【6套合集】河南安阳市第一中学2020中考提前自主招生数学模拟试卷附解析
- 格式:docx
- 大小:1.02 MB
- 文档页数:68
河南省安阳市2020年初中毕业生学业模拟考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题4分,共48分,) (共12题;共48分)1. (4分) (2019九下·镇原期中) 四个实数0,,﹣3.14,π,最大的数是()A . 0B .C . ﹣3.14D . π2. (4分)下列运算正确的是()A .B .C .D .3. (4分)对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A . 通常可互相转换B .条形统计图能清楚地反映事物的变化情况C . 折线统计图不能清楚地表示出每个项目的具体数目D .扇形统计图能清楚地表示出各部分在总体中所占的百分比4. (4分)已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A . (2,3)B . (3,1)C . (2,1)D . (3,3)5. (4分)科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A . 6米B . 8米C . 12米D . 不能确定6. (4分)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限7. (4分)(2018·潍坊) 某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11x y21A . 22,3B . 22,4C . 21,3D . 21,48. (4分)(2017·大庆模拟) 二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A .B .C .D .9. (4分) (2017八上·临洮期中) 如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D1 ,∠ABD1与∠ACD1的角平分线交于点D2 ,依此类推,∠ABD4与∠ACD4的角平分线交于点D5 ,则∠BD5C的度数是()A . 56°B . 60°C . 68°D . 94°10. (4分) (2019七下·洛宁期中) 如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A . 60cmB . 120cmC . 312cmD . 576cm11. (4分)如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为A .B .C .D .12. (4分) (2020八上·北仑期末) 如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C,设P点经过的路径长为x,△CPE的面积为y,则下列图图能大致反映y与x函数关系的是()A .B .C .D .二、填空题(每小题4分,共24分) (共6题;共24分)13. (4分)(2016·镇江) 若代数式有意义,则实数x的取值范围是________.14. (4分)(2018·南宁模拟) 已知方程组有正整数解,则整数m的值为________.15. (4分)在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=________ ,b=________ ,c=________16. (4分) (2018八上·沈河期末) 如图所示,已知四边形ABCD是等边长为2的正方形,AP=AC,则数轴上点P所表示的数是________.17. (4分) (2017九上·温江期末) 小颖在二次函数y=2x2+4x+5的图象上,依横坐标找到三点(﹣1,y1),(2,y2),(﹣3,y3),则你认为y1 , y2 , y3的大小关系应为________.18. (4分)(2016·常州) 如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是________.三、解答题(第19题6分,第20、21题每题8分,第22、23、 (共8题;共78分)19. (6分) (2018八上·长春期末) 计算:(1) (2m-4n)(m+5n);(2)(3) (x −) ÷20. (8分)(2018·株洲) 如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN.(1)求证:Rt△ABM≌Rt△A ND(2)线段MN与线段AD相交于T,若AT= ,求的值21. (8分) (2020九下·盐城月考) 在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是________;(2)通过画树状图或列表法求小亮两题都答对概率是多少?22. (10分)(2018·东莞模拟) 学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?23. (10分) (2016九上·杭州期中) 已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.24. (10.0分) (2016九上·萧山期中) 如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.25. (12分)(2019·香坊模拟) 如图,方格纸中每个小正方形的边长均为1,点A、B、C、D均在小正方形的顶点上,(1)在图①中画出以线段AB为一条边的菱形ABEF,点E、F在小正方形顶点上,且菱形ABEF的面积为20;(2)在图②中画出以CD为对角线的矩形CGDH,G、H点在小正方形顶点上,点G在CD的下方,且矩形CGDH 的面积为10,CG>DG.并直接写出矩形CGDH的周长.26. (14.0分) (2011七下·广东竞赛) 如图(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标。
2020年河南省中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.(3分)下列各数中,最大的数是()A.﹣B.C.0D.﹣22.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106 3.(3分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.4.(3分)下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.5.(3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差6.(3分)若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0 7.(3分)系统找不到该试题8.(3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°10.(3分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)若,则x2+2x+1=.12.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是.13.(3分)不等式组有2个整数解,则实数a的取值范围是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B 为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.15.(3分)如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.17.(9分)如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形.②若AE=,AB=2,则DE的长为.18.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.(9分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D 的坐标为(﹣4,n),且AD=3.(1)求反比例函数y=的表达式;(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.21.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.22.(10分)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.23.(11分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y 轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.2020年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.(3分)下列各数中,最大的数是()A.﹣B.C.0D.﹣2【分析】比较确定出最大的数即可.【解答】解:﹣2<﹣<0<,则最大的数是,故选:B.【点评】此题考查了有理数大小比较,熟练掌握运算法则是解本题的关键.2.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26.8万用科学记数法表示为:2.68×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.【点评】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.【分析】直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、a3•a3=a6,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.(3分)若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【分析】根据△的意义得到k≠0且△=4﹣4k×(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:∵x的方程kx2+2x﹣1=0有两个不相等的实数根,∴k≠0且△=4﹣4k×(﹣1)>0,解得k>﹣1,∴k的取值范围为k>﹣1且k≠0.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.(3分)系统找不到该试题8.(3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.【分析】根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.【解答】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是=;故选:B.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°【分析】由题意可知直线MN是线段BC的垂直平分线,故BN=CN,∠B=∠C,故可得出∠CDA的度数,根据CD=AD可知∠DCA=∠CAD,故可得出∠CAD的度数,进而可得出结论.【解答】解:∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20°,∴∠B=∠BCD=20°,∴∠CDA=20°+20°=40°.∵CD=AD,∴∠ACD=∠CAD==70°,∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70°,∠BCD=20°,∴∠ACB=70°+20°=90°,故D正确.故选:A.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.(3分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.【分析】根据题意找到临界点,E、F分别同时到达D、C,画出一般图形利用锐角三角函数表示y即可.【解答】解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.【点评】本题为动点问题可函数图象探究题,考查了二次函数图象和锐角三角函数函数的应用,解答关键是分析动点到达临界点前后图形的变化.二、填空题(每小题3分,共15分)11.(3分)若,则x2+2x+1=2.【分析】首先把所求的式子化成=(x+1)2的形式,然后代入求值.【解答】解:原式=(x+1)2,当x=﹣1时,原式=()2=2.【点评】本题考查了二次根式的化简求值,正确对所求式子进行变形是关键.12.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是m>2.【分析】根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.【解答】解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为:m>2.【点评】本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.13.(3分)不等式组有2个整数解,则实数a的取值范围是8≤a<13.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【点评】本题考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围是解决本题的关键.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是﹣.【分析】根据题意和图形可知阴影部分的面积是扇形BCE 与扇形ACD 的面积之和与Rt △ABC 的面积之差.【解答】解:∵在Rt △ABC ,∠C =90°,∠A =30°,AC =, ∴∠B =60°,BC =tan30°×AC =1,阴影部分的面积S =S 扇形BCE +S 扇形ACD ﹣S △ACB =+﹣=﹣,故答案为:﹣. 【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.(3分)如图,在菱形ABCD 中,∠A =60°,AB =3,点M 为AB 边上一点,AM =2,点N 为AD 边上的一动点,沿MN 将△AMN 翻折,点A 落在点P 处,当点P 在菱形的对角线上时,AN 的长度为 2或5﹣ .【分析】分两种情况:①当点P 在菱形对角线AC 上时,由折叠的性质得:AN =PN ,AM =PM ,证出∠AMN =∠ANM =60°,得出AN =AM =2;②当点P 在菱形对角线BD 上时,设AN =x ,由折叠的性质得:PM =AM =2,PN =AN=x ,∠MPN =∠A =60°,求出BM =AB ﹣AM =1,证明△PDN ∽△MBP ,得出==,求出PD =x ,由比例式=,求出x 的值即可.【解答】解:分两种情况:①当点P 在菱形对角线AC 上时,如图1所示::由折叠的性质得:AN =PN ,AM =PM ,∵四边形ABCD是菱形,∠BAD=60°,∴∠PAM=∠PAN=30°,∴∠AMN=∠ANM=90°﹣30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB﹣AM=1,∵四边形ABCD是菱形,∴∠ADC=180°﹣60°=120°,∠PDN=∠MBP=∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴==,即==,∴PD=x,∴=x解得:x=5﹣或x=5+(不合题意舍去),∴AN=5﹣,综上所述,AN的长为2或5﹣;故答案为:2或5﹣.【点评】本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【解答】解:当x=sin30°+2﹣1+时,∴x=++2=3原式=÷==﹣5【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为60°时,四边形AOCE是菱形.②若AE=,AB=2,则DE的长为.【分析】(1)根据AAS证明两三角形全等;(2)①先证明∠AOC=∠AEC=120°,∠OAE=∠OCE=60°,可得▱AOCE,由OA =OC可得结论;②由△ABE≌△CDE知AE=CE=,AB=CD=2,证△DCE∽△DAB得=,据此求解即可.【解答】解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=,AB=CD=2,∵∠DCE=∠DAB,∠D=∠D,∴△DCE∽△DAB,∴=,即=,解得DE=,故答案为:.【点评】本题是圆的综合题,考查了等腰三角形的性质、等边三角形的性质和判定、三角形相似和全等的性质和判定、四点共圆的性质、菱形的判定等知识,难度适中,正确判断圆中角的关系是关键.18.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有10名留守学生,B类型留守学生所在扇形的圆心角的度数为144;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B 类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【解答】解:(1)2÷20%=10(人),×100%×360°=144°,故答案为:10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400××20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(9分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【分析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC•tan60°=50×≈87(米),在Rt△ADE中,∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米,49米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D 的坐标为(﹣4,n),且AD=3.(1)求反比例函数y=的表达式;(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.【分析】(1)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;(2)由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【解答】解:(1)∵AD=3,D(﹣4,n),∴A(﹣4,n+3),∵点C是OA的中点,∴C(﹣2,),∵点C,D(﹣4,n)在双曲线y=上,∴,∴,∴反比例函数解析式为y=﹣;②由①知,n=1,∴C(﹣2,2),D(﹣4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=x+3;(3)如图,由(2)知,直线CD的解析式为y=x+3,设点E(m,m+3),由(2)知,C(﹣2,2),D(﹣4,1),∴﹣4<m<﹣2,∵EF∥y轴交双曲线y=﹣于F,∴F(m,﹣),∴EF=m+3+,=(m+3+)×(﹣m)=﹣(m2+3m+4)=﹣(m+3)2+,∴S△OEF∵﹣4<m<﹣2,最大,最大值为.∴m=﹣3时,S△OEF【点评】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解与m的函数关系式.本题的关键是建立S△OEF21.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w =(x ﹣20﹣a )(﹣10x +500)=﹣10x 2+(10a +700)x ﹣500a ﹣10000(30≤x ≤38)求得对称轴为x =35+a ,若0<a<6,则30a ,则当x =35+a 时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a =2.【解答】解:(1)根据题意得,y =250﹣10(x ﹣25)=﹣10x +500(30≤x ≤38); (2)设每天扣除捐赠后可获得利润为w 元.w =(x ﹣20﹣a )(﹣10x +500)=﹣10x 2+(10a +700)x ﹣500a ﹣10000(30≤x ≤38)对称轴为x =35+a ,且0<a ≤6,则30a ≤38,则当x =35+a 时,w 取得最大值,∴(35+a ﹣20﹣a )[﹣10(35+a )+500]=1960∴a 1=2,a 2=58(不合题意舍去),∴a =2.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.22.(10分)【问题提出】在△ABC 中,AB =AC ≠BC ,点D 和点A 在直线BC 的同侧,BD =BC ,∠BAC =α,∠DBC =β,且α+β=120°,连接AD ,求∠ADB 的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB 为对称轴构造△ABD 的轴对称图形△ABD ′,连接CD ′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D ′BC 的形状是 等边 三角形;∠ADB 的度数为 30° .【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为7+或7﹣.【分析】【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.【问题解决】当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).【拓展应用】第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【解答】解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC =(180°﹣α)=90°﹣α,∴∠ABD =∠DBC ﹣∠ABC =β﹣(90°﹣α),同(1)①可证△ABD ≌△ABD ′,∴∠ABD =∠ABD ′=β﹣(90°﹣α),BD =BD ′,∠ADB =∠AD ′B ,∴∠D ′BC =∠ABC ﹣∠ABD ′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β), ∴D ′B =D ′C ,∠BD ′C =60°.同(1)②可证△AD ′B ≌△AD ′C ,∴∠AD ′B =∠AD ′C ,∵∠AD ′B +∠AD ′C +∠BD ′C =360°,∴∠ADB =∠AD ′B =150°,在Rt △ADE 中,∠ADE =30°,AD =2,∴DE =,∴BE =BD +DE =7+,故答案为:7+或7﹣. 【点评】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(11分)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),点B (3,0),与y 轴交于点C ,且过点D (2,﹣3).点P 、Q 是抛物线y =ax 2+bx +c 上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.【分析】(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式,即可求解;(2)S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,即可求解;△POD(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=,故点Q1(,﹣2),Q2(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q3(,),Q4(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(,)或(﹣,2)或(,).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
