NiPdSi界面常温扩散及硅化物形成的XPS证据
- 格式:pdf
- 大小:798.90 KB
- 文档页数:5
扩散阻挡层对NiCrAlYSi涂层不同条件下热腐蚀行为的影响许安;杨阳;李伟洲;秦泽华;岑广;刘会群;易丹青【摘要】利用电弧离子镀技术在DSMll合金基体上制备含或不含扩散阻挡层(diffusion barrier,DB)的NiCrAlYSi涂层,对比研究2种涂层在900℃恒温热腐蚀行为和从900℃到室温的循环热腐蚀行为(表面混合盐质量分数为75%Na2SO4+25%K2SO4).研究结果表明:在恒温热腐蚀条件下,含或不含扩散阻挡层的NiCrAlYSi涂层表面主要生成了α-Al2O3和γ/γ'相;腐蚀100 h后,NiCrAlYSi 涂层出现了较多的Kirkendall孔洞,基体与涂层元素的互扩散明显.NiCrAlYSi/DB 涂层的扩散阻挡层可有效地抑止基体与涂层的元素互扩散,防护效果比单一NiCrAlYSi涂层的效果好.在循环热腐蚀条件下,含或不含扩散阻挡层的NiCrAlYSi 涂层表面主要生成α-Al2O3、尖晶石、TiO2和γ/γ'相;腐蚀100 h后,NiCrAlYSi 涂层内氧化和内硫化现象严重,NiCrAlYSi/DB涂层的扩散阻挡层界面易开裂,影响扩散阻挡层的效力,导致涂层体系比单一NiCrAlYSi涂层更快失效.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2016(047)003【总页数】11页(P730-740)【关键词】NiCrAlYSi涂层;电弧离子镀;扩散阻挡层;高温热腐蚀;应力【作者】许安;杨阳;李伟洲;秦泽华;岑广;刘会群;易丹青【作者单位】广西大学材料科学与工程学院,广西南宁,530004;广西大学材料科学与工程学院,广西南宁,530004;广西大学材料科学与工程学院,广西南宁,530004;中南大学材料科学与工程学院,湖南长沙,410083;广西大学材料科学与工程学院,广西南宁,530004;广西大学材料科学与工程学院,广西南宁,530004;中南大学材料科学与工程学院,湖南长沙,410083;中南大学材料科学与工程学院,湖南长沙,410083【正文语种】中文【中图分类】TB43;TG174.44燃气轮机是十分重要的动力机械设备,广泛应用于航空航天、船舶和能源等领域。
Synthetic natural gas from CO hydrogenation over silicon carbide supported nickel catalystsYue Yu a ,b ,Guo-Qiang Jin a ,Ying-Yong Wang a ,Xiang-Yun Guo a ,⁎a State Key Laboratory of Coal Conversion,Institute of Coal Chemistry,Taiyuan 030001,PR China bGraduate University of the Chinese Academy of Sciences,Beijing 100039,PR Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 19March 2011Received in revised form 23July 2011Accepted 1August 2011Available online xxxx Keywords:CO methanation Ni/SiC catalyst Ni/TiO 2catalyst StabilitySilicon carbide supported nickel catalysts for CO methanation were prepared by impregnation method.The activity of the catalysts was tested in a fixed-bed reactor with a stream of H 2/CO =3without diluent gas.The results show that 15wt.%Ni/SiC catalyst calcined at 550°C exhibits excellent catalytic activity.As compared with 15wt.%Ni/TiO 2catalyst,the Ni/SiC catalyst shows higher activity and stability in the methanation reaction.The characterization results from X-ray diffraction and transmission electron microscopy suggest that no obvious catalyst sintering has occurred in the Ni/SiC catalyst due to the excellent thermal stability and high heat conductivity of SiC.©2011Elsevier B.V.All rights reserved.1.IntroductionNature gas is a clean fuel in fossil fuels and it has a higher calori fic value comparing with petroleum and coal.In recent years,the production of synthetic natural gas from coal and solid dry biomass has been a concern due to the rising price and exhaustion of natural gas [1,2].As one of the most essential steps in the production of SNG [1],the methane synthesis from carbon monoxide and hydrogen has been paid more attention.Different types of methanation catalysts have been developed and widely investigated since the reaction was first reported by Sabatier and Senderens in 1902[3].Although noble metal catalysts show higher activity [4,5],Ni-based catalysts are widely applied due to the low-cost and good availability [1].Many materials such as TiO 2,Al 2O 3,CeO 2,SiO 2,ZrO 2,MgO,YSZ and MgAl 2O 4have been investigated as the support of nickel catalysts [6–10].It is found that the support materials can strongly in fluence the activity of nickel catalysts.Several groups have reported that the nickel catalyst using TiO 2as the support is effective for CO methanation reaction [8,11,12],and the aim of the above studies is to remove carbon monoxide in hydrogen-rich gas for the use in polymer electrolyte fuel cells or ammonia synthesis.There are also some studies on methanation reaction using higher CO concentrations [13,14].However,it is well known that the reaction of CO methanation is a strongly exothermic reaction (3H 2+CO →CH 4+H 2O,ΔH°=−206kJ·mol −1)[6].When the nickel catalysts using conventional supports are used in the methanation reaction with a stream flow of H 2/CO=3,the reaction heat can rapidly accumulate onthe catalysts and make the catalysts sintered.Eisenlohr et al.reported that commercial methanation catalysts always showed a fast deactivation due to the temperature raise of catalyst bed [15].One way to solve the problem is to connect methanation reactors in series with intermediate gas cooling [1].In addition,the problem can also be solved by employing highly thermo-conductive and thermo-stable materials as the support of CO methanation catalysts.Silicon carbide (SiC)exhibits many superior properties,i.e.excellent thermostability,high mechanical strength,high chemical inertness,low coef ficient of thermal expansion and high thermal conductivity.Due to these properties,SiC could be employed as catalyst support in rigorous conditions,i.e.high endothermic or exothermic reactions,strong acidic or basic solution [16].Nguyen et al.[17]reported that SiC with medium surface area could function as catalyst support in the CO 2reforming of methane.Our group investigated the performance of Ni/SiC catalysts for the partial oxidation of methane and methane combustion,and found that the Ni/SiC catalysts showed high catalytic activity and stability [18,19].However,to our knowledge,nickel catalysts using SiC as the support are less investigated for CO methanation reaction.In this work,the catalytic behavior of Ni/SiC catalysts for CO methanation reaction with a stream flow of H 2/CO=3was investigated.The results showed that the silicon carbide supported nickel catalyst exhibited high catalytic activity and stability in CO methanation.2.Experimental 2.1.Catalyst preparationSiC support was prepared by a sol –gel and carbothermal reduction route [20],and TiO 2support was commercial product,P25.TheFuel Processing Technology 92(2011)2293–2298⁎Corresponding author.Tel.:+863514065282;fax:+863514050320.E-mail address:xyguo@ (X.-Y.Guo).0378-3820/$–see front matter ©2011Elsevier B.V.All rights reserved.doi:10.1016/j.fuproc.2011.08.002Contents lists available at ScienceDirectFuel Processing Technologyj o u r n a l h o me p a g e :w w w.e l s ev i e r.c om /l o c a t e /f u p ro ccatalysts were prepared by conventional impregnation method[18]. To prepare15wt.%Ni/SiC catalyst,1g of above SiC was added into 25.5mL Ni(NO3)2aqueous solution(0.1mol/L)with stirring for12h. Then the slurry was heated at80°C until nearly all the water evaporated and the mixture was dried at100°C for6h.Afterward the dried sample was calcined in air at different temperatures for4h. The similar processes can be used to prepare Ni/SiC catalysts with different nickel loadings.15wt.%Ni/TiO2catalyst was prepared by the similar route to15wt.