铅焊接的过程中,需要严格控制焊接的温度和时间,确保焊缝的完整性和连接的可靠性。
其次,无铅焊接的质量还与焊接材料的选择和焊接工艺的优化有关。
无铅焊料种类繁多,包括有机铅、无铅合金等。
正确选择合适的焊料是保证焊接质量的关键。
此外,优化的焊接工艺可以提高焊接接头的可靠性。
例如,合理调整焊接参数、采用预热和后热等措施可以减少焊接应力和应变,提高焊接质量。
关于无铅焊接的可靠性,一些研究已经针对其使用寿命和耐久性进行了分析。
无铅焊接与铅焊接相比,无铅焊接的接头强度和耐久性较差。
然而,通过合适的设计和工艺控制,可以提高焊接接头的可靠性。
例如,结构设计上的考虑、扬声器布置等可减少焊接接头的应力集中,增强接头的耐久性。
此外,研究者还发现适当增大焊料的量,以及利用辅助材料(如球墨铸铁)等措施可以增加焊接接头的寿命。
综上所述,无铅焊接的质量和可靠性与焊接接头的设计、焊接材料的选择和焊接工艺的优化密切相关。
通过合理控制焊接参数,采取适当的焊接工艺和辅助措施,可以有效提高无铅焊接的质量和可靠性。
然而,仍需要进一步研究和改进,以推动无铅焊接技术的发展和应用。
接着上文所述,下面将继续探讨无铅焊接的质量和可靠性的相关内容。
除了焊接接头的可靠性外,无铅焊接的质量还与焊接过程中产生的焊接缺陷有关。
无铅焊接常见的缺陷包括焊接裂纹、焊接虹吸缺陷和焊接气孔等。
这些缺陷可能导致焊接接头的破裂或失效,降低焊接质量和可靠性。
因此,在无铅焊接过程中,及时检测和修复焊接缺陷是保证焊接质量的重要步骤。
无铅锡银密封焊试验及可靠性分析海洋【摘要】采用Sn3.5Ag(221℃)Indium8.9 T3-83.5%的焊膏,首先做了焊料的可焊性试验,随后设计了围框的密封焊试验,工艺样件由Cu80W镀金底板和柯伐镀金围框组成,在270℃恒定温度下,焊接时间2 min。
最后对焊接后的样件做了X-ray空洞率及焊接层面微观检测分析并测量了IMC厚度。
研究结果表明:不仅Sn3.5Ag焊料的可焊性好,而且在镀金层上的致密性也好,在X光透射下柯伐镀金围框的空洞率低于5%,只是随时可能产生的小气孔会严重影响焊接的密封性。
%Sn3.5Ag(221℃)Indium8.9 T3-83.5% soldering paste was employed to do the weld ability test at the ifrst. Later, a smart plan was schemed for enclosure frame seal-welding experiments. The processing samples are made up of a Cu80W gold-plated substrate and two Kovar alloy enclosure frames with gold-plated. The welding temperature was set at270℃constantly and time was about 2 minutes. At last, the packaged samples were used for X-ray penetration rate inspection, welding layer microanalysis and IMC thickness measurement. Results show that the spread-ability of Sn3.5Ag is good, the generated solder is actually compacted in the gold-plated inner layer and it also can be easily found that the Kovar alloy enclosure frame void ratio less than 5% based on the X-ray test. However, the small voids that may be produced at any time will have a strong impact on seal-welding.【期刊名称】《电子与封装》【年(卷),期】2015(000)009【总页数】4页(P6-9)【关键词】Sn3.5Ag;密封焊;可焊性;X-ray;空洞率【作者】海洋【作者单位】中国电子科技集团公司第10研究所,成都 610036【正文语种】中文【中图分类】TN305.941 引言微波毫米波组件的气密封装一直是要求非常高的一项工艺技术,且封装气密性是最重要的可靠性指标之一。
无铅焊点可靠性测试方法随着电子信息产业的日新月异,微细间距器件发展起来,组装密度越来越高,诞生了新型SMT、MCM技术,微电子器件中的焊点也越来越小,而其所承载的力学、电学和热力学负荷却越来越重,对可靠性要求日益提高。