河南省安阳市2020年数学中考一模试卷一、选择题1. 下列运算结果最大的是( )A . ( )B . 2C . 2D . (﹣2)2. 我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( )3. 某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为x ,则可列方程()4. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .5. 二次函数y =1﹣2x 的图象的开口方向( )6. 如图,在平面直角坐标系中,已知点A (﹣2,4),B (﹣4,﹣2),以原点O 为位似中心,相似比为 ,把△AB O 缩小,则点A 的对应点A’的坐标是( )7. 某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35679人数13222则这些队员投中次数的众数、中位数和平均数分别为( )8.如图,直线y=kx (k >0)与双曲线y=交于A ,B 两点,BC ⊥x 轴于C,连接AC 交y 轴于D ,下列结论:①A 、B 关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S = . 其中正确结论的个数为( )9. 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A . 10πB . 15πC . 20πD . 30π10. 如图,在 中,顶点 , ,,将 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转 ,则第70次旋转结束时,点D 的坐标为( )﹣10﹣122△A ODA .B .C . )D .二、填空题11. 已知a为实数,那么等于________.12. 2019年2月上旬某市空气质量指数(AQI)(单位:pg/m3)如表所示:(空气质量指数不大于100表示空气质量优良)如果小王2月上旬到该市度假一次,那么他在该市度假3天空气质量都是优良的概率是________.日期12345678910AQI(μg/m3)28364543365080117614713. 如图,已知菱形ABCD的对角线AC、BD交于点O,,,则菱形ABCD的面积是________.14. 如图,正方形ABCD的顶点A、B在圆O上,若,圆O的半径为2cm,则阴影部分的面积是________ .(结果保留根号和)15. 如图,在正方形ABCD中,E是CD边上一点,DE=2,过B作AE的垂线,垂足为点F,BF=3,将△ADE沿AE翻折,得到△AGE,AG与BF于点M,连接BG,则△BMG的周长为________三、解答题16. 先化简,再求值:,其中满足 .17. 如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题,CD.,求河流的宽度(结果精确到个位,=cos70°=0.34,tan70°=2.75)在某市的创优工作中,某社区计划对的区域进行绿化倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用x…123…y (63)21…(1)以表中各对对应值为坐标,在图1的直角坐标系中描出各点,用光滑曲线顺次连接.由图像知,它是我们已经学过的哪类函数?求出函数解析式,并直接写出a的值;(2)如果一次函数图像与⑴中图像交于(1,3)和(3,1)两点,在第一、四象限内当x在什么范围时,一次函数的值小于⑴中函数的值?请直接写出答案.22. 综合与实践背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果.旋转作为图形变换的一种,具备图形旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质.所以充分运用这些性质是在解决有关旋转问题的关健.实践操作:如图1,在Rt△ABC中,∠B=90°,BC=2AB=12,点D,E分别是边BC,AC的中点,连接DE,将△ED C绕点C按顺时针方向旋转,记旋转角为α.问题解决:(1)①当α=0°时,=________;②当α=180°时,=________.(2)试判断:当0°≤a<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题再探:当△EDC旋转至A,D,E三点共线时,求得线段BD的长为________.23. 如图所示,平面直角坐标系中,直线y=﹣x+3交坐标轴与B、C两点,抛物线y=ax+bx+3经过B、C两点,且交x轴于另一点A(﹣1,0).点D为抛物线在第一象限内的一点,过点D作DQ∥CO,DQ交BC于点P,交x轴于点Q.(1)求抛物线解析式;(2)设点P的横坐标为m,在点D的移动过程中,存在∠DCP=∠ACO,求出m值;(3)在抛物线取点E,在坐标系内取点F,问是否存在以C、B、E、F为顶点且以CB为边的矩形?如果有请求出点E 的坐标;如果不存在,请说明理由.参考答案1.22.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
2020年中招模拟考试数学试题温馨提示:1、本试卷共6页,三大题,23小题,满分120分。
闭卷考试,独立答题,禁止讨论和翻阅资料。
请按答题卡上的要求直接在答题卡上作答。
2、答题前请认真阅读答题卡上的注意事项,把答题卡上的相关信息填写清楚,并粘贴条形码。
3、答题时请认真审题,规范作答,字体工整,卷面整洁。
一.选择题(共10小题,满分30分,每小题3分)1.4的绝对值为()A.±4 B.4 C.﹣4 D.22.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60~220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=()A.48°B.42°C.40°D.45°4.下列计算正确的是()=B.(a﹣b)2=a2﹣b2A8232C.a2+a3=a5D.(2a2b3)3=﹣6a6b35.如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A向右平移2个单位长度后(如图2),所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图改变,俯视图不变D.主视图不变,俯视图改变6.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣27.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款()A .30元B .33元C .36元D .35元8.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若AD =AC ,∠A =80°,则∠ACB 的度数为( )A .65°B .70°C .75°D .80°9.抛物线y =mx 2+3mx +2(m <0)经过点A (a ,y 1)、B (1,y 2)两点,若y 1>y 2,则实数a 满足( )A.﹣4<a <1B. a <﹣4或a >1C.﹣4<a ≤32-D.32-≤a <110.如图△ABO 的顶点分别是A (3,1),B (0,2),O (0,0),点C ,D 分别为BO ,BA 的中点,连AC ,OD 交于点G ,过点A 作AP ⊥OD 交OD 的延长线于点P .若△APO 绕原点O 顺时针旋转,每次旋转90°,则第2020次旋转结束时,点P 的坐标是( )A .(2,1)B .(2,2)C .(二.填空题(共5小题,满分15分,每小题3分)11.计算:11()92-= .12.不等式组102431x x +⎧⎪⎨⎪-≥⎩>的解集是 .13.一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 .14.如图,矩形ABCD 的边AB =2,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是 .15.如图,在矩形ABCD 中,AB =6,AD =8,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对角线上,则AE的长为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(2﹣11xx-+)÷22691x xx++-,其中23x=-.17.(9分)如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD =2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE交于点F.(1)求证:CF为⊙O的切线;(2)填空:①若AB=4,当OB=BF时,BE=;②当∠CAB的度数为时,四边形ACFD是菱形.18.(9分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量不去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对防护知识的了解,通过微信宣传防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 8590 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 8095 75 80 90 70 80 95 75 100 90整理数据成绩x小区60≤x≤7070<x≤8080<x≤9090<x≤100甲小区 2 5 a b乙小区 3 7 5 5 分析数据统计量小区平均数中位数众数甲小区85.75 87.5 c乙小区83.5 d80应用数据(1)填空:a=,b=,c=,d=;(2)根据以上数据,(填“甲”或“乙”)小区对新型冠状病毒肺炎防护知识掌握得更好,理由是(一条即可)(3)若甲小区共有800人参加答卷,请估计甲小区成绩高于90分的人数.19.(9分)河南省开封铁塔始建于公元1049年(北宋皇佑元年),是国家重点保护文物之一.在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一处台阶的底部A处测得塔顶P点的仰角∠1=45°,走上台阶顶部B处,测得塔顶P点的仰角∠2=38.7°.已知台阶的高度BC=3米,点C、A、E在一条直线上,AC =10米,求铁塔的高度PE.(结果保留整数,参考数据:sin38.7°≈0.6,cos38.7°≈0.8,tan38.7°≈0.8)20.(9分)某口罩加工厂有A、B两组工人共150人,A组工人每人每小时可加工口罩70只,B组工人每人每小时可加工口罩50只,A、B两组工人每小时一共可加工口罩9300只.(1)求A、B两组工人各多少人;(2)根据疫情发展,A、B两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共同可生产口罩200只,若A、B两组工人每小时至少加工15000只口罩,那么A组工人每人每小时至少加工多少只口罩?21.(10分)某学具制作小组在制作直角三角形和矩形学具时,运用数形结合思想探究两种学具的边长和面积或周长的数量关系.已知,制作矩形学具一组邻边长为x,y,周长为6,由矩形的周长计算公式,可得2(x+y)=6,从而得到y与x的函数关系是y=﹣x+3;制作的直角三角形学具的边长分别为x,y,面积为2,由三角形的面积计算公式,可得12 xy=2,从而得到y与x的函数关系是y=4x,其反比例函数图象如图所示.(1)在图中的直角坐标系中直接画出y=﹣x+3的图象;(2)把直线y=﹣x+3的图象向上平移a(a>0)个单位长度后与反比例函数y=4x的图象有且只有一个交点,求此时a的值和公共点坐标.22.(10分)在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,MNPC的值是,直线MN与直线PC相交所成的较小角的度数是.(2)类比探究如图2,当α=120°时,请写出的MNPC值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时PDMN的值.23.(11分)如图1,抛物线y=12x2﹣32x﹣2与x轴交于A,B两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求A,B,C三点的坐标及直线BE的解析式.(2)如图2,过点A作BE的平行线交抛物线于点D,点P是抛物线上位于线段AD下方的一个动点,连接PA,PD,求△APD面积的最大值.(3)若(2)中的点P为抛物线上一动点,在x轴上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2020年中招模拟考试数学参考答案一.选择题(共10小题,满分30分,每小题3分)1.B.2.C.3.A.4.A.5.D.6.B.7.B.8.C.9.A.10.B.二.填空题(共5小题,满分15分,每小题3分)11.﹣1.12.﹣1<x≤1.13..14.6﹣π.15.3或.提示:∵矩形ABCD,∴∠A=90°,BD===10,当A′在BD上时,如图1所示:设AE=x,由翻折的性质得:EA′=AE=x,BA′=AB=6,∴ED=8﹣x,∠EFD=∠A=90°,∴A′D=10﹣6=4,在Rt△EA′D中,x2+42=(8﹣x)2,解得:x=3,∴AE=3;当点A′在AC上时,如图2所示:由翻折的性质得:BE垂直平分AA′,AC=10,由射影定理得:AB2=AG•AC,∴AG=,∵∠AGE=∠D=90°,∠EAG=∠CAD,∴△AEG∽△ACD,=,即=,∴AG=AE=,∴AE=.∴AE的长为3或.三.解答题(共11小题,满分75分)16.解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.证明:(1)连结OC,如图,∵OA=OC,∴∠OAC=∠OCA,∴∠BOC=∠A+∠OCA=2∠OAC,∵∠ABD=2∠BAC,∴∠ABD=∠BOC,∴OC∥BD,∵CE⊥BD,∴OC⊥CE,∴CF为⊙O的切线;(2)①∵AB=4,∴OB=BF=OC=2,∴OF=4,∵BE∥OC,∴,∴BE=1,故答案为:1;②当∠CAB的度数为30°时,四边形ACFD是菱形,理由:∵∠CAB=30°,∴∠COF=60°,∴∠F=30°,∴∠CAB=∠F,∴AC=CF,连接AD,∵AB是⊙O的直径,∴AD⊥BD,∴AD∥CF,∴∠DAF=∠F=30°,在△ACB与△ADB中,,∴△ACB≌△ADB(AAS),∴AD=AC,∴AD=CF,∵AD∥CF,∴四边形ACFD是菱形.故答案为:30°.18.解:(1)a=8,b=5,甲小区的出现次数最多的是90,因此众数是90,即c=90.中位数是从小到大排列后处在第10、11位两个数的平均数,由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,因此d=82.5.(2)根据以上数据,甲小区对新型冠状病毒肺炎防护知识掌握得更好,理由是甲小区的平均数、中位数、众数都比乙小区的大.(3)800×=200(人).答:估计甲小区成绩高于90分的人数是200人.故答案为:8,5,90,82.5;甲,甲小区的平均数、中位数、众数都比乙小区的大.19. 解:设塔高PE =x 米 , 且EF =BC =3 米 , 则PF =PE -EF =(x -3)米 . ∵ 在 Rt △PBF 中 , ∠2=38.7°,tan38.7°=BF PF =F x B 3-≈0.8. ∴ BF =45(x -3) . ∴ CE =BF =45(x -3) . ∵ 在Rt △PEA 中 ,∠1=45°,∴ AE =PE =x .∵ AE +AC =CE , 且AC =10 米 ,∴ x +10=45(x -3) . 解得 x =55.答:铁塔的高度约为55米 .20.解:(1)设A 组工人有x 人、B 组工人有(150﹣x )人,根据题意得,70x +50(150﹣x )=9300,解得:x =90,150﹣x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200﹣a )只口罩;根据题意得,90a +60(200﹣a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.21.解:(1)函数y =﹣x +3的图象如图所示;(2)把直线y =﹣x +3的图象向上平移a (a >0)个单位长度后得y =﹣x +3+a , 解得,x 2﹣(3+a )x +4=0,∵把直线y=﹣x+3的图象向上平移a(a>0)个单位长度后与反比例函数y=的图象有且只有一个交点,∴△=a2+6a﹣7=0,∴a=﹣6或a=1,∵a>0,∴a=1,∴x2﹣(3+1)x+4=0,∴x=2,∴y=2,∴公共点坐标为(2,2).22.解:(1)如图1中,连接PC,BD,延长BD交PC于K,交AC于G.∵CA=CB,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=∠P AD=60°,AC=AB,∴∠P AC=∠DAB,∵AP=AD,∴△P AC≌△DAB(SAS),∴PC=BD,∠ACP=∠ABD,∵AN=ND,AM=BM,∴BD=2MN,∴=.∵∠CGK=∠BGA,∠GCK=∠GBA,∴∠CKG=∠BAG=60°,∴BK与PC的较小的夹角为60°,∵MN∥BK,∴MN与PC较小的夹角为60°.故答案为,60°.(2)如图设MN交AC于F,延长MN交PC于E.∵CA=CB,P A=PD,∠APD=∠ACB=120°,∴△P AD∽△CAB,∴=,∵AM=MB,AN=ND,∴=,∴△ACP∽△AMN,∴∠ACP=∠AMN,==,∵∠CFE=∠AFM,∴∠FEC=∠F AM=30°.(3)设MN=a,∵==,∴PC=a,∵ME是△ABC的中位线,∠ACB=90°,∴ME是线段BC的中垂线,∴PB=PC=a,∵MN是△ADB的中位线,∴DB=2MN=2a,如图3﹣1中,当点P在线段BD上时,PD=DB﹣PB=(2﹣)a,∴=2﹣.如图3﹣2中,PD=DB+PB=(2+)a,∴=2+.23.解:(1)令y=0,则x2﹣x﹣2=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2),设直线BE的解析式为y=kx+b,将B(4,0)、E(0,2)代入得,,解得:,∴y=﹣x+2;(2)由题意可设AD的解析式为y=﹣x+m,将A(﹣1,0)代入,得到m=﹣,∴y=﹣x﹣,联立,解得:,,∴D(3,﹣2),过点P作PF⊥x轴于点F,交AD于点N,过点D作DG⊥x轴于点G.∴S△APD=S△APN+S△DPN=PN•AF+PN•FG=PN(AF+FG)=PN•AG=×4PN =2PN,设P(a,﹣a2﹣a﹣2),则N(a,﹣a﹣),∴PN=﹣a2+a+,∴S△APD=﹣a2+2a+3=﹣(a﹣1)2+4,∵﹣1<0,﹣1<a<3,∴当a=1时,△APD的面积最大,最大值为4;(3)存在;①当PD与AQ为平行四边形的对边时,∵AQ∥PD,AQ在x轴上,∴P(0,﹣2),∴PD=3,∴AQ=3,∵A(﹣1,0),∴Q(2,0)或Q(﹣4,0);②当PD与AQ为平行四边形的对角线时,PD与AQ的中点在x轴上,∴P点的纵坐标为2,∴P(,2)或P(,2),∴PD的中点为(,0)或(,0),∵Q点与A点关于PD的中点对称,∴Q(,0)或Q(,0);综上所述:点Q的坐标为(2,0)或(﹣4,0)或(,0)或(,0).。
河南省安阳市中考数学一模试卷(解析版)一.选择题1.﹣3的绝对值是()A.﹣3B.3C. ±3D.﹣2.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A. B. C. D.3.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x34.关于x的一元二次方程ax2﹣3x+3=0有两个不等实根,则a的取值范围是()A.a<且a≠0B.a>﹣且a≠0C.a>﹣D.a<5.3月1日,河南省统计局、国家统计局河南调查总队联合公布《2016年河南省国民经济和社会发展统计公报》,《公报》显示,到2016年年末,河南省总人口为10788万人,常住人口9532万人,数据“9532万”用科学记数法可表示为()A.95.32×106B.9.532×107C.9532×104D.0.9532×1086.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)0 1 2 3 4人数(单位:人) 1 4 6 2 2A.中位数是2B.平均数是2C.众数是2D.极差是27.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1B.m+1C.m2﹣1D.(m﹣1)28.如图所示的是A,B,C,D三点,按如下步骤作图:①先分别以A,B两点为圆心,以大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN;②再分别以B,C两点为圆心,以大于的长为半径作弧,两弧相交于G,H两点,作直线GH,GH与MN交于点P,若∠BAC=66°,则∠BPC等于()A.100°B.120°C.132°D.140°9.若二次函数y=﹣x2+4x+c的图象经过A(1,y1),B(﹣1,y2),C(2+ ,y3)三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y310.在平面直角坐标系中,已知点A(﹣2,4),点B在直线OA上,且OA=2OB,则点B的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣4,8)D.(﹣1,2)或(1,﹣2)二.填空题11.计算:=________.12.一个不透明的袋子中装有3个红球和2个白球共5个球,这些球除颜色不同外,其余均相同,从中任意摸出一个球,这个球是白球的概率为________.13.如图,在菱形ABCD中,∠BAD=100°,点E为AC上一点,若∠CBE=20°,则∠AED=________°.14.如图所示,格点△ABC绕点B逆时针旋转得到△EBD,图中每个小正方形的边长是1,则图中阴影部分的面积为________.15.如图,在矩形ABCD中,AB=3,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD、AD上,则AP+PQ最小值为________.三.解答题16.先化简:(x﹣1﹣),然后从满足﹣2<x≤2的整数值中选择一个你喜欢的数代入求值.17.某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.18.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.(1)求证:CF为⊙O的切线;(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.19.某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)20.如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2= 的图象交于C、D两点,已知点C的坐标为(﹣4,﹣1),点D的横坐标为2.(1)求反比例函数与一次函数的解析式;(2)直接写出当x为何值时,y1>y2?(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.21.某市决定购买A、B两种树苗对某段道路进行绿化改造,已知购买A种树苗9棵,B种树苗4棵,需要700元;购买A种树苗3棵,B种树苗5棵,则需要380元.(1)求购买A、B两种树苗每颗各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于60棵,且用于购买这两种树苗的资金不能超过5260元.若购进这两种树苗共100棵,则有哪几种购买方案?哪种方案最省钱?22.已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB.(1)问题发现如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为________,BD、AB、CB之间的数量关系为________.(2)拓展探究当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明.(3)解决问题当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB=________.23.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点p作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】B【考点】绝对值【解析】【解答】解:根据负数的绝对值是它的相反数,得|﹣3|=3.故答案为:B.【分析】任何数的绝对值都是非负数。