%Ni/SiC catalyst.1g of TiO2was added into 25.5mL Ni(NO3)2aqueous solution and stirred for12h.After being heated and dried,the catalyst was calcined at550°C for4h in air.2.2.Catalyst testThe performance of the catalysts was tested in afixed-bed reactor (a40cm long stainless steel tube with an inner diameter of6mm). The reactor was heated up by a PID regulated oven and the reaction temperature was measured in the middle of the catalyst bed using a K-type thermocouple.Reaction gases,which consisted of H2and CO (molar ratio of H2/CO=3,without diluent gas),were supplied from high-pressure gas cylinders and theflow rate was controlled by mass-flow controller(MFC)to ensure a space velocity(GSV)of4500h−1.0.8mL of catalyst(sieve fraction40–60mesh)was placed in thecenter of the tubular reactor.All experiments were performed at a pressure of2.0MPa.Before each catalyst test,the catalyst was reduced at500°C in the CO/H2mixture gases for2h,then decreased to reaction temperature and kept for1h.The outlet gases were analyzed by GC-14B gas chromatograph with TDX-01column and a GDX-104 column using thermal conductivity detector andflame ionization detector.The selectivity of a certain product is calculated by the formula,S i=n i C i/∑n i C i,where n i and C i are the number of carbon atoms and the concentration of product“i”,respectively.2.3.Catalyst characterizationThe crystalline phases of the catalysts were analyzed by a Rigaku D-Max/RB X-ray diffractometer(XRD)with Cu Kαradiation with a scanning rate of6°/min.The catalyst morphology and structure were analyzed by a JEOL-2010transmission electron microscopy(TEM).The surface areas of catalysts were calculated from the BET method,which was performed at nitrogen temperature at77K on a Micromeritics Tristar3000analyzer.The nickel amount of catalysts was measured by ICP spectrometer.TG–DSC studies of the catalysts after reaction were performed on NETZSCHSTA409PC thermoanalyzer within a temper-ature range from room temperature to850°C at a heating rate of 10°C/min in airflow.3.Results and discussion3.1.CO methanation over Ni/SiC catalyst3.1.1.Influence of nickel loadingThe effect of metal loading on the activity of Ni/SiC catalysts was investigated,and the results are shown in Fig.1and Table1.It can be seen from Fig.1that the methanation activity of SiC supported catalysts increases with the nickel loading from5wt.%to15wt.%. Reaction rate of CO conversion which is defined as moles of CO converted per gram of Ni per second at250°C is shown in Table1.It can be seen that increasing the nickel loading from10wt.%to15wt.% results in an increase of the rate of CO conversion from1.28to 5.10μmol s−1g−1.However,when the nickel loading further in-creases to20wt.%,the rate of CO conversion at250°C decreases to 1.34μmol s−1g−1.As compared with15wt.%Ni/SiC catalyst,there is no significant increase in methanation activity for20wt.%Ni/SiC catalyst(Fig.1).The metal crystallite sizes calculated by Scherrer's equation[21]are shown in Table2.From the table,the metal crystallite size increases with increasing the nickel loading.The influences of the metal particle size on methanation activity have been studied by several authors.Panagiotopoulou et al.[8]reported that the rate of CO conversion increased by a factor of166with increasing the loading of Ru on TiO2from0.5wt.%to5wt.%.Takenaka et al.[11]reported that the Ni crystallites with relatively large sizes were more effective for CO methanation.Zhou et al.[22]demon-strated that the activity of CO hydrogenation increased with increasing the rhodium particle size in the range of 3.0–5.0nm. Therefore,CO methanation is a structure sensitive reaction and the larger particle size facilitates CO hydrogenation.20wt.%Ni/SiC catalyst has larger metallic particles but lower methanation activity than15wt.%Ni/SiC catalyst.The reason may be that both particle size and amount of active sites affect the methanation activity.It is well known that the larger crystallite size results in the decrease of metal dispersion on the surface of catalyst[8]and the latter one can affect the amount of active sites.Therefore,the lower rate of CO conversion may be due to the less active sites over20wt.%Ni/SiC compared with 15wt.%Ni/SiC catalyst.This is in accordance with the results reported by Aksoylu et al.[23],who found that the methane production per square meter of nickel surface area was enhanced with lower Ni loading over Ni/Al2O3catalysts.On the other hand,the large particle size on20wt.%Ni/SiC catalyst may block the external surface of support and this can also decrease the activity of CO methanation. Therefore,15wt.%is an optimal loading of Ni/SiC catalyst for methanation reaction.It should be noted that the products of CO hydrogenation under present reaction condition include methane,higher hydrocarbons (C2H6,C2H4,C3H8and C3H6),carbon dioxide and water.The forma-tion of CO2may be due to the water-gas-shift reaction,CO+Temperature (o C)EquilibriumCOConversion(%)T emperature (o C)COconversion(%)Fig.1.Influence of nickel loading on the activity of Ni/SiC catalysts and the calculated equilibrium CO conversions under P=2.0MPa,H2/CO=3and GSV=4500h−1.Table1Catalytic performance of Ni/SiC and Ni/TiO2catalysts.Catalyst Ni loading(wt.%)Rate of CO conversionat250°C(μmol s−1g−1)aCH4selectivityat320°C(%)Ni/SiC5–70.8910 1.2890.3115 5.1092.0420 1.3493.60Ni/TiO215 3.5282.21Reaction condition:H2/CO=3,GSV=4500h−1,and P=2.0MPa.a Converted CO per second per gram catalyst.2294Y.Yu et al./Fuel Processing Technology92(2011)2293–2298H2O=CO2+H2.The methane selectivity over the Ni/SiC catalysts at 320°C is shown in Table1.It can be seen that the methane selectivity increases with increasing the Ni loading.For CO methanation reaction, CO is adsorbed and dissociated on the surface of metal particles[24]and the dissociation of C\O bond in adsorbed CO species is the rate-determining step[25].It has been reported that there are three forms of adsorbed CO:linear CO,bridged CO and twin CO[26].The activity of adsorbed CO breaking into surface carbon and surface oxygen on the catalyst surface follows the sequence,bridged CO N linear CO N twin CO[10].According to the methanation mechanism,adsorbed CO is dissociated and converted into CH x as intermediate species by assistance of H on the surface of catalysts,and the concentration of the intermediate species determines the distribution of reaction products [25].For the methanation reaction,there are more active bridged CO on larger metallic particles[27],and then the rate of the dissociation and hydrogenation of intermediate species becomes faster[22,28]. Therefore,the methane selectivity is higher on high loading Ni/SiC catalysts.3.1.2.Thermodynamics and equilibrium conversionFrom Fig.1,the conversion of CO over Ni/SiC catalysts can increase up to100%with increasing the reaction temperature.When the reaction temperature is higher than440°C,however the CO con-version begins to decrease.It is most likely due to thermodynamic limitation.According to the thermodynamic equilibrium,theΔG can become positive when the temperature is higher than530°C[29]. Therefore,high temperature is favorable to the stream reforming of methane—the reverse of methanation.Supposing that the only product of CO hydrocarbon is methane, thermodynamic equilibrium data at the temperature range from100 to500°C are calculated.The calculation is performed under the same operating conditions as our experiments,i.e.H2/CO=3,P=2MPa. From Fig.1,the complete conversion of CO can be obtained below 250°C,and then the conversion slightly decreases with increasing the reaction temperature.The CO conversion decreases to87%when the reaction temperature rises to500°C.These are in agreement with the experimental results.3.1.3.Effect of calcination temperatureThe sizes of metallic particles in15wt.