电子封装中广泛采用的SMT封装技术及新型的芯片尺寸封装(CSP)、焊球阵列(BGA)等封装技术均要求通过焊点直接实现异材间电气及刚性机械连接(主要承受剪切应变),它的质量与可靠性决定了电子产品的质量。
一个焊点的失效就有可能造成器件整体的失效,因此如何保证焊点的质量是一个重要问题。
传统铅锡焊料含铅,而铅及铅化合物属剧毒物质,长期使用含铅焊料会给人类健康和生活环境带来严重危害。
目前电子行业对无铅软钎焊的需求越来越迫切,已经对整个行业形成巨大冲击。
无铅焊料已经开始逐步取代有铅焊料,但无铅化技术由于焊料的差异和焊接工艺参数的调整,必不可少地会给焊点可靠性带来新的问题。
因此,无铅焊点的可靠性也越来越受到重视。
本文叙述焊点的失效模式以及影响无铅焊点可靠性的因素,同时对无铅焊点可靠性测试方法等方面做了介绍。
焊点的失效模式焊点的可靠性实验工作,包括可靠性实验及分析,其目的一方面是评价、鉴定集成电路器件的可靠性水平,为整机可靠性设计提供参数;另一方面,就是要提高焊点的可靠性。
这就要求对失效产品作必要的分析,找出失效模式,分析失效原因,其目的是为了纠正和改进设计工艺、结构参数、焊接工艺等,焊点失效模式对于循环寿命的预测非常重要,是建立其数学模型的基础。
下面介绍3种失效模式。
1、焊接工艺引起的焊点失效焊接工艺中的一些不利因素及随后进行的不适当的清洗工艺可能会导致焊点失效。
SMT 焊点可靠性问题主要来自于生产组装过程和服役过程。
在生产组装过程中,由于焊前准备、。
无铅焊及焊接点的可靠性实验(1、株式会社力世科,东京都日野市日野本町1-15-17街191-0011;2、上海市虹桥路2328弄2号楼504室,200336)摘要:随着电子装置的小型化的发展,欧盟(EU.)的WEEE和RoHS提出禁止使用Sn-Pb焊锡。
这将导致一系列的工业革新,如部件体积和重量的减少,各种各样无铅产品的出现,改变现有的焊接生产线等。
参照国际标准(IEC,ISO)和日本国家标准(JIS),并根据这些标准做了一系列的试验,通过试验对无铅焊润湿性、强度、耐久性等可靠性的评价方法进行说明。
关键词:无铅焊,润湿性,接触角,耐久性中图分类号:T605 文献标识码:A 文章标码:1004-4507(2005)12-0051-05手机、数字照相机、笔记本电脑等产品的小型化、轻量化发展的同时,欧盟出台了关于废弃电气电子仪器(WEEE:Waste El ectrical and Electronic Equipment)法案及特定有害物质的使用限制(RoHS:Restriction of the use of certain Hazardous Substances)之规定。
即,2006年7月1日之后,对在电子仪器及封装业中,广泛使用的,不可缺的Sn-Pb系列焊锡将全面禁止。
为此,在电子产业界,对封装部件的小型化,无铅焊锡的开发,生产线的变更等等技术改造和变革将迫在眉睫。
本文将依据国际标准IEC、ISO、JIS,通过实际测量结果,对无铅焊的润湿性、强度、耐久性等可靠性的评价方法进行说明。
1 各种标准(无铅焊相关的)对Sn-Pb系列焊锡,我们有各种各样的标准。
无铅焊从定义、种类、组成等也有其对应的IEC、ISO、JIS等国际标准,并正在进一步完善。
如各标准对无铅的定义(铅的含量)、种类的一致性也还在进行调整,在日本国内使用的JIS标准,于2004年3月与IEC标准也进行了一致性的调整(例焊锡试验方法(平衡法)JIS C 0053→JIS C 60068-2-54)。
无铅焊点检验规范无铅焊点是现代电子产品中常见的组装方式之一,确保焊接质量对于产品的正常运行至关重要。
为了保证无铅焊点的质量,需要遵守一些检验规范。
下面是一些常见的无铅焊点检验规范:1.焊接温度和时间检验:无铅焊点的焊接温度和时间直接影响焊点质量。
检验时,应根据焊接材料的要求和工艺标准,使用合适的焊接温度和时间参数进行检验。
焊接温度和时间过高会导致焊接点的烧损和氧化,从而影响产品的可靠性。
2.焊接外观检验:焊点的外观可以通过视觉检查进行评估。
焊接后的焊点应呈现出光滑、均匀、一致的外观,无明显的裂缝、气泡和杂质等缺陷。
焊点与焊盘之间应紧密贴合,没有明显的间隙或未焊接到位的现象。
3.焊点强度检验:焊点的强度是评估焊接质量的重要指标之一。
可以通过拉力测试或剪切测试来评估焊点的强度。
拉力测试是将焊点施加拉力,评估焊点是否能够承受预定的拉力。
剪切测试是将焊点施加剪切力,评估焊点是否能够承受预定的剪切力。
焊点的强度应符合设定的标准要求。
4.引脚连接性测试:无铅焊点的连接性也是一个重要的检验指标。
可以通过外部测试仪器来检测焊点与焊盘之间的电气连接性。
测试仪器将通过电流或电压信号检测焊点的连接质量,以确保焊点与焊盘之间的电气信号能够正常传导。
5.尺寸和位置检验:焊点的尺寸和位置也需要进行检验。
可以使用量具或显微镜来测量焊点的尺寸和位置,确保焊点符合设计要求和规范要求。