河南省安阳市名校2020届数学中考模拟试卷一、选择题1.一个数和它的倒数相等,则这个数是 ( )A .1B .-1C .±1D .±1和02.如图,⊙O 1与⊙O 2相交于A 、B 两点,经过点A 的直线CD 分别与⊙O 1、⊙O 2交于C 、D ,经过点B 的直线EF 分别与⊙O 1、⊙O 2交于E 、F ,且EF ∥O 1O 2.下列结论:①CE ∥DF ;②∠D =∠F ;③EF =2O 1O 2.必定成立的有( )A .0个B .1个C .2个D .3个 3.下列运算正确的是( )A.34a a a ⋅= =C.52102()a b a b -=- D.222(23)469a b a ab b +=++4.下列命题是真命题的是( )A .一元二次方程一定有两个实数根B .对于反比例函数y =2x,y 随x 的增大而减小 C .有一个角是直角的四边形是矩形D .对角线互相平分的四边形是平行四边形5.某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为( )A .80分B .85分C .86分D .90分 6.下列计算正确的是( )A .x 4+x 4=2x 8B .x 3•x 2=x 6C .(x 2y )3=x 6y 3D .(x ﹣y )2=x 2一y 2 7.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),给出以下五个结论:①AE =CF ;②∠APE =∠CPF ;③连接EF ,△EPF 是等腰直角三角形;④EF =AP ;⑤S 四边形AFPE =S △APC ,其中正确的有几个( )A.2个B.3个C.4个D.5个8.如图,为了保证道路交通安全,某段高速公路在A 处设立观测点,与高速公路的距离AC 为20米.现测得一辆小轿车从B 处行驶到C 处所用的时间为4秒.若∠BAC =α,则此车的速度为( )A.5tan α米/秒B.80tan α米/秒C.米/秒D.米/秒9 ( )A .16的平方根B .16的算术平方根C .±4D .±2 10.下列各式能用平方差公式进行分解因式的是( )A .-x 2+1B .-x 2-4C .x 2-xD .x 2+ 25 11.已知四边形ABCD 中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A.∠D=90°B.AB=CDC.AD=BCD.BC=CD 12.计算2123131x x x x +----的结果为( ) A .1B .-1C .331x -D .331x x +- 二、填空题13.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的余弦值等于_____.14在实数范围内有意义,则 x 的取值范围是_______ .15.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.16.若解分式方程2044x a x x-=--时产生增根,则a =__________. 17.两个无理数的和为有理数,这两个无理数可以是______和_______.18.如图,DE ∥BC ,DE :BC =3:4,那么AE :CE =_____.三、解答题19.先化简分式(311x x x x --+)÷21x x -,再从不等式组3(2)24251x x x x --≥⎧⎨-<+⎩的解集中取一个非负整数值代入,求原分式的值.20.先化简,再求代数式2229963a a a a a ⎛⎫-+÷- ⎪+⎝⎭的值,其中602cos 45a =+o o . 21.计算:(1)(a+2)(a ﹣3)﹣a (a ﹣1)(2)2249726926a a a a a --÷-+++22.(1)解不等式组365(2)543123x x x x +≥-⎧⎪⎨---≤⎪⎩①②,并求出最小整数解与最大整数解的和.(2)先化简,再求值22331(1)1211x x x x x x --÷-+-++-,其中x 满足方程x 2+x ﹣2=0. 23.计算:212sin 6032-︒++()24.如图,已知矩形ABCD 是一空旷场地上的小屋示意图,其中AB :AD =2:1.拴住小狗的绳子一端固定在点A 处,请根据下面条件分别画出小狗在小屋外最大活动区域.(小狗的大小不计)(1)若拴小狗的绳子长度与AD 边长相等,请在图1中画出小狗在屋外可以活动的最大区域;(2)若拴小狗的绳子长度与AB 边长相等,请在图2中画出小狗在屋外可以活动的最大区域.25.(1)(问题发现)如图1,在Rt △ABC 中,AB =AC ,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,请判断线段BE 与AF 的数量关系并写出推断过程;(2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(结论运用)在(1)(2)的条件下,若△ABC 的面积为2,当正方形CDEF 旋转到B ,E ,F 三点在同一直线上时,请直接写出线段AF 的长.【参考答案】***一、选择题13.1214.x≥315.4×10﹣816.﹣817.218.3三、解答题19.【解析】【分析】先根据分式的混合运算法则化简所给分式,再解不等式组求出解集,然后从不等式组的解集中取一个使所给分式有意义的非负整数代入计算即可.∵23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭=3(1)(1)11x x x x x x x +-⎛⎫-⋅ ⎪-+⎝⎭=3(x+1)﹣(x ﹣1)=2x+4,∵3(2)2(1)4251(2)x x x x -->⎧⎨-<+⎩, 解①得:x≤2,解②得:x >﹣3,∴此不等式组的解集是﹣3<x≤2;∴非负整数值有0,1,2,∵x 2﹣1≠0,x≠0,∴x≠±1且x≠0,∴当x =2时,原式=8.【点睛】本题考查了分式的化简求值,一元一次不等式组的解法,熟练掌握分式的运算法则及一元一次不等式组的解法是解答本题的关键.20 【解析】【分析】先根据分式的运算法则进行化简,再把锐角三角函数值化简代入即可.【详解】解:原式()()()233693a a a a a a a+--+=÷+ ()23•3a a a a -=-1,3232a a ==⨯⨯- 3=∴原式2=== 【点睛】本题考查了分式的化简求值,熟练掌握特殊角的三角函数值是解题的关键.21.(1)-6(2)83a - 【解析】【分析】(1)根据整式的混合运算顺序和运算法则计算可得;(2)先计算除法,再计算减法即可得.【详解】(1)原式=a 2﹣a ﹣6﹣a 2+a =﹣6;(2)原式=2(+7)(7)2(3)2(3)7a a a a a -+⋅-+-=2(+7)2(3)33a a a a +-++=83a +.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.22.(1)﹣3≤x≤8,5;(2)11x-,13- .【解析】【分析】(1)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,进而求出所求即可;(2)原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.【详解】(1)365(2)543123x xx x①②+≥-⎧⎪⎨---≤⎪⎩由①得:x≤8,由②得:x≥﹣3,∴不等式组的解集为﹣3≤x≤8,则不等式组最小整数解为﹣3,最大整数解为8,之和为5;(2)原式=23(1)11 (1)(1)3111x x x x xx x x x x x -++-⋅-==+-----,由x2+x﹣2=0,得到(x﹣1)(x+2)=0,解得:x=1(舍去)或x=﹣2,当x=﹣2时,原式=13 -.【点睛】此题考查了分式的化简求值,以及解一元二次方程-因式分解法,熟练掌握运算法则是解本题的关键.23.7【解析】【分析】先算锐角三角函数、负指数幂、绝对值,再算加减运算.【详解】解:212sin60324372-︒++=++-=()【点睛】考核知识点:含有特殊锐角三角函数值的运算.24.(1)见解析;(2)见解析.【解析】【分析】(1)以A为圆心,AD为半径画弧即可解决问题.(2)分别以A,D为圆心,AB,AD为半径画弧即可解决问题.【详解】解:(1)图1中,小狗在屋外可以活动的最大区域如图所示;(2)图2中,小狗在屋外可以活动的最大区域如图所示.【点睛】本题考查作图的应用与设计,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)BE AF .见解析;(2)无变化.证明见解析;(3)线段AF 1-1.【解析】【分析】(1)首先证明△ADB 是等腰直角三角形,推出AD ,再证明AF=AD 即可解决问题;(2)先利用三角函数得出2CA CB =,2CF CE =,推出CA CF CB CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出,,即可得出,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.【详解】(1)在Rt △ABC 中,AB =AC ,根据勾股定理得,BC AB , 又∵点D 为BC 的中点,∴AD =12BC =2AB , ∵四边形CDEF 是正方形,∴AF =EF =AD AB BE ,∴BE AF .(2)无变化.证明:如图2,在Rt △ABC 中,∵AB =AC ,∴∠ABC =∠ACB =45°,∴sin ∠ABC =CA CB , 在正方形CDEF 中,∠FEC =12∠FED =45°,在Rt △CEF 中,sin ∠FEC =CF CE = ∴CF CA CE CB=, ∵∠FCE =∠ACB =45°,∴∠FCE -∠ACE =∠ACB -∠ACE ,∴∠FCA =∠ECB ,∴△ACF ∽△BCE ,∴BE CB AF CA==∴BE AF ,∴线段BE 与AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,,在Rt △BCF 中,,根据勾股定理得,,∴,由(2)知,AF ,∴,当点E 在线段BF 的延长线上时,如图3,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°,在Rt △CEF 中,sin ∠FEC=CF CE =∴CF CA CE CB=, ∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE ,∴∠FCA=∠ECB ,∴△ACF ∽△BCE ,∴BE CB AF CA==∴,由(1)知,,在Rt △BCF 中,,根据勾股定理得,,∴,由(2)知,AF ,∴.即:当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF .【点睛】本题是四边形综合题,主要考查了,等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解(2)(3)的关键是判断出△ACF ∽△BCE .第三问要分情况讨论.。
安阳市2020年中考数学模拟试题及答案注意事项:1 .考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2 .考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3 .本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.J5的相反数是()A.备 B . - J5 C .谓 D .非2 .舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A. 4.995 X1011 B . 49.95 X 1010 C. 0.4995 X 1011 D . 4.995 X10103 .某区“引进人才”招聘考试分笔试和面试.其中笔试按60%面13t按40%十算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A. 85 B . 86 C . 87 D . 884 .若以A(-0.5 , 0), B(2, 0), C(0, 1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C. 第三象限D.第四象限5 .图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()圜①国②A.主视图B.俯视图C. 左视图D.主视图、俯视图和左视图都改变6 .如图,已知/ ABG= /DCB添加以下条件,不能判定^ AB挈△ DCB勺是()9.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等, 那么从中任意取(1, 1) 3 2)(1, 3) ⑵1)⑵2) ⑵3) ⑶1)⑶2)⑶3)A. / A= Z DB.D. AB= DC7.若反比例函数 y = (kw0)的图象经过点P (2, - 3),则该函数的图象不经过的点是( A. ( 3, - 2) B. ( 1, — 6) C. (T,6) 8.若圆锥的底面半径r 为6cm,高h 为8cm, 则圆锥的侧面积为( A. 30 兀 cm2B . 60 % cm2 C.48 兀 cm2.80 兀 cm2一点,这个点在函数 y=x 图象上的概率是()A.0.3B.0.5C.D.10.如图1,点P 从矩形 ABCD 勺顶点A 出发沿 A-B- C 以2cmfs 的速度匀速运动到点 C 图2是点P运动时,△ APD 的面积y (cm2)随运动时间 x (s)变化而变化的函数关系图象,则矩形ABCM面积为(A. 36B. 48C.11.如图,AB 是O O 的直径,平分线交。
河南省安阳市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ3.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A.217B.27C.57D.74.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点B.重心C.内心D.外心5.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–366.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A .27分钟B .20分钟C .13分钟D .7分钟7.下列实数为无理数的是 ( )A .-5B .72C .0D .π8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π9.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )A .30°B .60°C .120°D .180°10.如图所示,把直角三角形纸片沿过顶点B 的直线(BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得等腰△EBA ,那么结论中:①∠A=30°;②点C 与AB 的中点重合;③点E 到AB 的距离等于CE 的长,正确的个数是( )A .0B .1C .2D .311.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A .6.75×103吨B .67.5×103吨C .6.75×104吨D .6.75×105吨12.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A.73 B.81 C.91 D.109二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.14.分解因式:x2y﹣xy2=_____.15.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.16.方程1223x x=+的解为__________.17.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程____.18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B 之间的距离为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.20.(6分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;PC ,求⊙O的半径.(2)若2521.(6分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?22.(8分)新定义:如图1(图2,图3),在△ABC 中,把AB 边绕点A 顺时针旋转,把AC 边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC 是△AB′C′的“旋补三角形”,△AB'C′的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”(特例感知)(1)①若△ABC 是等边三角形(如图2),BC=1,则AD= ;②若∠BAC=90°(如图3),BC=6,AD= ;(猜想论证)(2)在图1中,当△ABC 是任意三角形时,猜想AD 与BC 的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A ,B ,C ,D 都在半径为5的圆上,且AB 与CD 不平行,AD=6,点P 是四边形ABCD 内一点,且△APD 是△BPC 的“旋补三角形”,点P 是“旋补中心”,请确定点P 的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC 的长.23.(8分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2y x y-的值,其中x=sin60°,y=tan30°. 24.(10分)如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,点D 在AB 上,DE ⊥EB . (1)求证:AC 是△BDE 的外接圆的切线;(2)若AD=2,AE=6,求EC 的长.25.(10分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 只听说过 不了解频数 40 120 36 4 频率 0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为 ,表中的m 值为 ;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?26.(12分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.27.(12分)今年3月12日植树节期间,学校预购进A ,B 两种树苗.若购进A 种树苗3棵,B 种树苗5棵,需2100元;若购进A 种树苗4棵,B 种树苗10棵,需3800元.求购进A ,B 两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A 种树苗至少需购进多少棵.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.3.B【解析】【分析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB ∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,∴AH=AD+DH=5在Rt△AHE中,∴,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=1∴∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG = 772ENEF==,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.4.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.5.D【解析】【分析】根据有理数的乘法法则进行计算即可.【详解】()494936.⨯-=-⨯=-故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.6.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.7.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A 、﹣5是整数,是有理数,选项错误;B 、72是分数,是有理数,选项错误; C 、0是整数,是有理数,选项错误;D 、π是无理数,选项正确.故选D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.A【解析】试题解析:如图,∵在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°,AB=2∴S △ABC =12AC•BC=2. 根据旋转的性质知△ABC ≌△AB′C′,则S △ABC =S △AB′C′,AB=AB′.∴S 阴影=S 扇形ABB′+S △AB′C′-S △ABC =2452360π⨯ =2π. 故选A .考点:1.扇形面积的计算;2.旋转的性质.9.C【解析】【分析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C .【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键10.D【解析】【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.11.C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.12.C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C.考点:图形的变化规律.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.