%Ni/SiC catalysts under different calcination temperatures are shown in Table2.It can be seen that the particle size increases with increasing the calcination temperature.It has been established that the methanation reaction is structure sensitive and larger particle size facilitates the cleavage of C\O bond[8,22,27,30].Therefore,the catalysts calcined at higher temperatures have higher catalytic activity for CO methanation.Fig.2 shows the influences of the calcination temperature on the activity of 15wt.%Ni/SiC catalyst for CO methanation.It can be seen that the CO conversion increases with increasing the calcination temperature from450°C to550°C.However,there is a little decrease in the CO methanation activity over the Ni/SiC catalyst calcined at600°C.This is likely due to that oversize particles formed at the high temperature could result in a decrease of active sites.Therefore,550°C is an optimal calcination temperature for15wt.%Ni/SiC catalyst.3.2.Performance of Ni/SiC and Ni/TiO2catalystsAccording to literature,TiO2supported nickel catalysts are effective for the CO methanation[8,11,12].Therefore,15wt.%Ni/SiC and15wt.%Ni/TiO2catalysts were tested under the same conditions for comparison.It can be seen from Table1that15wt.%Ni/SiC catalyst is more active than15wt.%Ni/TiO2catalyst.Fig.3shows the evolution of CO conversion over Ni/SiC and Ni/TiO2catalysts at340°C.For the Ni/SiC catalyst,there is an activity rise in the initial stage of the methanation reaction and CO is nearly converted completely.When the reaction time is longer than40h the activity of Ni/SiC catalyst exhibits a slow drop and the CO conversion decreases from initial97% to91%after100h.The decrease of activity is due to the losing of nickel by the formation of nickel carbonyl.According to ICP analysis,the nickel amount of the Ni/SiC catalyst has decreased by16%after reaction for100h.For Ni/TiO2catalyst,the activity decreases rapidly and the CO conversion decreases from initial98%to below50%afterTable2Particle sizes of different Ni/SiC and Ni/TiO2catalysts.Catalyst Ni loading(wt.%)Calculationtemperature(°C)Metal crystallitesize(nm)aNi/SiC55508.61055015.31545017.450018.155019.060020.92055023.5 Ni/TiO215550–Used Ni/SiC1555021.6b Used Ni/TiO21555023.5ba Calculated from NiO(021)plane by Scherrer's equation.b Calculated from Ni(111)plane by Scherrer's equation.COconversion(%)Temperature(o C)Fig.2.Influence of calcination temperature on the activity of Ni/SiC catalysts under P=2.0MPa,H2/CO=3and GSV=4500h−1.COconversion(%)Time (h)parison of the catalytic performance between15wt.%Ni/SiC and15wt.% Ni/TiO2catalysts under T=340°C,P=2.0MPa,H2/CO=3and GSV=4500h−1.2295Y.Yu et al./Fuel Processing Technology92(2011)2293–2298100h reaction.These results indicate that the Ni/SiC catalyst exhibits an obviously better stability than the Ni/TiO 2catalyst.3.3.TG –DSC analysis of used Ni/SiC and Ni/TiO 2catalystsTG –DSC analysis was performed for the used Ni/SiC and Ni/TiO 2catalysts and the results are shown in Fig.4.From the TG pro file shown in Fig.4A,no weight loss but a viewable increase of weight can be observed,indicating that there are no carbon depositions over both catalysts.The weight increase over both catalysts is likely due to the oxidation of metallic Ni to NiO.As seen in Fig.4B,no remarkable exothermic peaks can be observed for the used Ni/SiC and Ni/TiO 2catalysts,indicating that the oxidation of deposited carbon on the used catalysts does not occur.This is in agreement with the results reported by Zhu et al.[31].Therefore,the decrease in the activity of the Ni/SiC catalyst for methanation reaction is not due to the carbon deposition.3.4.XRD resultsFig.5shows the XRD results of 15wt.%Ni/SiC and 15wt.%Ni/TiO 2catalysts before and after reaction at 340°C for 100h.In the XRD patterns of fresh Ni/SiC catalyst shown in Fig.5A,the diffraction peak at 2θ=43.3°is attributed to NiO (012)plane [18].According to Scherrer's equation [21],the average NiO crystallite size calculated from the peak is about 19.0nm.In the XRD patterns of fresh Ni/TiO 2catalyst,diffraction peaks attributed to NiTiO 3phase can be detected (Fig.5A).Rao et al.[32]reported that NiTiO 3was formed whenNi/TiO 2catalyst was calcined above 500°C.Therefore the NiTiO 3phase in the present XRD patterns may be formed during the calcination.In our experiments,the color of Ni/TiO 2catalyst can become light yellow,which is the color of NiTiO 3[33].From both XRD patterns shown in Fig.5B,no diffraction peak of carbon can be found,indicating that the carbon deposition on the two methanation catalysts can be ignored.This is in accordance with the results of TG –DSC analysis.The diffraction peak at 2θ=44.56°is attributed to metallic Ni (111)[18].Metallic nickel exists in both catalysts,indicating that the active phase for CO methanation is metallic nickel.For the used Ni/SiC catalyst,the mean nickel particle size calculated from Ni (111)plane by Scherrer's equation [21]is about 21.6nm.The nickel particle size only has a slight increment during the reaction,suggesting that no serious sintering has occurred on the Ni/SiC pared with the fresh Ni/TiO 2catalyst,the crystallite size of used Ni/TiO 2increased signi ficantly (particle size from 24.2to 30.3nm and from 26.6to 35.9nm for rutile and anatase,respectively).The increase of particle size may be due to the production of hot spots during the CO methanation,which possibly make TiO 2crystallites sintered.In addition,the speci fic surface areas of Ni/TiO 2catalyst decreased from 32.1to 16.7m 2/g after reaction at 340°C for 100h.Ruckenstein et al.[34]reported that TiO x could1002003004005006007008009092949698100102104Ab aS a m p l e w e i g h t (%)temperature(o C)temperature(o C)a---15 wt.% Ni/SiC b---15 wt.% Ni/TiO 2BD S C /(m W /m g )Fig.4.TG –DSC pro files of used 15wt%Ni/SiC and 15wt.%Ni/TiO 2catalysts.AI n t e n s i t y (c p s )2 Theta (o )2 Theta (o )BI n t e n s i t y (c p s )Fig.5.XRD patterns of 15wt.%Ni/SiC and 15wt.%Ni/TiO 2catalysts before (A)and after (B)methanation reaction at 340°C for 100h.(●)NiTiO 3;(■)anatase;(▲)rutile;(★)SiC;(♦)NiO;(○)Ni.2296Y.Yu et al./Fuel Processing Technology 92(2011)2293–2298migrate onto the surface of metal nickel particles due to the strong interaction of support –metal.During the methanation reaction,the TiO 2may amalgamate with the reduced Ni due to the strong metal –support interaction.This is not favorable for CO absorption and decomposition on metal Ni.Therefore,the Ni/TiO 2catalyst shows a declining activity and stability in the methanation reaction.3.5.TEM characterization of Ni/SiC catalystsTEM images of fresh and used 15wt.%Ni/SiC catalyst are shown in Fig.6.From the two TEM images,it can be seen that the metal particles are well distributed on the support surface.From the image of fresh Ni/SiC catalyst (Fig.6A),the size of NiO particles ranges from 10to 25nm.In Fig.6B,the size of nickel particles in the used catalyst is about 10–30nm.These results are in accordance with those derived from XRD analysis.From both XRD and TEM results,15wt.