【聚焦中考】2017版中考数学总复习:考点聚焦试题27
- 格式:doc
- 大小:209.00 KB
- 文档页数:4
2017年北京中考数学一模 27题“二次函数综合题”西城。
在平面直角坐标系xOy 中,二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个公共点。
(1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤x ≤1时,函数值y 的取值范围是—6≤y ≤4—n ,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O 。
设平移后的图象对应的函数表达式为k h x a y +-=2)(,当x <2时,y 随x 的增大而减小,求k 的取值范围东城.二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0, n )作直线l ⊥y 轴。
① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值; (3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.xy直线lCBA–1–21234–1–2–31234O朝阳.在平面直角坐标系中xOy 中,抛物线2211222y x mx m m =-++-的顶点在x 轴上. (1)求抛物线的表达式;(2)点Q 是x 轴上一点,①若在抛物线上存在点P ,使得∠POQ =45°,求点P 的坐标; ②抛物线与直线y =2交于点E ,F (点E 在点F 的左侧),将此抛物线在点E ,F (包含点E 和点F )之间的部分沿x 轴平移n 个单位后得到的图象记为G ,若在图象G 上存在点P ,使得∠POQ =45°,求n 的取值范围.房山. 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x 轴对称,过点B作y 轴的垂线l ,直线l 与直线32-=x y 交于点C. (1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一公共点,求n 的取值范围.顺义.如图,已知抛物线28(0)y ax bx a =++≠与x 轴交于A (-2,0),B 两点,与y 轴交于C点,tan ∠ABC =2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A 、B 作x 轴的垂线,交直线CD 于点E 、F ,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF (含线段端点)只有1个公共点.求m 的取值范围.平谷.直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C . (1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围. yx–2–112345–5–4–3–2–112O门头沟. 在平面直角坐标系xOy 中,抛物线()()13y a x x =+-与x 轴交于A ,B 两点,点A 在 点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域"有______个整数点;(整数点就是横纵坐标均为整数的点) (2)求抛物线()()13y a x x =+-的顶点P 的坐标(用含a 的代数式表示); (3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围。
考点跟踪突破26 几何作图一、选择题 1.(2016·宜昌)任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示.若连接EH ,HF ,FG ,GE ,则下列结论中,不一定正确的是( B )A .△EGH 为等腰三角形B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形,第1题图) ,第3题图)2.(2015·福州)如图,点C ,D 分别是线段AB ,AC 的中点,分别以点C ,D 为圆心,BC 长为半径画弧,两弧交于点M ,测量∠AMB 的度数,结果为( B )A .80°B .90°C .100°D .105°3.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =1点拨:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a +b +1=0,整理得2a +b =-14.(2015·福建)如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( D )A .AD =BDB .BD =CDC .∠A =∠BED D .∠ECD =∠EDC,第4题图) ,第5题图)5.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是( D )①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △ABC=1∶3.A .1B .2C .3D .4点拨:①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确;②如图,∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.又∵AD 是∠BAC 的平分线,∴∠1=∠2=∠CBA =30°,∴∠3=90°-∠2=60°,即∠ADC =60°.故②正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的垂直平分线上.故③正确;④∵如图,在直角△ACD 中,∠2=30°,∴CD =12AD ,∴BC =CD +BD =12AD +AD =32AD ,S △DAC =12AC ·CD =12AC ·12AD.∴S △ABC =12AC ·BC =12AC ·32AD ,∴S △DAC ∶S △ABC =1∶3.故④正确.综上所述,正确的结论是①②③④,共有4个 二、填空题6.(2016·湖州)如图,在Rt △ABC 中,∠ACB =90°,BC =6,AC =8,分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则CD 的长是__5__.7.(2015·北京)阅读下面材料: 在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是__到线段两个端点距离相等的点在线段的垂直平分线上__.8.数学活动课上,老师在黑板上画直线l 平行于射线AN(如图),让同学们在直线l 和射线AN 上各找一点B 和C ,使得以A ,B ,C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画__3__个.点拨:如图:①AC 为直角边时,符合等腰直角三角形有2个;②AC 为斜边时,符合等腰直角三角形有1个.故这样的三角形最多能画3个9.如图,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于__12__.点拨:连接AB ,由画图可知:OA =OB ,AO =AB ,∴OA =AB =OB ,即三角形OAB 为等边三角形,∴∠AOB =60°,∴cos ∠AOB =cos 60°=1210.如图所示,已知线段a ,c 和∠α,求作:△ABC ,使BC =a ,AB =c ,∠ABC =∠α,根据作图把下面空格填上适当的文字或字母.(1)如图①所示,作∠MBN =__∠α__;(2)如图②所示,在射线BM 上截取BC =__a__,在射线BN 上截取BA =__c__; (3)连接AC ,如图③所示,△ABC 就是__所求作的三角形__. 三、解答题11.(2015·兰州)如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如图所示,⊙P即为所求作的圆12.(2015·青岛)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.解:如图,△ABC即为所求13.(2015·河池)如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作∠A的平分线交CD于点E;(2)过B作CD的垂线,垂足为点F;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.解:(1)如图所示:AE即为所求(2)如图所示:BF即为所求(3)如图所示:△ACE ≌△ADE ,△ACE ≌△CBF ,证明:∵AE 平分∠CAD ,∴∠CAE =∠DAE ,在△ACE 和△ADE 中,⎩⎪⎨⎪⎧AE =AE ,∠CAE =∠DAE ,AC =AD ,∴△ACE ≌△ADE(SAS ) 14.(导学号:01262040)(2016·怀化)如图,在Rt △ABC 中,∠BAC =90°.(1)先作∠ACB 的平分线交AB 边于点P ,再以点P 为圆心,PA 长为半径作⊙P ;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC 与⊙P 的位置关系,并证明你的结论.解:(1)如图所示,⊙P 即为所求作的圆 (2)BC 与⊙P 相切.理由为:过P 作PD ⊥BC ,交BC 于点D ,∵CP 为∠ACB 的平分线,且PA ⊥AC ,PD ⊥CB ,∴PD =PA ,∵PA 为⊙P 的半径.∴BC 与⊙P 相切.。