【详解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.故答案为1.【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.14.xy(x﹣y)【解析】原式=xy(x﹣y).故答案为xy(x﹣y).15.1:3【解析】根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由:1:16DOE COA S S ∆∆=,求得DE :AC=1:4,即BE :BC=1:4,因此可得BE :EC=1:3,最后根据同高不同底的三角形的面积可知BDE S ∆与CDE S ∆的比是1:3.故答案为1:3.16.1x =【解析】【分析】两边同时乘2(3)x x +,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.17.先以点O 为旋转中心,逆时针旋转90°,再将得到的三角形沿x 轴翻折.【解析】【分析】根据旋转的性质,平移的性质即可得到由△DEF 得到△ABC 的过程.【详解】由题可得,由△DEF 得到△ABC 的过程为:先以点O 为旋转中心,逆时针旋转90°,再将得到的三角形沿x 轴翻折.(答案不唯一)故答案为:先以点O 为旋转中心,逆时针旋转90°,再将得到的三角形沿x 轴翻折.【点睛】本题考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.18.(50). 【解析】【分析】过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N .则AM =BN .通过解直角△ACM 和△BCN 分别求得CM 、CN 的长度,则易得MN =AB .【详解】解:如图,过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N ,则AB =MN ,AM =BN .在直角△ACM ,∵∠ACM =45°,AM =50m ,∴CM =AM =50m .∵在直角△BCN 中,∠BCN =∠ACB +∠ACD =60°,BN =50m ,∴CN =60BN tan 3=5033(m ), ∴MN =CM−CN =503(m ). 则AB =MN =(503)m . 故答案是:(50−5033). 【点睛】 本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)详见解析;(3)图见解析,点P 坐标为(2,0).【解析】【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2))找出点A 、B 、C 关于原点O 的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P .【详解】(1)如图1所示,△A 1B 1C 1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.20.(1)证明见解析;(2)1.【解析】【分析】(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(25)2﹣(5﹣r)2,求出r的值即可.【详解】解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(25)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(25)2﹣(5﹣r)2,解得:r=1,则⊙O的半径为1.【点睛】本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.21.(1)a=6,b=8;(2)()28001064160(10)x xyx x⎧≤≤=⎨+>⎩;(3)A团有20人,B团有30人.【解析】【分析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y 1图像上点(10,480),得到10人的费用为480元,∴a=480106800⨯=; 由y 2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元, ∴b=640108800⨯=; (2)0≤x≤10时,设y 2=k 2x,把(10, 800)代入得10k 2=800,解得k 2=80,∴y 2=80x ,x >10,设y 2=kx+b,把(10, 800)和(20,1440)代入得10800201440k b k b +=⎧⎨+=⎩解得64160k b =⎧⎨=⎩∴y 2=64x+160∴()28001064160(10)x x y x x ⎧≤≤=⎨+>⎩(3)设B 团有n 人,则A 团的人数为(50-n )当0≤n≤10时80n+48(50-n )=3040,解得n=20(不符合题意舍去)当n >10时801064n 104850n 3040⨯+-+-=()(),解得n=30.则50-n=20人,则A 团有20人,B 团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.22.(1)①2;②3;(2)AD=BC ;(3)作图见解析;BC=4;【解析】【分析】(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD 的长度;②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC 、AB=AB′、AC=AC′,进而可得出△ABC ≌△AB′C′(SAS ),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.【详解】(1)①∵△ABC是等边三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD为等腰△AB′C′的中线,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=AC′=2.②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,,∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=B′C′=3.故答案为:①2;②3.(2)AD=BC.证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,,∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=AE,∴AD=BC.(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P 作PF⊥BC于点F.∵PB=PC,PF⊥BC,∴PF为△PBC的中位线,∴PF=AD=3.在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF==1,∴BC=2BF=4.【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.23.23【解析】【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【详解】原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦ ()()22,2x y x y x y x y x y y--+-=⋅-- ()()2,2y x y x y x y y --=⋅-- 1,x y=-- 33sin60tan30x y =︒==︒=Q ,, ∴原式23333=-=-=--. 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.24.(1)证明见解析;(2)1.【解析】试题分析:(1)取BD 的中点0,连结OE ,如图,由∠BED=90°,根据圆周角定理可得BD 为△BDE 的外接圆的直径,点O 为△BDE 的外接圆的圆心,再证明OE ∥BC ,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC 是△BDE 的外接圆的切线;(2)设⊙O 的半径为r ,根据勾股定理得62+r 2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE ∥BC 得,然后根据比例性质可计算出EC .试题解析:(1)证明:取BD 的中点0,连结OE ,如图,∵DE ⊥EB ,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+2)2,解得r=2,∵OE∥BC,∴,即,∴CE=1.考点:1、切线的判定;2、勾股定理25.(1)200;0.6(2)非常了解20%,比较了解60%;72°;(3) 900人【解析】【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.26.见解析【解析】【分析】根据∠ABD=∠DCA ,∠ACB=∠DBC ,求证∠ABC=∠DCB ,然后利用AAS 可证明△ABC ≌△DCB ,即可证明结论.【详解】证明:∵∠ABD=∠DCA ,∠DBC=∠ACB∴∠ABD+∠DBC=∠DCA+∠ACB即∠ABC=∠DCB在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA )∴AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC ≌△DCB .难度不大,属于基础题.27.(1)A 种树苗的单价为200元,B 种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元.则由等量关系列出方程组解答即可;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200 xy=⎧⎨=⎩,答:A种树苗的单价为200元,B种树苗的单价为300元. (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用。
河南省安阳市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1 E 1E 2B 2、A 2B 2 C 2D 2、D 2E 3E4B 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为l ,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…,则正方形A 2017B 2017C 2017D 2017的边长是( )A .()2016B .()2017C .()2016D .()20172.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( ) A .2 B .-2 C .±2 D .-123.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC V ≌DEF V 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC4.实数a b 、在数轴上的点的位置如图所示,则下列不等关系正确的是( )A .a+b>0B .a-b<0C .a b <0D .2a >2b5.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A.①B.②C.③D.④7.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.98.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:①小明家距学校4千米;②小明上学所用的时间为12分钟;③小明上坡的速度是0.5千米/分钟;④小明放学回家所用时间为15分钟.其中正确的个数是()A.1个B.2个C.3个D.4个9.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN= y°,则点(x,y)一定在()A.抛物线上B.过原点的直线上C.双曲线上D.以上说法都不对10.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()A.B.C.D.11.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b312.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A.252B.252πC.50 D.50π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:1275-=______.14.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________. 15.计算:cos245°-tan30°sin60°=______.16.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:________.17.计算:a6÷a3=_________.18.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?20.(6分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?21.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m的值.22.(8分)如图,在△ABC中,AB AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.23.(8分)“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?24.(10分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.25.(10分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.26.(12分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).27.(12分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x 轴,垂足为C,求S△ABC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A 1B1C 1D 1的边长为1,∠B1C 1O=60°,B1C 1∥B2C 2∥B3C 3…∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B2C 2===()1, 同理可得:B3C 3==()2,故正方形A n B n C n D n 的边长是:()n ﹣1.则正方形A 2017B2017C 2017D 2017的边长是:()2. 故选C .“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键. 2.B【解析】【分析】根据正比例函数定义可得m 2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx (k≠0)的自变量指数为1,当k <0时,y 随x 的增大而减小.3.B【解析】【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了.【详解】A.添加E ABC ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故A 选项不符合题意.B.添加DE AB =与原条件满足SSA ,不能证明ABC V ≌DEF V ,故B 选项符合题意;C.添加AB//DE ,可得E ABC ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故C 选项不符合题意;D.添加DF//AC ,可得DFE ACB ∠∠=,根据AAS 能证明ABC V ≌DEF V ,故D 选项不符合题意, 故选B .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.C【解析】【分析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、ab<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.5.C【解析】【分析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.6.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
第一套:满分150分2020-2021年河南安阳正一中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
2024年中招模拟考试试题 (一)数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.-3的相反数是 ( )A. 3B. -3C.−13D. 132.如图所示的几何体的主视图是 ( )3.据河南日报消息,截至2023年年底,河南省可再生能源发电装机突破6700万千瓦,煤电装机占比降至50%以下,可再生能源发电装机历史性超越煤电.将数据“6700万”用科学记数法表示为 ( )A.6.7×10⁸B.6.7×10⁷C. 6.7×10⁶D. 6700×10⁴4.要调查下列问题,适合采取全面调查 (普查)的是 ( )A.某城市居民每年的读书量·B.某品牌奶粉的质量C.中央电视台《新闻联播》的收视率D.某型号新型战斗机试飞前的零部件检查5. 如图, 直线a, b 被直线c 所截, 且a∥b, a 与c 相交于点O,OP⊥a 于点O, ∠1=50°, 则∠2的度数为( ) A. 25° B. 30° C. 40° D. 50°6.下列计算正确的是 ( )A.8−2=6B.a²⋅a =a³C.(a⁴)²=a⁶D.(a−b )²=a²−b²7.明代数学著作《珠算统筹》一书中记载这样一题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤 (一斤=16两).问:人和银各几何?”其大意为:隔墙听人分银子,每人分7两,则多4两;每人分9两,则少半斤,问人和银九年级数学试卷 第1页 共6页各多少?设共有x人,y两银,则可列方程组为 ( )A.7x−4=y9x−8=y B.7x+4=y9x−8=y C.7x−4=y9x+8=y D.7x+4=y9x+8=y8.关于x的一元二次方程x²−2x+2n=0,用下列选项中的数字替换n,能使方程有两个不相等的实数根的是 ( )A. 2B. 1C. 0D.129.某款纯电动汽车采取智能快速充电模式进行充电,当充电量达到电池容量的80%时,为保护电池,充电速度会明显降低.如图是该款电动汽车某次充电时,汽车电池含电率y(电池含电率=电电中的电容量×100%)随充电时间x(分钟)变化的函数图象,下列说法错误的是 ( )A.本次充电开始时汽车电池内仅剩10%的电量B.本次充电40分钟,汽车电池含电率达到80%C.本次充电持续时间是 120分钟D.若汽车电池从无电状态到充满电需要耗电70千瓦时,则本次充电耗电63千瓦时10. 如图,正方形ABCD的顶点.A1−3,0,B (0,1),将正方形以原点为旋转中心,顺时针旋转75°后,点C的坐标为 ( )二、填空题 (每小题3分,共15分)11.某学校在4月23 日“世界读书日”为全校24个班购进m套精品图书,计划平均分到每个班,则每班可分到套图书.12. 不等式组5−2x≥1,x−1<0的解集是 .13.现有4张卡片,正面分别写有文字“殷墟、美里城、红旗渠、文峰塔”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取1张,记录正面文字后放回,再随机抽取1张,两次抽取的卡片正面文字一样的概率是 .九年级数学试卷 第2页 共6页14. 如图, 在△ABC 中, AB=AC=10, BC=12, 以AB 为直径的⊙O 交BC 于点D, ⊙O 的切线DE 交AC 于点E,则DE 的长为 .15. 菱形ABCD 的边长为1, ∠DAB=60°, 点E 是对角线AC上不与点A, C 重合的一个动点, 若以点C, D, E 为顶点的三角形恰为等腰三角形,则AE 的长为 .三、解答题 (本大题共8个小题,满分75分)16.(1)(5分) 计算: −38+|−1|; (2)(5分) 化简:x2+2x +1x 2−1−2x−1.17. (9分)校园配餐备受关注,为让广大学生吃到安全放心的配餐,质量监督部门针对甲、乙两家配餐公司生产的同一种套餐的品质(卫生、口味等)进行了抽样调查.相同条件下,随机抽取了两家公司的套餐各7 份样品,对套餐的品质进行评分(百分制),并对数据进行收集、整理,下面给出两家公司套餐得分的统计图表.甲、乙两家公司套餐得分表1234567甲公司套餐70858688959696乙公司套餐80848690909294甲、乙两家公司套餐得分折线统计图 甲、乙两家公司套餐得分统计表平均数中位数众数甲公司套餐88b 96乙公司套餐a90c根据以上信息,请回答下列问题:(1) a= , b = , c= .(2)从方差的角度看, 公司套餐的得分较稳定.(填“甲”或“乙”)(3)你认为哪家公司套餐的品质较好?请说明理由.九年级数学试卷 第 3页 共 6页18.(9分) 如图所示, AB 是一条线段, AD∥BC.(1)请用无刻度的直尺和圆规作出线段AB 的垂直平分线(保留作图痕迹,不写作法).(2)若(1)中所作的垂直平分线交AB 于点O ,交AD 于点E ,交BC 于点F ,求证:AE=BF.19.(9分)如图所示,矩形OABD 的边OA 在x 轴上,OD 在y 轴上,点B 的坐标是( 2反比例函数 y =kx (x ⟩0)的图象经过点B ,以点A 为圆心,AO 为半径作 OC 交边BD 于点 C, 连接OC.(1)求反比例函数的解析式.(2) 求∠OAC 的度数.(3)请直接写出图中阴影部分的面积.20. (9分)为让学生感悟自然界和生活中的数学,王老师组织大家周末到户外,同学们发现休闲广场水平地面上放置两个同样大小的球形石墩,每个石墩在阳光下形成自己的影子.同学们对球形石墩的半径十分感兴趣,观察并绘制了如图所示的平面示意图,⊙A 和⊙B 是两球的主视图,均与地面l 相切,太阳光线与地面的夹角是70°, 由此得到∠BQN=35°, ∠APM=55°, 已知. MN =1.70m,PQ =0.2ln,请根据以上数据求出球的半径BN. (参考数据:; sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,结果精确到0.1m)221.(9分)“安阳是一生必去的城市,有文化,必安阳!”越来越多的游客慕名来到安阳旅游,与甲骨文有关的文旅产品受到游客的普遍欢迎.某商店销售以甲骨文为主题的A,B 两款文化衫,每件A 款文化衫的利润比每件B 款文化衫的利润多8元,销售A 款文化衫获利300元和销售B 款文化衫获利180元时的销售数量相同.(1)求每件A 款文化衫和B 款文化衫的利润.(2)若该商店计划购进A 、B 两款文化衫共200件进行销售,且A 款文化衫数量不超过B 款文化衫数量的 32倍,商店购进A 、B 两款文化衫各多少件,才能使销售完这200件文化衫获得最大利润?最大利润是多少?22.(10分)某公园内有一个喷泉从垂直于地面的立柱OA 的端点A 处喷出一个水柱,其形状呈抛物线型.建立如图所示的坐标系,OA 所在的直线是y 轴,地面上有一个底面为正方形的无盖长方体水池(厚度忽略不计),其底面边长是1米,高 12米,点C ,D 是其底面一组对边的中点,矩形BCDE 是其经过点C ,D 的一个竖直的截面,点O, C, D 都在x 轴上. 