%Ni/SiC catalyst shows better stability in the methanation reaction due to the excellent thermal conductivity and thermostability of the SiC support.4.ConclusionThe synthesis of methane from syngas was investigated over Ni/SiC catalysts which were prepared by impregnation method.From the present work,15wt.%Ni/SiC catalyst calcined at 550°C exhibits excel-lent catalytic activity for CO pared with Ni/TiO 2catalyst,the Ni/SiC catalyst exhibits higher activity and better stability in the CO methanation due to the excellent thermostability and high heat conductivity of the SiC support,which can ef ficiently avoid the sintering of nickel particles.AcknowledgmentsThe work was financially supported by NSFC (Ref.20973190),the in-house research project of SKLCC (Ref.SKLCC-2008BWZ010),and the National Basic Research Program (Ref.2011CB201405).References[1]J.Kopyscinski,T.J.Schildhauer,S.M.A.Biollaz,Production of synthetic natural gas(SNG)from coal and dry biomass —a technology review from 1950to 2009,Fuel 89(2010)1763–1783.[2]N.R.Udengaard,A.Olsen,C.Wix-Nielsen,Pittsburgh Coal Conf.,2006.[3]P.Sabatier,J.B.Senderens,New synthesis of methane,Académie des Sciences 134(1902)514–516.[4]M.A.Vannlce,R.L.Garten,Supported palladium catalysts for methanation,Industrial and Engineering Chemistry Product Research and Development 18(1979)186–191.[5]O.G őrke,P.Pfeifer,K.Schubert,Highly selective methanation by the use of amicrochannel reactor,Catalysis Today 110(2005)132–139.[6]P.Panagiotopoulou,D.I.Kondarides,X.E.Verykios,Selective methanation of COover supported noble metal catalysts:effects of the nature of the metallic phase on catalytic performance,Applied Catalysis A 344(2008)45–54.[7] A.L.Kustov,A.M.Frey,rsen,T.Johannessen,J.K.Nørskov,C.H.Christensen,CO methanation over supported bimetallic Ni –Fe catalysts:from computational studies towards catalyst optimization,Applied Catalysis A 320(2007)98–104.[8]P.Panagiotopoulou,D.I.Kondarides,X.E.Verykios,Selective methanation of COover supported Ru catalysts,Applied Catalysis B 88(2009)470–478.[9]R.A.Dagle,Y.Wang,G.G.Xia,J.J.Strohma,J.Holladay,D.R.Palo,Selective COmethanation catalysts for fuel processing applications,Applied Catalysis A 326(2007)213–218.[10]R.F.Wu,Y.Zhang,Y.Z.Wang,C.G.Gao,Y.X.Zhao,Effect of ZrO 2promoter on thecatalytic activity for CO methanation and adsorption performance of the Ni/SiO 2catalyst,Journal of Fuel Chemistry and Technology 37(2009)578–582.[11]S.Takenaka,T.Shimizu,K.Otsuka,Complete removal of carbon monoxide inhydrogen-rich gas stream through methanation over supported metal catalysts,International Journal of Hydrogen Energy 29(2004)1065–1073.[12]W.J.Shen,M.Okumura,Y.Matsumura1,M.Haruta,The in fluence of the supporton the activity and selectivity of Pd in CO hydrogenation,Applied Catalysis A 213(2001)225–232.[13]M.A.Vannice, C.C.Twu,S.H.Moon,SMSI effects on CO adsorption andhydrogenation on Pt catalysts,Journal of Catalysis 79(1983)70–80.[14]R.L.Chin,A.Elattar,W.E.Wallance,D.M.Hercules,ESCA studies of methanationcatalysts derived from intermetallic compounds,Journal of Physical Chemistry 84(1980)2895–2898.[15]K.H.Eisenlohr,F.W.Moeller,M.Dry,In fluence of certain reaction parameters onmethanation of coal gas to SNG,ACS Division of Fuel Chemistry 19(1974)1–9.[16]M.J.Ledoux,S.Hantzer,C.P.Huu,J.Guille,M.P.Desaneaux,New synthesis and usesof high-speci fic-surface SiC as a catalytic support that is chemically inert and has high thermal-resistance,Journal of Catalysis 114(1988)176–185.[17] D.L.Nguyen,P.Leroi,M.J.Ledoux,P.C.Huu,In fluence of the oxygen pretreatmenton the CO 2reforming of methane on Ni/β-SiC catalyst,Catalysis Today 141(2009)393–396.[18]W.Z.Sun,G.Q.Jin,X.Y.Guo,Partial oxidation of methane to syngas over Ni/SiCcatalysts,Catalysis Communications 6(2005)135–139.[19]Q.Wang,W.Z.Sun,G.Q.Jin,Y.Y.Wang,X.Y.Guo,Biomorphic SiC pellets as catalystsupport for partial oxidation of methane to syngas,Applied Catalysis B 79(2008)307–312.[20]G.Q.Jin,X.Y.Guo,Synthesis and characterization of mesoporous silicon carbide,Microporous and Mesoporous Materials 60(2003)207–212.[21]Y.H.Ni,F.Wang,H.J.Liu,Y.Y.Liang,G.Yin,J.M.Hong,X.Ma,Z.Xu,Fabrication andcharacterization of hollow cuprous sul fide (Cu 2−x S)microspheres by a simple template-free route,Inorganic Chemistry Communications 6(2003)1406–1408.[22]S.T.Zhou,X.L.Pan,X.H.Bao,Effect of rhodium particle size in Rh/SiO 2catalystprepared by microemulsion method on reaction performance of CO hydrogena-tion,Chinese Journal of Catalysis 27(2006)474–478.[23] A.E.Aksovlu,A.N.Akin,Z.I.Őnsan,D.L.Trimm,Structure/activity relationships incoprecipitated nickel –alumina catalysts using CO 2adsorption and methanation,Applied Catalysis A 145(1996)185–193.[24]R.E.Hayes,W.J.Thomas,K.E.Hayes,A study of the nickel-catalyzed methanationreaction,Journal of Catalysis 92(1985)312–326.[25]T.Morl,H.Masuda,H.Imal,Kinetics,isotope effects,and mechanism for thehydrogenation of carbon monoxide on supported nickel catalysts,Journal of Physical Chemistry 86(1982)2753–2760.[26] C.W.Hu,Y.Q.Chen,P.Li,H.Min,Y.Chen,A.M.Tian,On the interaction of CO andH 2with Ni-based catalyst,Journal of Molecular Catalysis (China)9(1995)435–444.[27]H.Arakawa,T.Fukushima,M.Ichikawa,K.Takeuchi,T.Matsuzaki,Y.Sugi,Highpressure in situ FT-IR study of CO hydrogenation over Rh/SiO 2catalyst,Chemistry Letters 1(1985)23–26.[28]R.P.Underwood, A.T.Bell,In fluence of particle size on carbon monoxidehydrogenation over silica-and lanthana-supported rhodium,Applied Catalysis 34(1987)289–310.100nm A 100nmBFig.6.TEM images of 15wt.%Ni/SiC catalysts before (A)and after (B)reaction at 340°C for 100h.2297Y.Yu et al./Fuel Processing Technology 92(2011)2293–2298[29] F.Haga,T.Nakajima,H.Miya,S.Mishima,Catalytic properties of supported cobaltcatalysts for steam reforming of ethanol,Catalysis Letters48(1997)223–227. [30]M.P.Andersson,F.Abild-Pedersen,I.N.Remediakis,T.Bligaard,G.Jones,J.Engbæk,O.Lytken,S.Horch,J.H.Nielsen,J.Sehested,J.R.R.Nielsen,J.K.Nørskov,I.Chorkendorff,Structure sensitivity of the methanation reaction:H2-induced CO dissociation on nickel surfaces,Journal of Catalysis255(2008)6–19.[31]J.Q.Zhu,X.X.Peng,L.Yao,J.Shen,D.M.Tong,C.W.Hu,The promoting effect of La,Mg,Co and Zn on the activity and stability of Ni/SiO2catalyst for CO2reforming of methane,International Journal of Hydrogen Energy36(2011)7094–7104.[32]G.Sankar, C.N.R.Rao,T.Rayment,Promotion of the metal–oxide supportinteraction in the Ni/TiO2catalyst—crucial role of the method of preparation, the structure of TiO2and the NiTiO3intermediate,Journal of Materials Chemistry 1(1991)299–300.[33]T.H.Wu,Q.G.Yan,H.L.Wan,Partial oxidation of methane to hydrogen and carbonmonoxide over a Ni/TiO2catalyst,Journal of Molecular Catalysis A:Chemical226 (2005)41–48.[34] E.Ruckenstein,Y.H.Hu,Role of support in CO2reforming of CH4to syngas over Nicatalysts,Journal of Catalysis162(1996)230–238.2298Y.Yu et al./Fuel Processing Technology92(2011)2293–2298。
基于铯铟硒薄膜特性的研究
程世清;刘红梅
【期刊名称】《江西师范大学学报(自然科学版)》
【年(卷),期】2024(48)1
【摘要】该文通过共蒸发CsF、In、Se的方法制备了含Cs的铟硒化合物薄膜(Cs-In-Se),对其物质特性及光学特性进行分析,并以此为例研究重碱金属铟硒化合物提升Cu(In,Ga)Se_(2)太阳电池效率的影响因素.研究发现Cs-In-Se薄膜所起的积极作用如下:1)Cs-In-Se薄膜带隙具有可调节性,可以作为中间层来调节异质结之间带隙失配的问题;2)Cs-In-Se薄膜对光有高透射和低吸收的特性,作为附加层存在对Cu(In,Ga)Se_(2)薄膜的光吸收不会产生较大的负面影响;3)Cs-In-Se薄膜表面更为平滑,有利于减少异质结界面复合.