综上所述,无铅焊点的检验规范包括焊接温度和时间检验、焊接外观检验、焊点强度检验、引脚连接性测试以及尺寸和位置检验等。
通过遵守这些检验规范,能够确保无铅焊点的质量和可靠性,提高产品的使用寿命和性能。
无铅焊点的质量是电子产品的重要保障,因此需要严格遵守相关的检验规范以确保焊点的质量和可靠性。
下面将继续介绍相关的内容:6.焊点表面光洁度检验:焊点的表面光洁度对焊接质量有着重要影响,因为高光洁度的焊点可以提供更好的连接性和稳定性。
检验时,可以使用显微镜或光学仪器来评估焊点表面的光洁度。
无铅焊点在器件级与板级的可靠性:测试,分析,和面向可靠性设计李世玮博士培训目标与内容无铅焊目前是电子制造业中主要的焦点之一,从有铅焊转变到无铅焊并不仅仅是单纯的材料代换而已,它还带来了许多可靠性方面的困扰。
本课程将介绍当前最关紧要的无铅焊点认证与可靠性的议题,培训重点将放在器件级与板级的测试方法与失效分析。
同时也将介绍有限元仿真与焊点面向可靠性设计相关的观念和知识。
本课程的教材是以讲师所著的三本书“Chip Scale Packages”,“Microvias for Low-Cost High-Density Interconnects”,和“Electronics Manufacturing with Lead-Free, Halogen-Free, and Conductive Adhesive Materials”的内容为主轴,并加上他近期的研究成果以及与业界互动的心得。
所有参加本课程的人士都将会收到一份详尽的讲义。
具体内容包括:(1)无铅焊的概观与现况检讨(2)试验数据的处理与统计分析(3)认证测试与可靠性测试(4)器件级焊点测试(5)板级焊点测试(6)高速推球与拉球测试和板级跌落试验的相关性(7)机板与PC板应变量测(8)有限元仿真与分析(9)焊点面向可靠性设计的观念与作法(10)回顾与总结适合培训人员本课程主要是为表面贴装,品质管制,可靠性测试与失效分析等相关行业里的研究员,工程师,技术经理所设计。
课程特色在本培训课程中,将会着重于让学员瞭解下列相关知识:•认证测试与可靠性测试的不同•如何正确处理测试数据和进行统计分析•各种器件级与板级焊点可靠性的测试方法•热老化与多次回流对焊点的影响•如何从器件级焊点强度测试评估板级跌落试验的表现•机板与PC板应变量测•瞭解仿真分析的角色•焊点面向可靠性设计的观念讲师简介李世玮博士于1992年在美国普度大学(Purdue University)获得航天工程博士学位,留原校一年作博士后研究后,于1993年加入香港科技大学,目前他是该校机械工程系副教授,同时兼任该校电子封装研究中心主任。
无铅焊接的质量和可靠性分析前言:传统的铅使用在焊料中带来很多的好处,良好的可靠性就是其中重要的一项。
例如在常用来评估焊点可靠性的抗拉强度,抗横切强度,以及疲劳寿命等特性,铅的使用都有很好的表现。
在我们准备抛弃铅后,新的选择是否能够具备相同的可靠性,自然也是业界关心的主要课题。
一般来说,目前大多数的报告和宣传,都认为无铅的多数替代品,都有和含铅焊点具备同等或更好的可靠性。
不过我们也同样可以看到一些研究报告中,得到的是相反的结果。
尤其是在不同PCB焊盘镀层方面的研究更是如此。
对与那些亲自做试验的用户,我想他们自然相信自己看到的结果。
但对与那些无能力资源投入试验的大多数用户,又该如何做出选择呢?我们是选择相信供应商,相信研究所,还是相信一些形象领先的企业?我们这回就来看看无铅技术在质量方面的状况。
什么是良好的可靠性?当我们谈论可靠性时,必须要有以下的元素才算完整。
1.使用环境条件(温度、湿度、室内、室外等);2.使用方式(例如长时间通电,或频繁开关通电,每天通电次数等等特性);3.寿命期限(例如寿命期5年);4.寿命期限内的故障率(例如5年的累积故障率为5%)。
而决定产品寿命的,也有好几方面的因素。
包括:1. DFR(可靠性设计,和DFM息息相关);2.加工和返修能力;3.原料和产品的库存、包装等处理;4.正确的使用(环境和方式)。
了解以上各项,有助于我们更清楚的研究和分析焊点的可靠性。
也有助于我们判断其他人的研究结果是否适合于我们采用。
由于以上提到的许多项,例如寿命期限、DFR、加工和返修能力等等,他人和我的企业情况都不同,所以他人所谓的‘可靠’或‘不可靠’未必适用于我。
而他人所做的可靠性试验,其考虑条件和相应的试验过程,也未必完全符合我。
这是在参考其他研究报告时用户所必须注意的。
您的无铅焊接可靠性好吗?因此,在给自己的无铅可靠性水平下定义前,您必须先对以下的问题有明确的答案。
§您企业的质量责任有多大?§您有明确的质量定义吗?§您企业自己投入的可靠性研究,以及其过程结果的科学性、可信度有多高?§您是否选择和管理好您的供应商?§您是否掌握和管理好DFM/DFR工作?§您是否掌握好您的无铅工艺?只有当您对以上各项都有足够的掌握后,您才能够评估自己的无铅可靠性水平。