已知 OA =52米, OC =92米,抛物线型水柱在距离y 轴2米处到达离地面 92米的最高点 P.(1)求抛物线的解析式.(2)该抛物线型水柱是否会把水喷到水池内?请通过计算进行说明.223.(10分)王老师善于通过合适的主题整合教学内容,帮助学生学会用整体的、联系的、发展的眼光看问题,形成科学的思维习惯,发展核心素养.下面是王老师在“图形的翻折与旋转”主题下设计的问题,请你解答.如图1, □ABCD 中, ∠A =α(0°<α<90°),AD >CD,点 P 是折线A—B—C 上的动点,连接DP ,线段DA 沿DP 折叠得到线段DA',点 C 绕点D 逆时针旋转得到( C ′,旋转角为β,且 β=12∠ADA ′,作射线 DC ′交折线A—B—C 于点Q.(1)观察发现∠ADP ∠CDQ(选填“>”, “<”或“=”).(2)探究迁移①如图2, 当点 A'、点( C ′'和点 D 共线时,判断α与β的数量关系,并说明理由.②若 CD =m,DP ⊥AB,, 求DQ 的长.(3)拓展应用若 α=60∘,AD =3,CD =3,点P 在运动过程中, 当 A ′点恰好落在 ‖ogramABCD 的边BC 所在直线时,请直接写出BQ 的长.九年级数学试卷 第6页 共6页氵x2024年安阳市中招模拟考试试题(数学)参考答案及评分意见一、选择题(每小题3分,共30分)1.A2.A3.B4.D5.C6.B7.B8.C9.D10.A二、填空题(每小题3分,共15分)11.24m 12.x <113.1414.24515.1-或3三、解答题(本大题包括8个小题,共75分)16.(1)21()12---421=-+····················································································3分3=.······························································································5分(2)2221211x x x x ++---2(12(1)(1)1x x x x +=-+--)······································································2分1211x x x +=---················································································3分11x x -=-························································································4分1=.································································································5分17.(1)88,88,90.················································································3分(2)乙.···························································································6分(3)甲、乙两家公司套餐得分的平均数相同,乙公司的稳定性较好,所以选择乙公司.(注:答案不唯一,选择甲、乙均可,解释合理即可)····························9分18.(1)如图所示.·················································································4分(2)∵AD ∥BC ,∴∠A =∠B .·······························5分∵EF 垂直平分AB ,∴AO =BO ,∠AOE =∠BOF .···········7分在△AOE 和△BOF 中,,,.A B AO BO AOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△BOF (ASA ).···········8分∴AE =BF .·······················································································9分19.(1)把点B 代入ky x=,得2k =⨯=.···································2分∴反比例函数的解析式是23y x=.························································3分(2)∵矩形OABD 中B,∴OA =BD =2,AB =OD B =∠ODC =90°.∴AC =AO =2.·····················································································4分由勾股定理得1BC ==,故CD =2-1=1.由勾股定理得2OC ==.························································5分∴AO =AC =OC .··················································································6分∴△OAC 是等边三角形.∴∠OAC =60°.·················································································7分(323π-.··············································································9分20.∵l 与⊙A 、⊙B 都相切,∴△AMP 和△BNQ 都是直角三角形.设球的半径为r .·················································································1分在Rt △AMP 中,由∠APM =55°,得∠A =35°,∴MP =AM tan35°≈0.7r .········································································3分在Rt △BNQ 中,∠BQN =35°,∴tan 350.7BN rQN =≈︒.··········································································5分∵MN =1.7,PQ =0.21,∴0.70.21 1.70.7rr ++=.······································································7分解得r ≈0.7.·····················································································8分答:球的半径BN 约为0.7米.··································································9分21.(1)设每件A 款文化衫利润是x 元,则每件B 款文化衫利润是(x -8)元,依题意得3001808x x =-.··········································1分解得x =20.······································································2分经检验,x =20是原分式方程的解.·······················································3分∴x -8=12.答:A 款文化衫每件利润20元,B 款文化衫每件利润12元.···················4分(2)设购进A 款文化衫m 件,则购进B 款文化衫(200-m )件,销售总利润是w 元,依题意得m ≤32(200-m ).·············································5分解得m ≤120.∴m 的最大值是120.·········································································6分w =20m +12(200-m )=8m +2400.····························································7分因为8>0,所以w 随m 的增大而增大,当m =120时,w 取得最大值3360元.此时,200-120=80.···········································································8分答:购进A 款文化衫120件,B 款文化衫80件,获得最大利润3360元.·······9分22.(1)由题意得,抛物线的顶点坐标是P 9(2,2,·········································1分∴设抛物线解析式为29(2)2y a x =-+.··················································2分把A (0,52)代入,得95422a +=,解得12a =-.········································3分∴抛物线的解析式为219(2)22y x =--+.···············································4分(2)当12y =时,2191(2)222x --+=解得1222x x =+=-(舍).·························································6分∵OC =92,CD =1,∴OD =112.∴点B 到y 轴的距离是92米,点E 到y 轴的距离是112米.····························8分∵911222<+,···········································································9分∴该抛物线型水柱会把水喷到水池内.··················································10分(注:也可以把x 1=92和x 2=112分别代入219(2)22y x =--+,得y 1=118和y 2=138-,由于11182>,13182-<,所以会把水喷到水池内.请根据学生解答步骤合理给分)23.(1)=.···························································································2分(2)①α+3β=180°.理由:∵∠ADA ’=2∠ADP =2∠A ’DP ,∠CDC '=β=12∠ADA ',∴∠ADP =∠A 'DP =∠CDC '=β.·····························································3分∵点A '、点C '和点D 共线,∴∠ADP +∠A 'DP +∠CDC '=∠ADC =3β.·················································4分∵四边形ABCD 是平行四边形,∴AB ∥CD.∴∠A +∠ADC =180°,即α+3β=180°.····················································5分②∵DP ⊥AB ,∴∠A +∠ADP =90°.···········································································6分∵∠A =∠C ,∴∠C +∠CDQ =90°.∴∠CQD =90°.·················································································7分在Rt △CDQ 中,DQ =CD sin ∠C ,∴DQ =m sin α.···················································································8分(3)6-,332.····································································10分。
2020年中考数学一模试卷一、选择题(共10个小题)1.2sin60°的值等于()A.1B.C.D.22.2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012 3.下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b64.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为()A.B.C.D.5.如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346857.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB 等于()A.55°B.70°C.110°D.125°8.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.9.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB 的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2B.4C.6D.310.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(共5小题,每题3分,共15分)11.因式分解:x3﹣4x=.12.甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)13.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是.14.如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为cm2.15.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.三、解答题(共8小题,共75分)16.已知:x≠y,y=﹣x+8,求代数式+的值.17.体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率10≤x<1050.1210≤x<20210.42320≤x<30a430≤x<40b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.18.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.19.慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.20.某班“数学兴趣小组”对函数y=,的图象和性质进行了探究探究过程如下,请补充完成:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值.请直接写出m,n的值:m=;n=.x…﹣2﹣10n234…y…m0﹣1﹣3532…(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)通过观察函数的图象,小明发现该函数图象与反比例函数y=(k>0)的图象形状相同,是中心对称图形,且点(﹣1,m)和(3,)是一组对称点,则其对称中心的坐标为.(5)当2≤x≤4时,关于x的方程kx+=有实数解,求k的取值范围.21.甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为5元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为6元/kg,超过50kg部分的价格为4元/kg.设小张在同一个批发店一次购买苹果的数量为xkg(x>0).(1)根据题意填表:一次购买数量/kg20 50 150 …甲批发店花费/元250 …乙批发店花费/元350 …(2)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(3)根据题意填空:①若小张在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为kg;②若小张在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的批发店购买花费少;③若小张在同一个批发店一次购买苹果花费了460元,则他在甲、乙两个批发店中的批发店购买数量多.22.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.23.如图,抛物线y=ax2+bx+3经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(0<m<2).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积何时最大?求出此时D点的坐标和最大面积;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1.2sin60°的值等于()A.1B.C.D.2【分析】根据特殊角三角函数值,可得答案.解:2sin60°=2×=,故选:C.2.2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:根据题意161亿用科学记数法表示为1.61×1010 .故选:B.3.下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b6【分析】直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(﹣ab2)3=﹣a3b6,正确.故选:D.4.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:它的俯视图为故选:A.5.如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【分析】由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.7.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB 等于()A.55°B.70°C.110°D.125°【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB =110°,再根据切线的性质以及四边形的内角和定理即可求解.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.8.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.9.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB 的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2B.4C.6D.3【分析】由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直角三角形30度角所对直角边等于斜边一半即可求解.解:由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=30°∴∠DAB=30°∴∠C=90°,∴∠CAB=60°∴∠CAD=30°∴CD=AD=3.故选:D.10.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【分析】由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.由此即可判断.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.二、填空题(共5小题,每题3分,共15分)11.因式分解:x3﹣4x=x(x+2)(x﹣2).【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).12.甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.13.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是4.【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故答案为4.14.如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为32πcm2.【分析】由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,图中阴影部分的面积=四边形ABCD的面积+扇形ABB'的面积﹣四边形AB'C'D'的面积=扇形ABB'的面积,代入扇形面积公式计算即可.解:由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,则图中阴影部分的面积=四边形ABCD的面积+扇形ABB'的面积﹣四边形AB'C'D'的面积=扇形ABB'的面积==32π;故答案为:32π.15.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.【分析】利用矩形的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',CD=B'D,设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.三、解答题(共8小题,共75分)16.已知:x≠y,y=﹣x+8,求代数式+的值.【分析】先根据分式加减运算法则化简原式,再将y=﹣x+8代入计算可得.解:原式=+==,当x≠y,y=﹣x+8时,原式=x+(﹣x+8)=8.17.体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率10≤x<1050.1210≤x<20210.42320≤x<30a430≤x<40b(1)表中的数a=20,b=0.08;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.【分析】(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08;(2)该九年级排球垫球测试结果小于10的人数450×0.1=45(人);(3)P(选出的2人为一个男生一个女生的概率)==.【解答】解(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08,故答案为20,0.08;(2)该九年级排球垫球测试结果小于10的人数450×0.1=45(人),答:该九年级排球垫球测试结果小于10的人数为45人;(3)列表如下∴P(选出的2人为一个男生一个女生的概率)==.18.