【总页数】6页(P94-99)
【作者】程世清;刘红梅
【作者单位】山西大同大学物理与电子科学学院
【正文语种】中文
【中图分类】TM914.4
【相关文献】
1.单靶磁控溅射制备铜铟硒和铜铟锌硒薄膜及其结构、光学性质研究
2.电沉积银铟硒薄膜的光电化学特性研究
3.国家“863”铜铟镓硒薄膜太阳能电池中试基地研发出铜铟镓硒太阳能电池组件
4.电沉积银铟硒薄膜的(光)电化学特性研究
因版权原因,仅展示原文概要,查看原文内容请购买。
Ni(Pt)Si硅化物温度稳定性的研究黄伟;张利春;高玉芝;金海岩;卢建政;张慧【期刊名称】《固体电子学研究与进展》【年(卷),期】2005(25)3【摘要】对比研究了夹层结构Ni/Pt/Ni分别与掺杂p型多晶硅和n型单晶硅进行快速热退火形成的硅化物薄膜的电学特性.实验结果表明,在600~800°C范围内,掺Pt的NiSi薄膜电阻率低且均匀,比具有低电阻率的镍硅化物的温度范围扩大了100~150°C.依据吉布斯自由能理论,对在Ni(Pt)Si薄膜中掺有2%和4%的Pt样品进行了分析.结果表明,掺少量的Pt可以推迟NiSi向NiSi2的转化温度,提高了镍硅化物的热稳定性.最后,制作了I-V特性良好的Ni(Pt)Si/Si肖特基势垒二极管,更进一步证明了掺少量的Pt改善了NiSi肖特基二极管的稳定性.【总页数】5页(P422-426)【关键词】镍硅化物;快速热退火;X射线衍射分析;卢瑟福背面散射分析【作者】黄伟;张利春;高玉芝;金海岩;卢建政;张慧【作者单位】北京大学微电子研究院【正文语种】中文【中图分类】TN311.7【相关文献】1.Cr13Ni5Si2/γ-Ni三元金属硅化物高温耐磨复合材料 [J], 方艳丽;李安;张凌云;王华明2.激光熔敷Cr_2Ni_3Si/Cr_3Si金属硅化物复合材料涂层组织与高温耐磨性 [J], 段刚;王华明3.激光熔覆Ni_2Si/Ni_3Si_2金属硅化物合金涂层显微组织与耐蚀性 [J], 王春敏;蔡良续;王华明4.Pt层对Ni/Si(100)固相反应NiSi薄膜高温稳定性的增强效应 [J], 韩永召;李炳宗;屈新萍;茹国平5.激光熔敷Cr_3Si/Cr_2Ni_3Si金属硅化物涂层耐磨性与耐蚀性研究 [J], 段刚;王华明因版权原因,仅展示原文概要,查看原文内容请购买。
一种利用夹层Ta难熔金属提高NiSi薄膜热稳定性的新方法黄伟;张树丹;许居衍【期刊名称】《电子学报》【年(卷),期】2011(039)011【摘要】本文首次给出了一种具有规律性的能用来提高镍硅化物热稳定性的方法.依据此方法,首次摸索出在Ni中掺入夹层金属Ta来提高NiSi硅化物的热稳定性.Ni/Ta/Ni/Si样品经600 ~800℃快速热退火后,薄层电阻率保持较小值,约2Ω□.XRD衍射分析结果表明,在600~800℃快速热退火温度下形成的Ni(Ta)S薄膜中只存在低阻NiSi相,而没有高阻NiSi2相生成,从而将NiSi薄膜的低阻温度窗口的上限从700℃提高到800℃,使形成高阻NiSi2相的最低温度提高到850℃.AES俄歇能谱,RBS卢瑟福背散射和AFM原子力显微镜分析表明,夹层金属层Ta在镍硅化反应中向表面移动,其峰值距离薄膜顶层2nm左右,在阻止氧原子参与镍硅化反应中起到很好的屏蔽层作用.Ni(Ta)Si薄膜中Ta与Ni的原子比约为2.1∶98,硅化物薄膜界面平整,均方根粗糙度仅为1.11nm.研制的高压Ni(Ta)Si/Si 肖特基硅器件在650 ~800℃温度跨度范围内保留了与NiSi/Si肖特基相近的整流特性,因此Ni(Ta)Si硅化物在深亚微米集成电路制造中是一种令人满意的互连和接触材料.%A novel method with the property of law was for the first time put forward to improve the thermal stability of NiSi film. According to the way, adding a thin Tantalum interlayer within the nickel film was first reported to effectively improve the thermal stability of nickel monosilicide. After rapid thermal annealing (RTA) at temperatures ranging from 600℃ to 800℃, the sheet resistance of formed Ni(Ta)Si samples was about 2Ω/□,and its value is also lower than that of nickel monosilicide without the interlayer.X-ray diffraction (XRD) , AES,RBS and AFM results both reveal that NiSi phase exists in these samples,but the high resistance NiSi2 phase does not exist because tantalum interlayer as the diffusion barrier for oxygen element moved to the top of the thin film after rapid thermal annealing. Fabricated Ni(Ta)Si/Si Schottky barrier diodes with the guard ring structure displayed good quality,with the barrier height being located generally about 0.64 Ev and the ideality factor approachingunity.Therefore,It shows that Ni(Ta)Si is a satisfactory local connection and contact material.【总页数】5页(P2502-2506)【作者】黄伟;张树丹;许居衍【作者单位】中国电子科技集团公司第五十八研究所,江苏无锡214035;中国电子科技集团公司第五十八研究所,江苏无锡214035;中国电子科技集团公司第五十八研究所,江苏无锡214035【正文语种】中文【中图分类】TN311+.7【相关文献】1.反应射频磁控溅射法制备HfTaO薄膜的热稳定性和光学性能 [J], 马春雨;苗春雨;李树林;王文娟;张庆瑜2.一种提高金刚石薄膜形核密度的新方法 [J], 张贵锋;付庆辉3.纳米晶NbMoTaW难熔高熵合金薄膜力学性能及其热稳定性 [J], 冯骁斌;张金钰;刘刚;孙军4.一种修饰钙掺杂钛酸铅湿敏纳米薄膜的新方法--钾修饰薄膜的制备、湿敏特性和结构表征 [J], 王智民;左霞;韩基新;刘静波;张艳熹5.难熔夹层金属提高NiSi薄膜热稳定性的新思路 [J], 黄伟;孙华;张利春;张树丹;许居衍因版权原因,仅展示原文概要,查看原文内容请购买。
Vol. 35 No. 5功 能 高 分 子 学 报2022 年 10 月Journal of Functional Polymers417文章编号: 1008-9357(2022)05-0417-08DOI: 10.14133/ki.1008-9357.20220105001磷腈碱催化开环聚合制备含氟聚乙基硅氧烷刘正阳1, 时金凤1, 赵 娜1, 李志波1,2(青岛科技大学 1. 高分子科学与工程学院; 2. 化工学院, 山东 青岛 266042)摘 要: 以有机环三磷腈碱(CTPB)作为催化剂,在温和条件下催化六乙基环三硅氧烷(E3)开环聚合(ROP),以及E3与1,3,5-三甲基-1,3,5-三(3,3,3-三氟丙基)环三硅氧烷(F3)开环共聚合,制备了聚二乙基硅氧烷(PDES)和含有不同三氟丙基甲基硅氧(F)单元摩尔分数(0~46%)的聚(二乙基-ran-三氟丙基甲基)硅氧烷(PDES-ran-PTFPMS)。
采用凝胶渗透色谱仪(GPC)、核磁共振波谱仪(NMR)表征了聚合物的组成和结构,利用差示扫描量热仪(DSC)和微观接触角测量仪对聚合物的性质进行研究。
结果表明:成功制得PDES-ran-PTFPMS。
当F单元摩尔分数高于6%时,可以有效抑制PDES的低温结晶,且PDES-ran-PTFPMS具有极低的玻璃化转变温度(T g =−134 ℃)。
含氟聚乙基硅氧烷薄膜的接触角测试结果表明,F单元的引入有效提高了聚乙基硅氧烷的疏水性及降低了油的浸润性。
关键词: 有机磷腈碱;开环聚合;聚(二乙基- ran-三氟丙基甲基)硅氧烷;低玻璃化转变温度中图分类号: O633.4 文献标志码: APreparation of Fluorine-Containing Polyethylsiloxane by Ring-Opening Polymerization of Cyclic Siloxanes Catalyzed by Phosphazene BaseLIU Zhengyang1, SHI Jinfeng1, ZHAO Na1, LI Zhibo1,2(1. College of Polymer Science and Engineering; 2. College of Chemical Engineering,Qingdao University of Science and Technology, Qingdao 266042, China)Abstract: The ring-opening copolymerization (ROP) of hexaethylcyclotrisiloxane (E3) and 1,3,5-trimethyl-1,3,5-tri(3,3,3-trifluoropropyl) cyclotrisiloxane (F3) was catalyzed by organic cyclotrisiloxane base (CTPB) under mild conditions. CTPB showed high catalytic activity for the polymerization of E3 and F3. Linear polydiethylsiloxanes (PDES) and poly(diethyl-ran-trifluoropropylmethyl) siloxanes (PDES-ran-PTFPMS) with different mole fractions of trifluoropropylmethyl siloxane group (F unit) (mole fraction (f F): 0−46%) were successfully synthesized. The composition and structure of the PDES-ran-PTFPMS copolysiloxanes were characterized in detail by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR), and the glass transition temperature (T g) and crystallization behavior of the polymers were comprehensively analyzed by differential scanning calorimetry, and the water-oil contact angle of fluorine-containing polyethylsiloxane film was investigated by microscopic contact angle test. The chemical positions of the resonance peaks in the nuclear magnetic收稿日期: 2022-01-05基金项目: 山东省自然科学基金联合基金(No. ZR2020LFG014)作者简介: 刘正阳(1994—),男,山东潍坊人,硕士生,主要研究方向为聚硅氧烷的合成及改性工作。
用XPS法研究硅基硫化锌薄膜
曾明刚;陈松岩;林爱清;邓彩玲;蔡贝妮
【期刊名称】《半导体技术》
【年(卷),期】2005(30)2
【摘要】应用X射线光电子能谱(XPS)研究Si基ZnS:Cu,Er薄膜的化学元素组成、分布和价态, 认为Cu元素只有少数部分进入晶格中替代Zn2+起激活剂的作用,Er
元素在ZnS基质中分布不均匀,且会与氧结合。
PL测试发现样品发绿光,主要发光
峰出现劈裂,对研究薄膜中的杂质中心、实现Si基发光有参考意义。
【总页数】4页(P17-20)
【关键词】X射线光电子能谱;杂质中心;Si基材料
【作者】曾明刚;陈松岩;林爱清;邓彩玲;蔡贝妮
【作者单位】厦门大学物理系
【正文语种】中文
【中图分类】O484.1
【相关文献】
1.SO1-Gel法硅基PZT铁电薄膜研究 [J], 张林涛;任天令;张武全;刘理天;李志坚
2.鼓泡法在金刚石薄膜/硅基界面结合强度定量测量中的应用分析与试验研究 [J], 胡斌;孙方宏;简晓刚;晋占峰;陈明
3.PECVD法硅基氮化硅薄膜的制备及其耐磨性研究 [J], 王大刚;张德坤
4.用XPS法研究硫化锌薄膜 [J], 陈振湘;柳兆洪;刘瑞堂;王余姜;邱伟彬
5.Sol-Gel法硅基铁电薄膜研究 [J], 张林涛;任天令;张武全;刘理天;李志坚
因版权原因,仅展示原文概要,查看原文内容请购买。
NiPt金属硅化物工艺特性研究摘要: 随着MOSFET器件的特征尺寸进入亚100 nm,传统自对准硅化物材料,如TiSi2、CoSi2,由于其硅化物形成工艺的高硅耗、高形成热预算和线宽效应等特点,已不能满足纳米尺寸器件对硅化物材料的要求,显现出其作为自对准硅化物材料的局限性。
NiSi与传统自对准硅化物材料相比,不但具有硅化物形成工艺的低硅耗和低形成热预算,而且具有低电阻率,又不存在线宽效应。
所以,NiSi作为纳米尺寸器件最有希望的自对准硅化物材料得到广泛的关注和研究。
关键词:快速热退火;镍硅化物;MOSFETInvestigation on Technological Characteristics of Ni(Pt)Si Silicide Abstract:As the feature size of MOSFET is scaling down to sub-100 nm,traditional salicide materials,such as TiSi2and CoSi2,can no longer satisfy the requirement of nano-scale device,due to their defects,including high silicon consumption,high heat budget of formation and line width effect. NiSi,which has low silicon consumption, low heat budget of formation,low resistivity and no linewidth effect,has been considered as the most promising candidate of salicide materials. Characteristics of Ni-Silicide,formation process of NiSi and optimization of the formation process were summarized.Key words:RTP; NiSi; MOSFET1 引言硅化物具有能承受高温热处理、能选择腐蚀、薄膜电阻率低等特点,因此在超大规模集成电路制造中,作为一种性能优良的接触材料得到广泛的应用。
离子束混合诱导稀土金属Ce与Si的界面反应及硅化物的形成杨熙宏;毛思宁;陈坚;刘家瑞;杨锋;许天冰【期刊名称】《半导体学报:英文版》【年(卷),期】1989(10)11【摘要】本文详细讨论了离子束混合下,Ce/Si〈100〉双层膜体系界面反应的动力学过程以及硅化物的形成规律.样品经150KeV Ar离子注入,辐照温度从LNT到300℃,剂量从5×X10^(14)到8.1×10^(16)Ar/cm^2.界面反应形成的硅化物为CeSi_2,其结构为体心正交结构.硅化物是分层生长的,厚度与注入剂量的平方根成线性关系,这说明界面反应是扩散控制的.与近贵金属/硅体系和难熔金属/硅体系相比较可以看出,稀土金属Ce/Si体系的相变过程与难熔金属/硅体系的相似;而混合的动力学行为与近贵金属/硅体系的相似.本文还讨论了化学驱动力和辐射增强扩散对混合的贡献.【总页数】7页(P846-852)【关键词】离子束混合;稀土金属;硅化物;Se【作者】杨熙宏;毛思宁;陈坚;刘家瑞;杨锋;许天冰【作者单位】北京大学重离子所;清华大学物理系;北京大学技术物理系;中国科学院物理研究所【正文语种】中文【中图分类】TN301【相关文献】1.稀土金属Sm/Si(100)2×1界面形成电子结构的同步辐射光电子能谱研究 [J], 徐世红;陆尔东;余小江;潘海斌;张发培;徐彭寿2.NiPd/Si界面常温扩散及硅化物形成的XPS证据 [J], 张国庆;何菲3.用离子束混合及快速热处理方法形成钽的硅化物 [J], 姚文卿;Heiner Rvssel4.Ce-Si多层膜中铈硅化物的形成 [J], 何杰;许振嘉;钱家骏;王玉田;王佑祥5.X射线衍射对离子束混合形成硅化物品粒度的研究 [J], 丁维清;黄致新;马辉因版权原因,仅展示原文概要,查看原文内容请购买。
DOI: 10.1016/S1872-5813(23)60374-3Fe 掺杂NiSe@NiS 复合材料电子调制和界面协同促进析氧性能研究阴雪利 ,代小平*(中国石油大学(北京) 化学工程与环境学院 重质油国家重点实验室, 北京 102249)摘 要:本研究采用溶剂热法,在泡沫镍(NF )基底上原位合成出Fe 掺杂的硒化镍和硫化镍复合材料(Fe-NiSe@NiS/NF )。
得益于Fe 掺杂优化的电子结构、NiSe 和NiS 间的协同效应以及高效的电荷转移速率,Fe-NiSe@NiS/NF 在1 mol/L KOH 溶液中表现出优异的OER 性能。
在过电位为330 mV 时可实现电流密度150 mA/cm 2,且电压在稳定40 h 后没有发生显著改变。