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【分析】(1)根据圆周角定理得到∠ACB=∠ACD=90°,根据直角三角形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三角形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三角形的内角和得到∠OAE=∠CDE=22.5°,根据等腰三角形的性质得到∠CAD=∠ADC=45°,于是得到结论.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:连接AD,∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.19.慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.【分析】(1)根据正切的定义用a表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=,则AH=HE•tan∠AEH≈1.9a,∴AG=AH﹣GH=1.9a﹣0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a﹣0.2,∴BD=1.9a﹣0.2,答:小亮与塔底中心的距离BD为(1.9a﹣0.2)米;(2)由题意得,1.9a﹣0.2+a=52,解得,a=18,则AG=1.9a﹣0.2=34,∴AB=AG+GB=34+1.7=35.7,答:慈氏塔的高度AB为35.7米.20.某班“数学兴趣小组”对函数y=,的图象和性质进行了探究探究过程如下,请补充完成:(1)函数y=的自变量x的取值范围是x≠1;(2)下表是y与x的几组对应值.请直接写出m,n的值:m=;n=.x…﹣2﹣10n234…y…m0﹣1﹣3532…(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)通过观察函数的图象,小明发现该函数图象与反比例函数y=(k>0)的图象形状相同,是中心对称图形,且点(﹣1,m)和(3,)是一组对称点,则其对称中心的坐标为(1,1).(5)当2≤x≤4时,关于x的方程kx+=有实数解,求k的取值范围.【分析】(1)根据分母不能为0,即可解决问题;(2)求出x=﹣1的函数值,求得y=3时的x的值即可;(3)利用描点法画出函数图象即可;(4)根据函数的图象,可得结论;(5)利用图象的交点解决问题即可.解:(1)函数y=的自变量x的取值范围是x≠1.故答案为x≠1.(2)x=﹣1时,y=,∴m=.当y=3时,则3=,解得x=,∴n=,故答案为,;(3)函数图象如图所示:(4)该函数的图象关于点(1,1)成中心对称,故答案为(1,1);(5)当2≤x≤4时,函数y=中,≤y≤2,把x=4,y=代入函数y=kx+得,=4k+,解得k=,把x=2,y=2代入函数y=kx+得2=2k+,解得k=,∴关于x的方程kx+=有实数解,k的取值范围是≤k≤.21.甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为5元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为6元/kg,超过50kg部分的价格为4元/kg.设小张在同一个批发店一次购买苹果的数量为xkg(x>0).(1)根据题意填表:一次购买数量/kg20 50 150 …甲批发店花费/元100250 750…乙批发店花费/元140350 700…(2)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(3)根据题意填空:①若小张在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为100kg;②若小张在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的乙批发店购买花费少;③若小张在同一个批发店一次购买苹果花费了460元,则他在甲、乙两个批发店中的甲批发店购买数量多.【分析】(1)根据题意列式计算即可;(2)根据题意,可以分别写出y1,y2关于x的函数解析式,y2关于x的函数解析式分0<x≤50和x>50两种情况,是分段函数;(3)根据(2)的结论解答即可.解:(1)甲批发店:5×20=100元,5×150=750元;乙批发店:7×20=140元,6×50+4(150﹣50)=700元.故依次填写:100、750、140、700.(2)y1=5x(x>0),当0<x≤50时,y2=7x(0<x≤50),当x>50时,y2=6×50+4(x﹣50)=4x+100(x>50),因此y1,y2与x的函数解析式为:y1=5x(x>0);y2=7x(0<x≤50),y2=4x+100(x>50).(3)①当y1=y2时,有:5x=7x,解得x=0,不合题意,舍去;当y1=y2时,也有:5x=4x+100,解得x=100,故他在同一个批发店一次购买苹果的数量为100千克.②当x=120时,y1=5×120=600元,y2=4×120+100=580元,∵600>580,∴乙批发店花费少.故乙批发店花费少.③当y=360时,即:5x=460和4x+100=460;解得x=92和x=90,∵92>90,∴甲批发店购买数量多.故甲批发店购买的数量多.故答案为:①100;②乙;③甲.22.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.【分析】(1)由等腰三角形的性质可得∠B=∠ACB,由外角的性质可得∠BAD=∠CDE,可证△ABD∽△DCE;(2)作AM⊥BC于M.由锐角三角函数可求AM=6,BM=8,通过证明△ABD∽△CBA,可求BD的长,再由平行线分线段成比例可求AE的长;(3)作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.可证四边形AMHN为矩形,可得∠MAN=90°,MH=AN,通过证明△AFN∽△ADM,可求AN的长,由等腰三角形的性质可求BD的长,即可求解.【解答】证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH =90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.23.如图,抛物线y=ax2+bx+3经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(0<m<2).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积何时最大?求出此时D点的坐标和最大面积;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)由抛物线交点式表达式得:y=a(x+1)(x﹣2),将(0,3)代入上式,即可求解;(2)S△BDC=S△DHC+S△HDB=HD×OB,即可求解;(3)分BD是平行四边形的一条边、BD是平行四边形的对角线两种情况,分别求解即可.解:(1)由抛物线交点式表达式得:y=a(x+1)(x﹣2),将(0,3)代入上式得:﹣2a=3,解得:a=,故抛物线的表达式为:;(2)点C(0,3),B(2,0),设直线BC的表达式为:y=mx+n,则,解得:,故直线BC的表达式为:,如图所示,过点D作y轴的平行线交直线BC与点H,设点D(m,),则点H(m,m+3),S△BDC=S△DHC+S△HDB=HD×OB===,∵﹣<0,故△BCD的面积有最大值,当m=1,△BCD面积最大为,此时D点为(1,3);(3)m=1时,D点为(1,3),①当BD是平行四边形的一条边时,设点N(n,),则点N的纵坐标为绝对值为3,即,解得:n=0或1(舍去)或,故点N的坐标为(0,3)或(,﹣3)或(,﹣3),②当BD是平行四边形的对角线时,N的坐标为(0,3);综上,点N的坐标为:(0,3)或(,﹣3)或(,﹣3).。
2020年河南省普通高中自主招生数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.如图所示的几何体的主视图是()A.B.C.D.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.806.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.28.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D →E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P 的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2020年河南省普通高中自主招生数学试卷(3月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D →E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P 的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ 的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.=PQ•BQ∴S△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=tS=PQ•BQ=•t•t=t2△BPQ的图象是关于t(0s≤t≤2s)的二次函数.此时S△BPQ∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S=PQ•BQ=••(t﹣1)=t﹣△BPQ此时S的图象是关于t(2s<t≤4s)的一次函数.△BPQ∵斜率>0随t的增大而增大,直线由左向右依次上升.∴S△BPQ③当P在DE上,P在EC上时(即4s<t≤s)PQ=[CE﹣(t﹣4)]•sin45°=﹣t(4s<t≤s),BQ=BC﹣CQ=BC﹣[CE﹣(t﹣4)]•cos45°=﹣(﹣t)=t+S=PQ•BQ△BPQ由于展开二次项系数a=k1•k2=•(﹣)•()=﹣抛物线开口向下,故选:D.【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=﹣1.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=1﹣2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y =﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.【分析】先画树状图展示所有16种等可能的结果数,再找出两人摸到的球颜色不同的结果数,然后根据概率公式求解.【解答】解:列表如下:红1红2黄蓝红1红1红1红1红2红1黄红1蓝红2红2红1红2红2红2黄红2蓝黄黄红1黄红2黄黄黄蓝蓝蓝红1蓝红2蓝黄蓝蓝由表格可知,共有16种等可能的结果,其中两人摸到的球颜色不同的情况有10种,所以两人摸到的球颜色不同的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠FAD=∠B=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x、y 的值代入化简后的式子即可解答本题.【解答】解:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)(2﹣)=3.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=2时,四边形AODC是菱形;(3)当AD=2时,四边形AEDF是正方形.【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB 的关系,根据HL,证明即可;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,得到∠DBA 的度数,根据正弦的定义计算即可;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,可得答案.【解答】(1)证明:∵=,∴∠CAD=∠BAD,又DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵=,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL);(2)四边形AODC是菱形时,OD=CD=DB=OB,∴∠DBA=60°,∴AD=AB cos∠DBA=4sin60°=2,故答案为:2;(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理,得AD==2,故答案为:2.【点评】本题考查的是角平分线的性质、圆周角定理、全等三角形的判定和性质以及等边三角形的判定和性质、正方形的判定,掌握全等三角形的判定定理和性质定理、圆周角定理是解题的关键.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.=1.5×+2.8×∴w总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC =DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,。
2024年河南省安阳市安阳县中考数学一模试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)实数﹣24的倒数是( )A.B.24C.D.﹣242.(3分)下列几何体的三视图都相同的是( )A.B.C.D.3.(3分)2024年1月3日,我国自主研制的AG60E电动飞机首飞成功.AG60E的最大平飞速度为218km/h,航程1100000米,1100000用科学记数法可以表示为( )A.1.1×107B.0.11×107C.1.1×106D.11×1054.(3分)如图,先在纸上画两条直线a,b,使a∥b,再将一块直角三角板平放在纸上,使其直角顶点落在直线b上,若∠2=50°,则∠1的度数是( )A.30°B.40°C.50°D.60°5.(3分)分式化简后的结果为( )A.﹣1B.1C.D.06.(3分)如图,二次函数y=ax2+bx+c的图象与y轴交于点A(0,2),其对称轴是直线x=,则不等式ax2+bx+c≤2的解集是( )A.x≤0B.x≤﹣1或x≥2C.0≤x≤1D.x≤0或x≥17.(3分)在一个不透明的盒子中装有1个白球和2个黄球,每个球除颜色外,其他都相同.从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球记下颜色,则两次摸到的球的颜色不同的概率是( )A.B.C.D.8.(3分)已知关于x的一元二次方程x2﹣2x﹣3m+1=0有两个相等的实数根,则此方程的根是( )A.x1=x2=5B.x1=x2=2C.x1=x2=1D.x1=x2=﹣39.(3分)如图,把Rt△ABC放置在平面直角坐标系中,∠C=90°,已知点A是x轴上的定点,点B的坐标为(0,2).将Rt△ABC绕点A逆时针旋转60°,旋转后点C恰好与点O重合,则旋转前点C的坐标是( )A.B.C.D.10.(3分)如图,在矩形ABCD中,AB=6,BC=8.点E在边AD上,且ED=6,M,N 分别是边AB,BC上的动点,P是线段CE上的动点,连接PM,PN,使PM=PN.当PM+PN的值最小时,线段PC的长为( )A.2B.C.4D.二、填空题(每小题3分,共15分)11.(3分)如果有意义,那么x的取值范围是 .12.(3分)不等式组的解集为 .13.(3分)某市举办了“演说中国”青少年演讲比赛,其中综合荣誉分占30%,现场演讲分占70%,小明参加并在这两项中分别取得90分和80分的成绩,则小明的最终成绩为 分.14.(3分)如图,把矩形OABC放在平面直角坐标系中,O(0,0),A(4,0),C(0,3),点P在边OC上,且不与点O,C重合;点Q在边OA上,且不与点O,A重合,AQ =2OP,连接QP,QB,PB.当点Q的坐标为 时,PQ⊥BQ.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=40°,AB=4,斜边AB是半圆O的直径,点D是半圆上的一个动点,连接CD与AB交于点E,若△BCE是等腰三角形,则∠BOD的度数为 .三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:(3x+2y)(3x﹣2y)﹣2y(2﹣2y).17.(9分)为引导学生广泛阅读文学名著,某校在七、八年级开展了以“走进名著,诵读经典”为主题的知识竞赛活动.学生竞赛成绩分为A,B,C,D四个等级,分别是A:0≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100.现从七、八年级参加竞赛的学生中各随机选出20名学生的成绩整理如下:七年级学生的竞赛成绩为:82,70,86,86,99,86,86,88,84,79,81,91,95,98,93,84,58,81,90,83;八年级中等级为C的学生成绩为:89,87,85,85,84,84,83.学生平均数中位数众数方差七年级8586b86八年级85a9180.76根据以上信息,解答下列问题:(1)根据表格写出a= ,b= ,m= ;(2)根据以上数据,你认为在此次知识竞赛活动中,哪个年级的成绩更好?请说明理由(一条即可);(3)若七、八年级各有1000名学生参赛,请估计两个年级参赛学生中成绩为一般(小于80分)的学生人数.18.(9分)如图,在△ABC中,∠B=30°,∠C=90°,作线段AB的垂直平分线,交BC 于点D,交AB于点E.(1)依题意补全图形;(要求:尺规作图,保留作图痕迹,不写作法)(2)求证:CD=BD.19.(9分)如图,为了测量国旗台上旗杆DE的高度,小华在点A处利用测角仪测得旗杆底部D的仰角为27°,然后他沿着正对旗杆DE的方向前进0.5m到达点B处,此时利用测角仪测得旗杆顶部E的仰角为60°,已知点A,B,C在同一水平直线上,测角仪AF 的高为1m,DE⊥AB于点C,旗杆底部D到地面的距离DC为3m,求旗杆DE的高度.(结果精确到0.1m.≈1.73,cos27°≈0.89,tan27°≈0.51,sin27°≈0.45)20.(9分)某电子产品店两次购进甲和乙两种品牌耳机的数量和总费用如下表:第一次第二次甲品牌耳机(个)2030乙品牌耳机(个)4050总费用(元)1080014600(1)甲、乙两种品牌耳机的进价各是多少元?(2)商家第三次进货计划购进两种品牌耳机共200个,其中甲品牌耳机数量不少于30个,在采购总价不超过35000元的情况下,最多能购进多少个甲品牌耳机?21.(9分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点B的坐标为,点C在反比例函数的图象上,以点O为圆心,OC长为半径画.(1)求反比例函数的表达式;(2)阴影部分的面积为 .(用含π的式子表示)22.(10分)某校举办“集体跳长绳”体育活动,若在跳长绳的过程中,绳甩到最高处时的形状是抛物线型,示意图如图所示,以ED的中点O为原点建立平面直角坐标系(甲位于x轴的点E处,乙位于x轴的点D处),正在甩绳的甲、乙两名同学握绳的手分别设为A点,B点,且AB的水平距离为4m,绳子甩到最高点C处时,他们握绳的手到地面的距离AE与BD均为1.2m,最高点到地面的垂直距离为2m.(1)求出该抛物线的解析式;(2)如果身高为1.8m的小亮,站在ED之间,且与点E的距离为tm,当绳子甩到最高处时,可以通过他的头顶,请结合函数图象求出t的取值范围;(3)经测定,多人跳长绳且同方向站立时,脚跟之间的距离不小于0.4m才能安全跳绳,小亮与其他4位同学一起跳绳,如果这4位同学与小亮身高相同,通过计算当绳子甩到最高处时,他们是否可以安全跳绳?23.(10分)综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断:如图1,在矩形ABCD中,点E为边AB的中点,沿DE折叠,使点A落在点F处,把纸片展平,延长DF与BC交于点G.请写出线段FG与线段BG的数量关系,并说明理由;(2)迁移思考:如图1,若AB=4,按照(1)中的操作进行折叠和作图,当CG=2时,求AD的值;(3)拓展探索:如图2,四边形ABCD为平行四边形,其中∠A与∠C是对角,点E为边AB的中点,沿DE折叠,使点A落在点F处,把纸片展平,延长DF与射线BC交于点G.若AD=2,CG=0.5,请直接写出线段DG的值.2024年河南省安阳市安阳县中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)实数﹣24的倒数是( )A.B.24C.D.﹣24【分析】根据乘积是1的两个数互为倒数计算即可.【解答】解:实数﹣24的倒数是,故选:A.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)下列几何体的三视图都相同的是( )A.B.C.D.【分析】先得到相应的几何体,找到从上面看所得到的图形即可.【解答】解:求体的三视图都是相同的圆形,故选:D.【点评】本题考查了三视图的知识,利用空间想象能力即可解题.3.(3分)2024年1月3日,我国自主研制的AG60E电动飞机首飞成功.AG60E的最大平飞速度为218km/h,航程1100000米,1100000用科学记数法可以表示为( )A.1.1×107B.0.11×107C.1.1×106D.11×105【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1100000=1.1×106,故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.4.(3分)如图,先在纸上画两条直线a,b,使a∥b,再将一块直角三角板平放在纸上,使其直角顶点落在直线b上,若∠2=50°,则∠1的度数是( )A.30°B.40°C.50°D.60°【分析】由平角定义求出∠3=180°﹣90°﹣50°=40°,由平行线的性质推出∠1=∠3=40°.【解答】解:∵∠2=50°,∴∠3=180°﹣90°﹣50°=40°,∵a∥b,∴∠1=∠3=40°.故选:B.【点评】本题考查平行线的性质,关键是由平行线的性质得到∠1=∠3.5.(3分)分式化简后的结果为( )A.﹣1B.1C.D.0【分析】利用分式的加减法则计算即可.【解答】解:原式=+==1,故选:B.【点评】本题考查分式的加减,熟练掌握相关运算法则是解题的关键.6.(3分)如图,二次函数y=ax2+bx+c的图象与y轴交于点A(0,2),其对称轴是直线x=,则不等式ax2+bx+c≤2的解集是( )A.x≤0B.x≤﹣1或x≥2C.0≤x≤1D.x≤0或x≥1【分析】由题意得,点A关于对称轴对称的点的坐标为(1,2),则二次函数y=ax2+bx+c 的图象与直线y=2的交点坐标为(0,2),(1,2),结合图象可得答案.【解答】解:∵点A(0,2),抛物线的对称轴是直线x=,∴点A关于对称轴对称的点的坐标为(1,2),∴二次函数y=ax2+bx+c的图象与直线y=2的交点坐标为(0,2),(1,2),∴不等式ax2+bx+c≤2的解集是x≤0或x≥1.故选:D.【点评】本题考查二次函数与不等式(组),掌握二次函数的图象与性质是解答本题的关键.7.(3分)在一个不透明的盒子中装有1个白球和2个黄球,每个球除颜色外,其他都相同.从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球记下颜色,则两次摸到的球的颜色不同的概率是( )A.B.C.D.【分析】列表可图得出所有等可能的结果数以及两次摸到的球的颜色不同的结果数,再利用概率公式可得出答案.