关键词:NiSe@NiS 复合材料;Fe 掺杂;协同效应;电子调制;析氧反应.中图分类号: O646 文献标识码: AElectronic modulation and synergistic effect on Fe-doped NiSe@NiS composites toimprove oxygen evolution performanceYIN Xue-li ,DAI Xiao-ping*(College of Chemical Engineering and Environment , State Key Laboratory of Heavy Oil Processing , China University ofPetroleum Changping , Beijing 102249, China )Abstract: In this paper, Fe-doped nickel selenide and nickel sulfide composites was in-situ grown on nickel foam (NF) to prepare Fe-NiSe@NiS/NF by solvothermal method. Benefit from the optimized electron structure by Fe doping, the synergistic effect of NiSe@NiS and faster electron transfer, Fe-NiSe@NiS/NF exhibited excellent OERactivity with the overpotential of 330 mV at 150 mA/cm 2in 1 mol/L KOH solution. The voltage barely changed after 40 h of test.Key words: NiSe@NiS composites ;Fe doping ;synergistic effect ;electronic modulation ;oxygen evolution reaction随着世界经济高速增长和工业规模的急剧扩张,传统化石能源消耗与日俱增。
第一章染料敏化纳米晶太阳能电池的历史发展及研究现状1-2法国科学家Henri Becquerel于1839年首次观察到光电转化现象3,但是直到1954年第一个可实用性的半导体太阳能电池的问世,“将太阳能转化成电能”的想法才真正成为现实4。
在太阳能电池的最初发展阶段,所使用的材料一般是在可见区有一定吸收的窄带隙半导体材料,因此这种太阳能电池又称为半导体太阳能电池。
尽管宽带隙半导体本身捕获太阳光的能力非常差,但将适当的染料吸附到半导体表面上,借助于染料对可见光的强吸收,也可以将太阳能转化为电能,这种电池就是染料敏化太阳能电池。
1991年,瑞士科学家Grätzel等人首次利用纳米技术将染料敏化太阳能电池中的转化效率提高到7%5。
从此,染料敏化纳米晶太阳能电池(即Grätzel电池)随之诞生并得以快速发展。
1.1 基本概念1.1.1大气质量数6对一个具体地理位置而言,太阳对地球表面的辐射取决于地球绕太阳的公转与自转、大气层的吸收与反射以及气象条件(阴、晴、雨)等。
距离太阳一个天文单位处,垂直辐射到单位面积上的辐照通量(未进入大气层前)为一常数,称之为太阳常数。
其值为1.338~1.418 kW·m-2,在太阳电池的计算中通常取1.353 kW·m-2。
太阳光穿过大气层到达地球表面,受到大气中各种成分的吸收,经过大气与云层的反射,最后以直射光和漫射光到达地球表面,平均能量约为1kW·m-2。
一旦光子进入大气层,它们就会由于水、二氧化碳、臭氧和其他物质的吸收和散射,使连续的光谱变成谱带。
因此太阳光光谱在不同波长处存在许多尖峰,特别是在红外区域内。
现在通过太阳模拟器,在室内就能够得到模拟太阳光进行试验。
在太阳辐射的光谱中,99%的能量集中在276~4960nm之间。
由于太阳入射角不同,穿过大气层的厚度随之变化,通常用大气质量(air mass,AM)来表示。
并规定,太阳光在大气层外垂直辐照时,大气质量为AM0,太阳入射光与地面的夹角为90º时大气质量为AM1。
硒化铟硒化钨横向异质结界面单层武大物理系
硒化铟(In2Se3)和硒化钨(WS2)是两种常见的二维材料。
硒化铟是一种半导体材料,具有宽能隙,在某些情况下可以呈现出拓扑绝缘体的特性。
硒化钨是一种半导体材料,具有特殊的光学和电学性质,如它的单层形态可以呈现出直接带隙。
横向异质结是指在一个材料中形成的两种不同晶格结构的界面。
在硒化铟和硒化钨的横向异质结中,由于晶格不匹配和能级的差异,会出现电子和能量的散射现象,从而影响材料的电子传输性能和器件性能。
单层指的是材料的厚度仅为一个原子层的厚度。
单层硒化铟和单层硒化钨具有特殊的电学、光学和机械性质,因此在纳米电子器件、光电子器件以及能源相关领域有着广泛应用。
武大物理系是中国武汉大学的一个物理学相关的学系或学院。
该学系下设有各种物理专业和研究方向,涵盖了物理学的各个领域,包括固体物理、光电子学、量子物理等。
学系的研究人员通常致力于物理学的研究和教学工作。
超薄Ni(14%Pt)金属硅化物薄膜特性研究摘要:本文通过研究超薄Ni(14%Pt)金属硅化物薄膜的特性,发现采用310o C/60s的第一步退火和480o C/10s的第二步退火相结合的两步退火方法形成的Ni(Pt)硅化物薄膜电阻最小,均匀性最好,且在600 o C依然保持稳定。
应用此退火条件,Ni(14%Pt)在0.5µm CMOS器件中形成覆盖均匀且性能良好的金属硅化物薄膜,同时没有形成任何尖峰。
对于更薄的硅化物,通过2nm Ni(14%Pt)形成的超薄硅化物界面平整,均匀性好,没有出现Ni(5%Pt) 形成硅化物的界面出现的倒金字塔形尖峰。
结果显示没有氩离子轰击硅表面会造成Ni(Pt)形成的金属硅化物薄膜电阻减小约10%~26%,该工艺有望在未来超薄硅化物制作被广泛应用。
关键词:硅化物;薄膜电阻(Rs);尖峰;界面;形态稳定The study of ultrathin Ni(14%Pt) silicide filmAbstract: In this paper 14% Pt in the Ni(Pt) silicide was studied. The sheet resistance results indicate that the treatment, RTA1 at 300℃for 60S and RTA2 at 480℃for 10S, can form the minimum sheet resistance, preferable Rs Std.Dev and thickness uniformity. With Pt addition, Ni(Pt)Si/Si morphology is stable with temperature rising until 600℃. Ni(14%Pt) silicide is tested and verified at 0.5µm structure. It has a good interface and uniformity without any spike. There is NiSi spike for optimal silicidation of 2nm Ni(5%Pt) film. However, the optimal silicidation of 2nm Ni(14%Pt) film has a smooth Ni(Pt)Si/Si interface and better uniformity. The effect of Ar clean on sheet resistance and thickness uniformity is also investigated. The results show that wafers after wiping out surface oxide in less than one hour without Ar clean process have the reduction about 10%~26% in sheet resistance, comparing with wafers with Ar clean. It is expected to be widely used in future ultrathin Ni(Pt) silicide fabrication.Key words: silicide; sheet resistance; spike; interface; morphology stability0引言CMOS器件的特征尺寸不断缩小,金属硅化物成为微电子器件和集成电路中必不可少的工艺模块[1-2]。
XPS(mass concentration):原子胶体的X射线电子能谱研究1. 背景和意义X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)是一种表面分析技术,通过测量材料表面的电子能级来确定元素的化学状态和表面组成。
XPS在纳米科学和纳米技术领域的应用日益广泛,因为它能提供高灵敏度和高分辨率的表面分析。
2. 原子胶体的XPS研究(1)原子胶体的概念:原子胶体是一种由单个原子构成的胶体颗粒,其直径通常在1至100纳米之间。