【解答】解:列表如下:白黄黄白(白,黄)(白,黄)黄(黄,白)(黄,黄)黄(黄,白)(黄,黄)共有6种等可能的结果,其中两次摸到的球的颜色不同的结果有4种,∴两次摸到的球的颜色不同的概率为.故选:D.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.8.(3分)已知关于x的一元二次方程x2﹣2x﹣3m+1=0有两个相等的实数根,则此方程的根是( )A.x1=x2=5B.x1=x2=2C.x1=x2=1D.x1=x2=﹣3【分析】先利用根的判别式求出m的值,再对方程进行求解即可.【解答】解:因为关于x的一元二次方程x2﹣2x﹣3m+1=0有两个相等的实数根,所以(﹣2)2﹣4(﹣3m+1)=0,解得m=0,所以此方程为x2﹣2x+1=0,解得x1=x2=1.故选:C.【点评】本题考查根的判别式,熟知一元二次方程根的判别式是解题的关键.9.(3分)如图,把Rt△ABC放置在平面直角坐标系中,∠C=90°,已知点A是x轴上的定点,点B的坐标为(0,2).将Rt△ABC绕点A逆时针旋转60°,旋转后点C恰好与点O重合,则旋转前点C的坐标是( )A.B.C.D.【分析】令△ABC旋转后的对应三角形为△AOB′,结合旋转的角度可得出点B′的坐标,进而求出OA的长,再过点C作OA的垂线利用勾股定理即可解决问题.【解答】解:令△ABC旋转后的对应三角形为△AOB′,连接OC,如图所示,则AB=AB′,AC=AO,∠CAO=∠BAB′=60°,所以△ACO和△ABB′都是等边三角形.因为AO⊥BB′,所以B′O=BO=2,所以BB′=4,所以AB=BB′=4.在Rt△AOB中,OA=,所以CO=OA=.过点C作OA的垂线,垂足为M,则OM=.在Rt△COM中,CM=.所以点C的坐标为().故选:C.【点评】本题考查坐标与图形变化﹣旋转,熟知图形旋转的性质并巧用勾股定理是解题的关键.10.(3分)如图,在矩形ABCD中,AB=6,BC=8.点E在边AD上,且ED=6,M,N 分别是边AB,BC上的动点,P是线段CE上的动点,连接PM,PN,使PM=PN.当PM+PN 的值最小时,线段PC的长为( )A.2B.C.4D.【分析】过点P作PG⊥CD于点G,交AB于点F,作PH⊥BC于点H,则四边形BCGF 是矩形,所以FG=BC=8,∠PFB=90°,证得CE平分∠BCD,得PH=PG,由PM≥PF,PN≥PH,得PM+PN≥8,可知当PM与PF重合且PN与PH重合时,PM+PN取得最小值8,此时四边形BHPF是正方形,则BH=PF=PH=PG=CH=FG=×8=4,根据勾股定理即可求出PC.【解答】解:过点P作PG⊥CD于点G,交AB于点F,作PH⊥BC于点H,∵四边形ABCD是矩形,∴∠B=∠BCG=∠FGC=90°,CD=AB=6,AD=BC=8,∴四边形BCGF是矩形,∴FG=BC=8,∠PFB=∠B=∠PHB=90°,∴四边形BHPF是矩形,PF⊥AB,∵ED=6,∴ED=CD,∴∠DCE=∠DEC=45°,∴∠BCE=90﹣45°=45°=∠DCE,∴CE平分∠BCD,∴PH=PG,四边形CHPG是正方形,∴PH=CH,∵PM≥PF,PN≥PH,∴PM+PN≥PF+PH,∴PM+PN≥PF+PG,∵PF+PG=FG=8,∴PM+PN≥8,∴当PM与PF重合且PN与PH重合时,PM+PN取得最小值8,∵BM=BN,∴当PM与PF重合且PN与PH重合时,则BF=BH,此时四边形BHPF是正方形,∴BH=PF=PH=PG=CH=FG=×8=4,∴PC==4.故选:D.【点评】此题重点考查矩形的判定与性质、正方形的判定与性质、角平分线的性质、垂线段最短等知识,正确地作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)如果有意义,那么x的取值范围是x≤1 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:﹣x+1≥0,解得:x≤1,故答案为:x≤1.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数是解题的关键.12.(3分)不等式组的解集为x<﹣1 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由3﹣x>0得:x<3,由2x<﹣x﹣3得:x<﹣1,则不等式组的解集为x<﹣1,故答案为:x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)某市举办了“演说中国”青少年演讲比赛,其中综合荣誉分占30%,现场演讲分占70%,小明参加并在这两项中分别取得90分和80分的成绩,则小明的最终成绩为 83 分.【分析】根据加权平均数的公式计算,即可求解.【解答】解:小明的最终比赛成绩为:90×30%+80×70%=27+56=83(分),故答案为:83.【点评】本题考查了加权平均数,根据加权平均数的公式列出算式是本题的关键.14.(3分)如图,把矩形OABC放在平面直角坐标系中,O(0,0),A(4,0),C(0,3),点P在边OC上,且不与点O,C重合;点Q在边OA上,且不与点O,A重合,AQ =2OP,连接QP,QB,PB.当点Q的坐标为 (,0) 时,PQ⊥BQ.【分析】通过证明△POQ∽△QAB,可得,可求OQ的长,即可求解.【解答】解:∵四边形ABCD是矩形,O(0,0),A(4,0),C(0,3),∴OA=4,AB=OC=3,∠COA=∠BAO=90°,若PQ⊥BQ,∴∠PQB=90°=∠COA=∠BAO,∴∠OPQ+∠OQP=90°=∠OQP+∠BQA,∴∠OPQ=∠AQB,∴△POQ∽△QAB,∴,∵AQ=2OP,∴,∴OQ=,∴点Q(,0),∴当点Q(,0)时,PQ⊥BQ,故答案为:(,0).【点评】本题考查了矩形的性质,相似三角形的判定和性质,证明三角形相似是解题的关键.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=40°,AB=4,斜边AB是半圆O的直径,点D是半圆上的一个动点,连接CD与AB交于点E,若△BCE是等腰三角形,则∠BOD的度数为 80°或140° .【分析】分两种情形:①BE=BC,②EB=EC,分别求出∠BOD即可.【解答】解:如图1中,当BE=BC时,∵BE=BC,∠EBC=40°,∴∠BCE=∠BEC=×(180°﹣40°)=70°,∵弧BD=弧BD,∴∠BOD=2∠BCE=140°;如图2中,当EB=EC时,点E与O重合,∵BE=BC,∴∠EBC=∠BCD=40°,∴∠BOD=2∠BCD=80°;故答案为:80°或140°.【点评】本题考查圆周角定理,等腰三角形的性质,三角形内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:(3x+2y)(3x﹣2y)﹣2y(2﹣2y).【分析】(1)先化简,然后计算加减法即可;(2)根据平方差公式和单项式乘多项式将题目中的式子展开,然后合并同类项即可.【解答】解:(1)=3﹣4+1=0;(2)(3x+2y)(3x﹣2y)﹣2y(2﹣2y)=9x2﹣4y2﹣4y+4y2=9x2﹣4y.【点评】本题考查二次根式的混合运算、整式的混合运算,熟练掌握运算法则是解答本题的关键,注意平方差公式和完全平方公式的应用.17.(9分)为引导学生广泛阅读文学名著,某校在七、八年级开展了以“走进名著,诵读经典”为主题的知识竞赛活动.学生竞赛成绩分为A,B,C,D四个等级,分别是A:0≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100.现从七、八年级参加竞赛的学生中各随机选出20名学生的成绩整理如下:七年级学生的竞赛成绩为:82,70,86,86,99,86,86,88,84,79,81,91,95,98,93,84,58,81,90,83;八年级中等级为C的学生成绩为:89,87,85,85,84,84,83.学生平均数中位数众数方差七年级8586b86八年级85a9180.76根据以上信息,解答下列问题:(1)根据表格写出a= 86 ,b= 86 ,m= 40 ;(2)根据以上数据,你认为在此次知识竞赛活动中,哪个年级的成绩更好?请说明理由(一条即可);(3)若七、八年级各有1000名学生参赛,请估计两个年级参赛学生中成绩为一般(小于80分)的学生人数.【分析】(1)分别根据中位数和众数的定义可得a和b的值,用“1”别减去其它三个等级所占百分比即可得出m的值;(2)依据表格数据做出判断即可;(3)用样本估计总体,即用总人数乘样本中成绩为一般(小于80分)的学生人数所占百分比即可.【解答】解:(1)由题意可知,把八年级20名学生的成绩从小到大排列,排在中间的两个数分别为85,87,故中位数a=(85+87)÷2=86;七年级0名学生的成绩中86出现次数最多,故众数b=86;m%=1﹣10%﹣15%﹣7÷20=40%,故m=40.故答案为:86,86,40;(2)八年级的成绩更好,因为两个年级的平均数和中位数都相同,而八年级的成绩的众数大于七年级.(答案合理即可)(3)(名).答:估计两个年级参赛学生中成绩为一般(小于80分)的学生共有400名.【点评】本题考查了中位数、众数、平均数,方差,理解中位数、众数的定义,掌握中位数、众数的计算方法是正确解答的关键.18.(9分)如图,在△ABC中,∠B=30°,∠C=90°,作线段AB的垂直平分线,交BC 于点D,交AB于点E.(1)依题意补全图形;(要求:尺规作图,保留作图痕迹,不写作法)(2)求证:CD=BD.【分析】(1)根据线段垂直平分线的作图方法按要求作图即可.(2)由线段垂直平分线的性质可得AD=BD,则∠DAB=∠B=30°,进而可得∠DAC=30°,从而可得.【解答】(1)解:如图所示.(2)证明:连接AD,由(1)知,DE是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠B=30°.∵∠C=90°,∴∠BAC=60°,∴∠DAC=30°.在Rt△ACD中,∠DAC=30°,∴.【点评】本题考查作图—复杂作图、线段垂直平分线的性质、含30度角的直角三角形,掌握含30度角的直角三角形、线段垂直平分线的性质是解答本题的关键.19.(9分)如图,为了测量国旗台上旗杆DE的高度,小华在点A处利用测角仪测得旗杆底部D的仰角为27°,然后他沿着正对旗杆DE的方向前进0.5m到达点B处,此时利用测角仪测得旗杆顶部E的仰角为60°,已知点A,B,C在同一水平直线上,测角仪AF 的高为1m,DE⊥AB于点C,旗杆底部D到地面的距离DC为3m,求旗杆DE的高度.(结果精确到0.1m.≈1.73,cos27°≈0.89,tan27°≈0.51,sin27°≈0.45)【分析】延长FN交EC于点M,设DE=xm,根据正切的定义用x表示出MN,再根据正切的定义求出MF,根据题意列方程,解方程得到答案.【解答】解:如图,延长FN交EC于点M,由题意得,AF=BN=CM=1m,DC=3m,AB=FN=0.5m,则DM=DC﹣CM=2m,设DE=xm,则EM=(x+2)m,在Rt△EMN中,∠FNM=60°,∵tan∠FNM=,∴MN===,在Rt△FDM中,FM==≈3.92(m),由FN=FM﹣MN,得3.92﹣=0.5,解得:x≈3.9,答:旗杆DE的高度约为3.9m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解题的关键.20.(9分)某电子产品店两次购进甲和乙两种品牌耳机的数量和总费用如下表:第一次第二次甲品牌耳机(个)2030乙品牌耳机(个)4050总费用(元)1080014600(1)甲、乙两种品牌耳机的进价各是多少元?(2)商家第三次进货计划购进两种品牌耳机共200个,其中甲品牌耳机数量不少于30个,在采购总价不超过35000元的情况下,最多能购进多少个甲品牌耳机?【分析】(1)设甲品牌耳机的进价是x元,乙品牌耳机的进价是y元,利用总价=单价×数量,结合第一、二次够级两种品牌耳机的数量及所需总费用,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设第三次购进m个甲品牌耳机,则购进(200﹣m)个乙品牌耳机,根据“第三次购进甲品牌耳机数量不少于30个,且总价不超过35000元”,可列出关于m的一元一次不等式组,解之可得出m的取值范围,再取其中的最大值即可得出结论.【解答】解:(1)设甲品牌耳机的进价是x元,乙品牌耳机的进价是y元,根据题意得:,即,解得:.答:甲品牌耳机的进价是220元,乙品牌耳机的进价是160元;(2)设第三次购进m个甲品牌耳机,则购进(200﹣m)个乙品牌耳机,根据题意得:,解得:30≤m≤50,∴m的最大值为50.答:最多能购进50个甲品牌耳机.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.21.(9分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点B的坐标为,点C在反比例函数的图象上,以点O为圆心,OC长为半径画.(1)求反比例函数的表达式;(2)阴影部分的面积为.(用含π的式子表示)【分析】(1)在Rt△ABD中,由勾股定理得:AD2+BD2=AB2,得到AB=OA=OC=CB =4,AD=2,证明Rt△COE≌Rt△BAD(HL).得到,即可求解;(2)由阴影部分的面积=S菱形OABC﹣S扇形OCA=AO×CE﹣×π×AO2,即可求解.【解答】解:(1)如图,过点B,C分别作BD,CE垂直于x轴于点D,E.∵点B的坐标为,∴OD=6,.∵四边形OABC是菱形,∴AB=OA=OC=CB,CB∥OA.设AB=OA=x,则AD=6﹣x,在Rt△ABD中,由勾股定理得:AD2+BD2=AB2,即.解得x=4.∴AB=OA=OC=CB=4,AD=2.在Rt△COE与Rt△BAD中,,∴Rt△COE≌Rt△BAD(HL).∴OE=AD=2.∵,∴.∴.设反比例函数的表达式为,将C点代入,得,∴;(2)由点C的坐标得,tan∠COE=,则∠COE=60°,则阴影部分的面积=S菱形OABC﹣S扇形OCA=AO×CE﹣×π×AO2=4×2﹣×π×16=,故答案为:.【点评】本题考查的是反比例函数综合运用,涉及到三角形全等、面积的计算、勾股定理的运用等,综合性强,难度适中.22.(10分)某校举办“集体跳长绳”体育活动,若在跳长绳的过程中,绳甩到最高处时的形状是抛物线型,示意图如图所示,以ED的中点O为原点建立平面直角坐标系(甲位于x轴的点E处,乙位于x轴的点D处),正在甩绳的甲、乙两名同学握绳的手分别设为A点,B点,且AB的水平距离为4m,绳子甩到最高点C处时,他们握绳的手到地面的距离AE与BD均为1.2m,最高点到地面的垂直距离为2m.(1)求出该抛物线的解析式;(2)如果身高为1.8m的小亮,站在ED之间,且与点E的距离为tm,当绳子甩到最高处时,可以通过他的头顶,请结合函数图象求出t的取值范围;(3)经测定,多人跳长绳且同方向站立时,脚跟之间的距离不小于0.4m才能安全跳绳,小亮与其他4位同学一起跳绳,如果这4位同学与小亮身高相同,通过计算当绳子甩到最高处时,他们是否可以安全跳绳?【分析】(1)由题意可设抛物线的解析式为y=ax2+2,把点B(2,1.2)代入y=ax2+2中,求出a的值即可求出抛物线的解析式;(2)将y=1.8代入y=﹣0.2x2+2,求出x的值即可求出t的取值范围;(3)由(2)可知当y=1.8时,x1=﹣1,x2=1,所以可求出可以站立跳绳的距离为4﹣2=2米,因为1.6<2,所以他们可以安全起跳.【解答】解:(1)由题意可设抛物线的解析式为y=ax2+2,将点B(2,1.2)代入y=ax2+2中,解得a=﹣0.2∴y=﹣0.2x2+2;(2)将y=1.8代入y=﹣0.2x2+2,解得x1=﹣1,x2=1,∵EO=2,∴2﹣1=1,2+1=3.∴1≤t≤3;(3)他们可以安全跳绳.理由如下:当y=1.8时,则1.8=﹣0.2x2+2,解得:x1=﹣1,x2=1,∴可以站立跳绳的距离为1﹣(﹣1)=2(m).∵(1+4﹣1)×0.4=1.6(m),且1.6<2,∴他们可以安全跳绳.【点评】本题考查了求二次函数的表达式,和二次函数的实际应用,利用待定系数法求出二次函数的表达式是解答本题的关键.23.(10分)综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断:如图1,在矩形ABCD中,点E为边AB的中点,沿DE折叠,使点A落在点F处,把纸片展平,延长DF与BC交于点G.请写出线段FG与线段BG的数量关系,并说明理由;(2)迁移思考:如图1,若AB=4,按照(1)中的操作进行折叠和作图,当CG=2时,求AD的值;(3)拓展探索:如图2,四边形ABCD为平行四边形,其中∠A与∠C是对角,点E为边AB的中点,沿DE折叠,使点A落在点F处,把纸片展平,延长DF与射线BC交于点G.若AD=2,CG=0.5,请直接写出线段DG的值.【分析】(1)由“HL”可证Rt△EFG≌Rt△EBG,可得FG=BG;(2)由勾股定理可求解;(3)分两种情况讨论,由折叠的性质可得AD=DF=2,∠A=∠DFE,EF=AE,由等腰三角形的性质可求FG的长,即可求解.【解答】解:(1)FG=BG,理由如下:如图,连接EG,∵四边形ABCD是矩形,∴∠A=∠B=90°.∵点E是AB的中点,∴AB=BE.由折叠可知AE=EF,∴EF=EB.在Rt△EFG和Rt△EBG中,∴Rt△EFG≌Rt△EBG(HL),∴FG=BG;(2)∵四边形ABCD是矩形,AB=4,∴CD=AB=4.∴.令AD=x,则DF=AD=x,由(1)知FG=BG=x﹣2,∴.解得,即AD的长为.(3)当点F在DC的下方时,如图2,连接BF,∵折叠,∴AD=DF=2,∠A=∠DFE,EF=AE,∵∠A+∠ABC=180°,∠DFE+∠EFG=180°,∴∠EFG=∠ABC,∵点E为边AB的中点,∴AE=BE,∴EF=BE,∴∠EFB=∠EBF,∴∠GFB=∠GBF,∴GF=BG=BC﹣CG=2﹣0.5=1.5,∴DG=3.5;当点F在DC的上方时,如图3,连接BF,同理可求:FG=BG=BC+CG=2+0.5=2.5,∴DG=4.5,综上所述:DG的长为3.5或4.5.【点评】本题是四边形综合题,考查了矩形的性质,平行四边形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.。
中学自主招生数学试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项符合题目要求,请将正确选项前的字母代号填在答题卡相应位置上)1.8的立方根等于()A.2 B.-2 C.±2D.2.下列运算中,结果正确的是()A.a4+a4=a8 B.a3•a2=a5C.a8÷a2=a4 D.(-2a2)3=-6a63有意义的x的取值范围是()A.x>13B.x>−13C.x≥13D.x≥−134.如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为()A.B.C.D.5.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.如图,正方形ABCD的顶点A、D分别在x轴、y轴的正半轴上,若反比例函数y=kx(x>0)的图象经过另外两个顶点B、C,且点B(6,n),(0<n<6),则k的值为()A.18 B.12 C.6 D.2二、填空题(本大题共10小题,每小题3分,共30分.请将答案直接写在答题卡相应位置上)7.- 12的倒数是 . 8.0.0002019用科学记数法可表示为 .9.分解因式:a 2b-b 3=10.一元二次方程x 2-2x=0的两根分别为x 1和x 2,则x 1x 211.一个多边形的内角和与外角和之差为720°,则这个多边形的边数为 .12.已知抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=2,且经过点P (3,1),则a+b+c 的值为 .13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 .14.已知点C 为线段AB 的黄金分割点,且AC >BC ,若P 点为线段AB 上的任意一点,则P 点出现在线段AC 上的概率为 .15.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为 .16.如图,平面直角坐标系中,点A (0,-2),B (-1,0),C (-5,0),点D 从点B 出发,沿x 轴负方向运动到点C ,E 为AD 上方一点,若在运动过程中始终保持△AED ~△AOB ,则点E 运动的路径长为三、解答题(本大题共11小题,共102分.请在答题卡指定位置作答,解答时应写出必要的文字说明、演算步骤或推理过程)17.计算:2011)4sin 603-︒⎛⎫+- ⎪⎝⎭18.解不等式组:212(3)33x x x+⎧⎨+->⎩….19.先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足方程x 2-2x-3=0. 20.如图,在△ABC 中,∠BAC=90°,AD ⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于P ,Q 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的基础上,过点P 画PE ∥AC 交BC边于E,联结EQ ,则四边形APEQ 是什么特殊四边形?证明你的结论.21.将分别标有数字3,6,9的三张形状、大小均相同的卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为6的概率;(2)随机地抽取张作为十位上的数字(不放回),再抽取一张作为个位上的数字,通过列表或画树状图求所组成的两位数恰好是“69”的概率.22.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q 从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ的面积为31cm2?23.在争创全国文明城市活动中,某校开展了为期一周的“新时代文明实践”活动,为了解情况,学生会随机调查了部分学生在这次活动中“宣传文明礼仪”的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B;1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图)请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有多少人?24.共享单车为大众出行提供了方便,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节.已知,∠ABE=70°,∠EAB=45°,车轮半径为0.3m,BE=0.4m.小(结果精确到1cm)参考数据:sin70°≈0.94,明体验后觉得当坐垫C离地面高度为0.9m时骑着比较舒适,求此时CE的长.cos70°≈0.34,tan70°≈2.7525.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=PA•PE;(3)若AE-AP=PC=4,求圆O的半径.26.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)27.如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线l:y=-12x-1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.参考答案与试题解析1.【分析】利用立方根定义计算即可求出值.【解答】解:8的立方根是2,故选:A.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.2.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a4+a4=2a4,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为a8÷a2=a8-2=a6,故本选项错误;D、应为(-2a2)3=(-2)3•(a2)3=-8a6,故本选项错误.