原子胶体具有特殊的物理化学性质,因此在纳米材料的研究中具有重要的应用前景。
(2)XPS分析原子胶体:利用XPS技术可以对原子胶体的表面成分、化学状态和电荷状态等进行深入研究。
通过XPS分析,可以确定原子胶体的元素组成、配位数、氧化状态等重要参数。
3. 研究方法和实验步骤(1)样品制备:制备具有一定浓度的原子胶体样品,并在适当的基底上进行固定。
(2)XPS测量:利用XPS仪器对原子胶体样品进行表面分析,得到样品的电子能级谱。
(3)数据分析:对XPS谱图进行定量分析,确定样品的表面成分和化学状态。
4. 实验结果和讨论(1)元素组成:通过XPS分析,确定原子胶体样品的元素组成,比如金属原子胶体中的金属元素含量。
(2)化学状态:根据XPS谱图中峰的位置和形状,确定原子胶体表面元素的化学状态,如金属的氧化态。
(3)表面电荷状态:利用XPS技术还可以研究原子胶体的表面电荷状态,为进一步的应用研究提供重要参考。
5. 应用前景和展望(1)纳米材料研究:XPS分析原子胶体可以帮助科研人员深入了解纳米材料的表面性质和化学活性,为纳米材料的制备和应用提供重要参考。
(2)生物医学应用:原子胶体作为一种新型纳米载体材料,在生物医学领域具有广阔的应用前景。
通过XPS分析可以研究原子胶体在生物体内的作用机制和生物相容性。
6. 结论XPS技术对于原子胶体的表面分析具有重要意义,可以为纳米材料研究和应用提供关键信息。
Li1-xBi4+xTi4O15薄膜制备与表征孟靖华;杨丽清;焦斌权【摘要】在LiNO3/SiO2/Si基板上制备了Li1-xBi4+xTi4O15系列薄膜(x=0.3、0.4、0.5、0.6),并系统分析了这些薄膜的微观结构以及铁电、介电及漏电等电学特性.研究结果表明,在氮气气氛中以600℃持温30 min制备的单一相薄膜中Li0.5Bi4.5Ti4O15薄膜的结晶效果最好,且在其表面可成长出独立晶粒分布状态;x 为0.5时薄膜的剩余极化强度2Pr=53.5 μC/cm2、矫顽场2Ec=144.2 kV/cm,此时薄膜的铁电性能相对最佳;该系列薄膜的介电常数介于37~100,介电损失相对偏高,介于0.7~1.0;所有薄膜的漏电流均随外加电压的增加而逐渐增大,其中Li0.5Bi4.5Ti4O15薄膜漏电流最小,外加电压为10V时其值约为3.88×10-6A.【期刊名称】《无机盐工业》【年(卷),期】2018(050)009【总页数】4页(P34-37)【关键词】铋层状钙钛矿结构;Li1-xBi4+xTi4O15薄膜;铁电特性;介电特性;漏电流【作者】孟靖华;杨丽清;焦斌权【作者单位】重庆大学城市科技学院、土木工程学院,重庆402167;重庆大学城市科技学院、电气学院;重庆大学资源及环境科学学院【正文语种】中文【中图分类】TQ174.1铋层状钙钛矿结构材料的通式一般表示为(Bi2O2)2+(Am-1BmO3m+1)2-,其中 A 是由配位数为 12 的Bi3+、Sr2+、K+等阳离子构成,B 是由配位数为 6的Fe3+、Ti4+、Nb5+等阳离子构成,(Bi2O2)2+层状结构与(Am-1BmO3m+1)2-类钙钛矿结构交错排列可增加其铁电性[1-4]。
由于该类材料具有较好的介电性能与较佳的抗疲劳性能,使其在非挥发性铁电随机存储器的制作中有着巨大的应用潜力[5-8]。
SrBi4Ti4O15是一种典型的铋层状钙钛矿结构铁电材料[9-11],有着较好的铁电性能与较大的剩余极化强度。
2.2 非晶硅薄膜的生长机理制备氢化硅薄膜是基于辉光放电的PECVD 技术,在外界电场的激励下使反应气体电离形成等离子体,在等离子体内部及薄膜表面,发生一系列非常复杂的物理-化学反应,在用辉光放电分解SiH 4制备a-SiH 4薄膜的过程中,可能发生以下的反应[19]:①SiH 4和稀释SiH 4用的H 2分解,生成激活型的原子或分子团;②这些激活型的原子或分子团向衬底或反应室器壁表面扩散;③在衬底表面上发生吸附原子或分子团的反应,同时还伴随着其他气相分子团的产生和再放出。
在PECVD 中,以硅烷为工作气体,在几十帕的压强下进行放电,便可以生成电子密度≈1015m -3的等离子体。
在这种等离子体中,能量大约在10 eV 以上的高能电子与SiH 4碰撞,会产生以下的离解、电离反应,生成大量的中性基团(SiH 3、SiH 2、SiH 、Si )、H 2、H 以及它们的带电基团。
等离子体中可能存在如下反应[19][20]:H H ev H +−−−→−6.42 (式2-1)-++++−−−−→−-+e H H SiH ev e SiH 233.1024(式2-2) -+-++−−→−+e H SiH e SiHev 22247.94 (式2-3) -+-++−−→−+e H SiH e SiHev 375.84 (式2-4) mH Si SiH m +−→← (式2-5)同时等离子体中的电子经外电场加速后,其动能通常可达到10~20eV ,甚至更高,这些高能电子与气体分子发生碰撞,足以使气体分子键断裂并产生大量离子、活性原子、活性分子等基团,氢化硅薄膜的生长原子是来自等离子体中SiH 4分解的SiH m 反应先驱物[19],由于离解产生SiH 3所需的能量最小,一般认为,SiH 3是硅基薄膜最主要的生长基元,。
Veprek 研究发现,等离子体中电子的碰撞有利于硅烷分解和成膜过程,而离子碰撞则有利于H 基刻蚀过程的进行。
硒化镍晶体结构1. 硒化镍晶体的概述硒化镍(NiSe)是一种二元化合物,是由镍和硒组成的。
它具有多种应用,如热电材料、金属表面处理剂和先进的半导体应用。
该化合物的晶体结构是一种金红石结构,其空间群为F-43m,有四分子组成的基本单元,其中两个含有Ni原子,另外两个含有Se原子。
2. 硒化镍晶体的物理性质硒化镍具有独特的形态和物理性质,例如高导电性、高热导性、优异的光电特性以及储能性能等。
它是一种具有压敏效应和半导体特性的材料。
由于其高度的压敏灵敏度和卓越的短波红外光电响应性能,硒化镍被广泛应用于光电传感器,如气敏传感器和温度传感器等。
此外,硒化镍也是一种重要的热电材料,可用于制造用于能量转换的热电发生器。
3. 硒化镍晶体结构硒化镍晶体具有金红石晶体结构,其中Ni原子位于八面体空间,周围为六个Se原子。
每个Ni原子都与两个八面体相连,每个Ni原子周围有六个Se原子。
在晶体结构中,Ni原子和Se原子是平滑分布的,它们被分成不同的四分子组成的基本单元。
其中每个四分子有两个Ni原子和两个Se原子。
相邻的四分子由共享相邻的Se原子连接在一起。
4. 硒化镍晶体的制备方法硒化镍可以通过直接反应镍和硒来制备。
例如,在真空下,将粉末状的Ni和Se混合在一起,然后在高温下进行反应。
反应得到晶体后,还需要进行高温的退火处理和高压下的热压,以获得更加均匀的晶体。
5. 硒化镍晶体的应用硒化镍具有广泛的应用,主要用于制备光电传感器、气敏传感器、温度传感器、储能器、热电发生器等。
例如,硒化镍配制成气敏薄膜,可以用于气体探测、化学检测和环境监测等领域。
此外,硒化镍还可以制备为纳米材料,用于制备新型电子器件,如纳米传感器、纳米粘合剂和纳米材料增强器等。
6. 硒化镍晶体的前景随着人们对于新材料需求的不断提高,硒化镍作为一种新型材料具有广阔的发展前景。
硒化镍的光电、压敏和热电性能优异,同时硒化镍晶体结构也允许通过控制晶体微结构对其性能进行改进。
样品中的硫确实存在形成高分辨率的XPS谱图(图5A)2。
结合能的所有元素中引用的C1s峰(284.6 eV)产生不定碳。
三个不同的S2P峰值在25SPI谱中分别出现在163.3、165.6和167.6 eV的结合能处。
这些S2P的结合能是由于s2p3 / 2核心层次。
163.3 eV的峰值可以分配到的C−S结合的s2p3 / 2信号由于CS2的s2p3 / 2的结合能接近这重要性.形成C−S波段意味着掺杂硫替代晶格N三嗪环形成的C−SPI的结合,如图1证明。
这样的替代掺杂硫晶格N的三嗪环也被发现在sulfurdoped石墨C3N4.8,22。
在∼165.6 eV的峰往往被归因于S-S结合从少量残余升华硫吸附在样品表面产生的。
至于在167.6 eV的结合能高峰值,它可以分为硫氧化物(SO4,2-)在空气气氛中SPI的合成过程中形成的。
在25spi硫磺用量为0.38原子%基于XPS的分析结果。
TEM−EDS测量进行控制确认掺杂硫在25spi用量;0.35原子的值是一致的。
这是第一个成功的尝试涂料掺杂硫在聚合物半导体的结构利用元素硫(S4)作为掺杂剂的前体。
正如由几组报道,在氮化碳三嗪环掺杂硫的合成条件非常敏感。
采用三聚硫氰酸作为前体不能产生掺杂氮化碳催化剂的聚合温度为650°C.硫掺杂介孔物质通过原位聚合合成以硫脲为硫前体和SiO2作为模板。
硫的存在是一致确认出现在最终的样本中,提出了替代碳的位置形成的S−N带三嗪环。
然而,以无硫脲为前兆合成g-C3N4 确认出现在最终同样没有其他硫物种保持的二氧化硅模板信号中,当硫的前体转变为元素硫(S8)与三聚氰胺聚合,XPS最终已在多聚物中验证。
硫的作用是作为一个介体来修改的碳氮化物光催化剂的电子能带结构。
与C3N4结构相比,PI周期框架看起来像C3N4其中三缺电子均苯四甲酸二酐块已纳入网络,导致三嗪环缺电子。
较大的半径和硫低电负性(1.84Å和2.58,分别)与N (1.71Å和3.04,分别)赋予它的电子供体特性。