故选:B.【点评】本题考查同底数幂的乘法法则,同底数幂的除法法则,积的乘方的性质,熟练掌握运算法则是解题的关键.3.【分析】根据二次根式的性质,被开方数大于或等于0,解不等式即可.【解答】解:根据题意得:3x-1≥0,解得x≥13.故选:C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:俯视图如选项D所示,故选:D.【点评】本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.5.【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°-32°=58°,故选:A.【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.6.【分析】过B作BE⊥x轴于E,FC⊥y轴于点F.可以证明△AOD≌△BEA,则可以利用n表示出A,D的坐标,即可利用n表示出C的坐标,根据C,B满足函数解析式,即可求得n的值.进而求得k的值.【解答】解:过D作BE⊥x轴于E,CF⊥y轴于点F,∴∠BEA=90°,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠DAO+∠BAE=90°,∠BAE+∠ABE=90°,∴∠ABE=∠DAO,又∵AB=AD,∴△ADO≌△BAE(AAS).同理,△ADO≌△DCF.∴OA=BE=n,OD=AE=OE-OA=6-n,则A点的坐标是(n,0),D的坐标是(0,6-n).∴C的坐标是(6-n,6).由反比例函数k的性质得到:6(6-n)=6n,所以n=3.则B点坐标为(6,3),所以k=6×3=18.故选:A.【点评】本题考查了正方形的性质与反比例函数的综合应用,体现了数形结合的思想.7.分析】乘积是1的两数互为倒数.【解答】解:-12的倒数是-2.故答案为:-2.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0002019=2.019×10-4.故答案为:2.019×10-4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2-b2)=b(a+b)(a-b),故答案为:b(a+b)(a-b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵x2-2x=0的两根分别为x1和x2,∴x1x2=0,故答案为:0.【点评】本题考查了根与系数的关系,牢记两根之积等于ca是解题的关键.11.【分析】先求出多边形的内角和,再根据多边形的内角和公式求出边数即可.【解答】解:∵一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∴这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n-2)×180°=1080°,解得:n=8,即多边形的边数为8,故答案为:8.【点评】本题考查了多边形的内角和外角,能列出关于n的方程是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°,多边形的外角和等于360°.12.【分析】由二次函数的对称性可知P点关于对称轴对称的点为(1,1),故当x=1时可求得y值为1,即可求得答案.【解答】解:∵抛物线y=ax2+bx+c(a>0)的对称轴是直线x=2,∴P(3,1)对称点坐标为(1,1),∴当x=1时,y=1,即a+b+c=1,故答案为1.【点评】本题主要考查二次函数的性质,利用二次函数的对称性求得点(1,1)在其图象上是解题的关键.13.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长=1206180π⨯=4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.16.【分析】如图,连接OE.首先说明点E 在射线OE上运动(∠EOD是定值),当点D与C重合时,求出OE的长即可.【解答】解:如图,连接OE.∵∠AED=∠AOD=90°,∴A ,O ,E ,D 四点共圆,∴∠EOC=∠EAD=定值,∴点E 在射线OE 上运动,∠EOC 是定值.∵tan ∠EOD=tan ∠OAB=12, ∴可以假设E (-2m ,m ),当点D 与C 重合时,225229AC =+=,∵AE=2EC ,∴EC=291455=, ∴(-2m+5)2+m 2=295, 解得m=85或125(舍弃), ∴E (-165,85), ∴点E 的运动轨迹=OE 的长=855, 故答案为85. 【点评】本题考查轨迹,坐标与图形性质,相似三角形的性质,锐角三角函数等知识,解题的关键是正确寻找点的运动轨迹,属于中考常考题型.17. 【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 【分析】首先解每个不等式,两个不等式的公共部分就是不等式组的解集.【解答】解:()212333x x +≥⋯+-⋯⎧⎨⎩①>②, 解①得:x≥-1,解②得:x <3.则不等式组的解集是:-1≤x <3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.19. 【分析】根据分式的运算法则即可求出答案.【解答】解:原式=1(2)211x x x x x x x -+⋅-+-+ =1x x x -+ =21x x +; 当x 2-2x-3=0时,解得:x=3或x=-1(不合题意,舍去)当x=3时,原式=94; 【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20. 【分析】(1)利用尺规作出∠ABC 的角平分线即可.(2)利用全等三角形的性质证明PA=PE ,再证明AP=AQ ,即可解决问题.【解答】解:(1)如图,射线BQ 即为所求.(2)结论:四边形APEQ 是菱形.理由:∵AD ⊥BC ,∴∠ADB=90°,∵∠BAC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠C=90°,∴∠BAD=∠C ,∵PE ∥AC ,∴∠PEB=∠C ,∠BAP=∠BEP ,∵BP=BP ,∠ABP=∠EBP ,∴△ABP ≌△EBP (AAS ),∴PA=PE ,∵∠AQP=∠QBC+∠C ,∠APQ=∠ABP+∠BAP ,∴∠APQ=∠AQP ,∴AP=AQ ,∴PE=AQ ,∵PE∥AQ,∴四边形APEQ是平行四边形,∵AP=AQ,∴四边形APEQ是菱形.【点评】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】(1)让6的个数除以数的总数即为所求的概率;(2)列举出所有情况,看所组成的两位数恰好是“69”的情况数占总情况数的多少即可.【解答】解:(1)∵卡片共有3张,有3,6,9,6有一张,∴抽到数字恰好为6的概率P(6)=13;(2)画树状图:由树状图可知,所有等可能的结果共有6种,其中两位数恰好是69有1种.∴P(69)=16.【点评】此题主要考查了列树状图解决概率问题;找到所组成的两位数恰好是“69”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.22.【分析】设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,利用分割图形求面积法结合△DPQ的面积为31cm2,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,S△DPQ=S矩形ABCD-S△ADP-S△CDQ-S△BPQ,=AB•BC-12AD•AP-12CD•CQ-12BP•BQ,=6×12-12×12x-12×6(12-2x)-12(6-x)•2x,=x2-6x+36=31,解得:x1=1,x2=5.答:运动1秒或5秒后△DPQ的面积为31cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.【分析】(1)根据D组的频数和所占的百分比,可以求得本次调查的学生的人数;(2)根据(1)中的结果和统统计图中的数据可以分别求得B和C组的人数,从而可以将频数分布直方图补充完整;(3)根据统计图中的数据可以求得该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有多少人.【解答】解:(1)学生会随机调查了:10÷20%=50名学生,故答案为:50;(2)C组有:50×40%=20(名),则B 组有:50-3-20-10-4=13(名),补全的频数分布直方图如右图所示;(3)900×10450=252(人), 答:该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有252人.【点评】本题考查频数(率)分布直方图、用样本估计总体、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.24. 【分析】过点C 作CN ⊥AB ,交AB 于M ,通过构建直角三角形解答即可.【解答】解:过点C 作CN ⊥AB ,交AB 于M ,交地面于N由题意可知MN=0.3m ,当CN=0.9m 时,CM=0.6m ,Rt △BCM 中,∠ABE=70°,sin ∠ABE=sin70°=CM CB≈0.94, BC≈0.638,CE=BC-BE=0.638-0.4=0.238≈0.24m=24cm .【点评】本题主要考查了解直角三角形的应用,正确构建直角三角形是解答本题的关键.25. 【分析】(1)OA=OC ,则∠OCA=∠OAC ,CD ∥AP ,则∠OCA=∠PAC ,即可求解;(2)证明△PAC ∽△PCE ,即可求解;(3)利用△PAC ∽△CAB 、PC 2=AC 2-PA 2,AC 2=AB 2-BC 2,即可求解.【解答】解:(1)∵OA=OC ,∴∠OCA=∠OAC ,∵CD ∥AP ,∴∠OCA=∠PAC ,∴∠OAC=∠PAC ,∴AC 平分∠BAP ;(2)连接AD ,∵CD为圆的直径,∴∠CAD=90°,∴∠DCA+∠D=90°,∵CD∥PA,∴∠DCA=∠PAC,又∠PAC+∠PCA=90°,∴∠PAC=∠D=∠E,∴△PAC∽△PCE,∴PA PC PC PE=,∴PC2=PA•PE;(3)AE=AP+PC=AP+4,由(2)得16=PA(PA+PA+4),PA2+2PA-8=0,解得,PA=2,连接BC,∵CP是切线,则∠PCA=∠CBA,Rt△PAC∽Rt△CAB,AP AC PCAC AB BC==,而PC2=AC2-PA2,AC2=AB2-BC2,其中PA=2,解得:AB=10,则圆O的半径为5.【点评】此题属于圆的综合题,涉及了三角形相似、勾股定理运用的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.26.【分析】(1)如图1,过E作EF⊥AB于F,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD是矩形,得到EF=BD,推出△AEF是等腰直角三角形,根据等腰直角三角形的性质得到结论;(2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论;(3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC AC DC CE =,即BC DC AC EC =,根据角的和差得到∠ACE=∠BCD ,求得△ACE ∽△BCD ,证得AE AC BD BC=,过点B 作BF ⊥AC 于点F ,则AC=2CF ,根据相似三角形的性质即可得到结论.(1)如图1,过E 作EF ⊥AB 于F ,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°,∴∠A=∠C=∠DEC=45°,∴∠B=∠EDC=90°,∴四边形EFBD 是矩形,∴EF=BD ,∴EF ∥BC ,∴△AEF 是等腰直角三角形, ∴2BD EF AE AE==, (2)此过程中AE BD 的大小有变化, 由题意知,△ABC 和△EDC 都是等腰三角形,∴∠ACB=∠CAB=∠ECD=∠CED=30°,∴△ABC ∽△EDC ,中学自主招生数学试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项符合题目要求,请将正确选项前的字母代号填在答题卡相应位置上)1.8的立方根等于( )A .2B .-2C .±2D .2.下列运算中,结果正确的是( )A .a4+a4=a8B .a3•a2=a5C .a8÷a2=a4D .(-2a2)3=-6a63有意义的x 的取值范围是( )A .x >13B .x >−13C .x≥13D .x≥−134.如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为( )A.B.C.D.5.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.如图,正方形ABCD的顶点A、D分别在x轴、y轴的正半轴上,若反比例函数y=kx(x>0)的图象经过另外两个顶点B、C,且点B(6,n),(0<n<6),则k的值为()A.18 B.12 C.6 D.2二、填空题(本大题共10小题,每小题3分,共30分.请将答案直接写在答题卡相应位置上)7.- 12的倒数是.8.0.0002019用科学记数法可表示为.9.分解因式:a2b-b3=10.一元二次方程x2-2x=0的两根分别为x1和x2,则x1x211.一个多边形的内角和与外角和之差为720°,则这个多边形的边数为.12.已知抛物线y=ax2+bx+c(a>0)的对称轴是直线x=2,且经过点P(3,1),则a+b+c的值为.13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.14.已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为.15.如图,已知△ABC的三个顶点均在格点上,则cosA的值为.16.如图,平面直角坐标系中,点A (0,-2),B (-1,0),C (-5,0),点D 从点B 出发,沿x 轴负方向运动到点C ,E 为AD 上方一点,若在运动过程中始终保持△AED ~△AOB ,则点E 运动的路径长为三、解答题(本大题共11小题,共102分.请在答题卡指定位置作答,解答时应写出必要的文字说明、演算步骤或推理过程)17.计算:2011)4sin 603-︒⎛⎫+- ⎪⎝⎭18.解不等式组:212(3)33x x x+⎧⎨+->⎩….19.先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足方程x 2-2x-3=0. 20.如图,在△ABC 中,∠BAC=90°,AD ⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于P ,Q 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的基础上,过点P 画PE ∥AC 交BC 边于E ,联结EQ ,则四边形APEQ 是什么特殊四边形?证明你的结论.21.将分别标有数字3,6,9的三张形状、大小均相同的卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为6的概率;(2)随机地抽取张作为十位上的数字(不放回),再抽取一张作为个位上的数字,通过列表或画树状图求所组成的两位数恰好是“69”的概率.22.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动,几秒种后△DPQ 的面积为31cm2?23.在争创全国文明城市活动中,某校开展了为期一周的“新时代文明实践”活动,为了解情况,学生会随机调查了部分学生在这次活动中“宣传文明礼仪”的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B;1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图)请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有多少人?24.共享单车为大众出行提供了方便,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节.已知,∠ABE=70°,∠EAB=45°,车轮半径为0.3m,BE=0.4m.小(结果精确到1cm)参考数据:sin70°≈0.94,明体验后觉得当坐垫C离地面高度为0.9m时骑着比较舒适,求此时CE的长.cos70°≈0.34,tan70°≈2.75,2≈1.4125.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=PA•PE;(3)若AE-AP=PC=4,求圆O的半径.26.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)27.如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线l:y=-12x-1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.参考答案与试题解析1.【分析】利用立方根定义计算即可求出值.【解答】解:8的立方根是2,故选:A.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.2.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a4+a4=2a4,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为a8÷a2=a8-2=a6,故本选项错误;D、应为(-2a2)3=(-2)3•(a2)3=-8a6,故本选项错误.故选:B.【点评】本题考查同底数幂的乘法法则,同底数幂的除法法则,积的乘方的性质,熟练掌握运算法则是解题的关键.3.【分析】根据二次根式的性质,被开方数大于或等于0,解不等式即可.【解答】解:根据题意得:3x-1≥0,解得x≥13.故选:C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:俯视图如选项D所示,故选:D.【点评】本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.5.【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°-32°=58°,故选:A.【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.6.【分析】过B作BE⊥x轴于E,FC⊥y轴于点F.可以证明△AOD≌△BEA,则可以利用n表示出A,D的坐标,即可利用n表示出C的坐标,根据C,B满足函数解析式,即可求得n的值.进而求得k的值.【解答】解:过D作BE⊥x轴于E,CF⊥y轴于点F,∴∠BEA=90°,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠DAO+∠BAE=90°,∠BAE+∠ABE=90°,∴∠ABE=∠DAO,又∵AB=AD,∴△ADO≌△BAE(AAS).同理,△ADO≌△DCF.∴OA=BE=n,OD=AE=OE-OA=6-n,则A点的坐标是(n,0),D的坐标是(0,6-n).∴C的坐标是(6-n,6).由反比例函数k的性质得到:6(6-n)=6n,所以n=3.则B点坐标为(6,3),所以k=6×3=18.故选:A.【点评】本题考查了正方形的性质与反比例函数的综合应用,体现了数形结合的思想.7.分析】乘积是1的两数互为倒数.【解答】解:-12的倒数是-2.故答案为:-2.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0002019=2.019×10-4.故答案为:2.019×10-4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2-b2)=b(a+b)(a-b),故答案为:b(a+b)(a-b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵x2-2x=0的两根分别为x1和x2,∴x1x2=0,故答案为:0.【点评】本题考查了根与系数的关系,牢记两根之积等于ca是解题的关键.11.【分析】先求出多边形的内角和,再根据多边形的内角和公式求出边数即可.【解答】解:∵一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∴这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n-2)×180°=1080°,解得:n=8,即多边形的边数为8,故答案为:8.【点评】本题考查了多边形的内角和外角,能列出关于n 的方程是即此题的关键,注意:边数为n 的多边形的内角和=(n-2)×180°,多边形的外角和等于360°.12. 【分析】由二次函数的对称性可知P 点关于对称轴对称的点为(1,1),故当x=1时可求得y 值为1,即可求得答案.【解答】解:∵抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=2,∴P (3,1)对称点坐标为(1,1),∴当x=1时,y=1,即a+b+c=1,故答案为1.【点评】本题主要考查二次函数的性质,利用二次函数的对称性求得点(1,1)在其图象上是解题的关键.13. 【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长=1206180π⨯ =4π, ∴圆锥的底面半径为4π÷2π=2.故答案为:2.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.16. 【分析】如图,连接OE .首先说明点E 在射线OE 上运动(∠EOD 是定值),当点D 与C 重合时,求出OE 的长即可.【解答】解:如图,连接OE .∵∠AED=∠AOD=90°,∴A ,O ,E ,D 四点共圆,∴∠EOC=∠EAD=定值,∴点E 在射线OE 上运动,∠EOC 是定值.∵tan ∠EOD=tan ∠OAB=12, ∴可以假设E (-2m ,m ),当点D 与C 重合时,225229AC =+=,∵AE=2EC ,∴=, ∴(-2m+5)2+m 2=295, 解得m=85或125(舍弃), ∴E (-165,85), ∴点E 的运动轨迹=OE 的长=5, 故答案为85. 【点评】本题考查轨迹,坐标与图形性质,相似三角形的性质,锐角三角函数等知识,解题的关键是正确寻找点的运动轨迹,属于中考常考题型.17. 【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 【分析】首先解每个不等式,两个不等式的公共部分就是不等式组的解集.【解答】解:()212333x x +≥⋯+-⋯⎧⎨⎩①>②,解①得:x≥-1,解②得:x <3.则不等式组的解集是:-1≤x <3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.19. 【分析】根据分式的运算法则即可求出答案.【解答】解:原式=1(2)211x x x x x x x -+⋅-+-+ =1x x x -+ =21x x +; 当x 2-2x-3=0时,解得:x=3或x=-1(不合题意,舍去)当x=3时,原式=94; 【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20. 【分析】(1)利用尺规作出∠ABC 的角平分线即可.。