2017年中考冲刺数学试卷两套汇编六附答案解析中考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2 B.0 C.1 D.﹣32.下列图形是中心对称图形的是()A.B. C.D.3.下列计算中,结果正确的是()A.a2•a3=a6 B.(2a)•(3a)=6a C.(a2)3=a6D.a6÷a2=a34.函数y=的自变量取值范围是()A.x≠3 B.x≠0 C.x≠3且x≠0 D.x<35.我校2016级2198名考生在2016年中考体育考试中取得了优异成绩,为了考察他们的中考体育成绩,从中抽取了550名考生的中考体育成绩进行统计,下列说法正确的是()A.本次调查属于普查B.每名考生的中考体育成绩是个体C.550名考生是总体的一个样本D.2198名考生是总体6.如图,直线AB∥CD,直线EF与直线AB相交于点M,MN平分∠AME,若∠1=50°,则∠2的度数为()A.50°B.80°C.85°D.100°7.已知x﹣2y=3,则7﹣2x+4y的值为()A.﹣1 B.0 C.1 D.28.如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A.40°B.50°C.55°D.60°9.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.7810.数学活动课,老师和同学一起去测量校内某处的大树AB的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF 为8m处的D点,测得大树顶端A的仰角为α,已知sinα=,BE=1.6m,此学生身高CD=1.6m,则大树高度AB为()m.A.7.4 B.7.2 C.7 D.6.811.在矩形ABCD中,AB=,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为()A.﹣ B.﹣C.π﹣D.π﹣12.能使分式方程+2=有非负实数解且使二次函数y=x2+2x﹣k﹣1的图象与x轴无交点的所有整数k的积为()A.﹣20 B.20 C.﹣60 D.60二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.2016年重庆高考报名人数近250000人,数据250000用科学记数法表示为.14.计算:()﹣2+(π﹣3)0﹣=.15.如图,在△ABC中,=,DE∥AC,则DE:AC=.16.“2016重庆国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发秒.18.在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是cm2.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知如图,点F、A、E、B在一条直线上,∠C=∠F,BC∥DE,AB=DE求证:AC=DF.20.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)x(x+2y)﹣(x﹣y)2+y2(2)(﹣x+3)÷.22.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.23.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.24.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.(1)如图1,若AB=AC,∠BAD=30°,AD=6,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).26.已知如图1,抛物线y=﹣x2﹣x+3与x轴交于A和B两点(点A在点B 的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC(1)求出直线AD的解析式;(2)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN=(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;(3)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,求CP的值.参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2 B.0 C.1 D.﹣3【考点】有理数大小比较.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:﹣2、0、1、﹣3四个数中,最小的数是﹣3;故选D.2.下列图形是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念和各图的性质求解.【解答】解:A、是轴对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.3.下列计算中,结果正确的是()A.a2•a3=a6 B.(2a)•(3a)=6a C.(a2)3=a6D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.【分析】分别根据同底数幂的乘法的性质,单项式乘单项式的法则,幂的乘方的性质,同底数幂的除法的法则,对各选项分析判断后利用排除法求解.【解答】解:A、应为a2•a3=a2+3=a5,故A错误B、应为(2a)•(3a)=6a2,故B错误C、(a2)3=a2×3=a6,故C正确;D、应为a6÷a2=a6﹣2=a4.故D错误故选:C.4.函数y=的自变量取值范围是()A.x≠3 B.x≠0 C.x≠3且x≠0 D.x<3【考点】函数自变量的取值范围.【分析】根据分母不等于0即可列不等式求解.【解答】解:根据题意得3﹣x≠0,解得:x≠3.故选A.5.我校2016级2198名考生在2016年中考体育考试中取得了优异成绩,为了考察他们的中考体育成绩,从中抽取了550名考生的中考体育成绩进行统计,下列说法正确的是()A.本次调查属于普查B.每名考生的中考体育成绩是个体C.550名考生是总体的一个样本D.2198名考生是总体【考点】总体、个体、样本、样本容量.【分析】根据样本、总体、个体、样本容量的定义进行解答即可.【解答】解:样本是:从中抽取的550名考生的中考体育成绩,个体:每名考生的中考体育成绩是个体,总体:我校2016级2198名考生的中考体育成绩的全体,故选B.6.如图,直线AB∥CD,直线EF与直线AB相交于点M,MN平分∠AME,若∠1=50°,则∠2的度数为()A.50°B.80°C.85°D.100°【考点】平行线的性质.【分析】由MN平分∠AME,得到∠AME=2∠1=100°,根据平行线的性质即可得到结论.【解答】解:∵MN平分∠AME,若∠1=50°,∴∠AME=2∠1=100°,∴∠BMF=∠AME=100°,∵直线AB∥CD,∴∠2=180°﹣∠BMF=80°,故选B.7.已知x﹣2y=3,则7﹣2x+4y的值为()A.﹣1 B.0 C.1 D.2【考点】代数式求值.【分析】先求得2x﹣4y的值,然后整体代入即可.【解答】解:∵x﹣2y=3,∴2x﹣4y=6.∴7﹣2x+4y=7﹣(2x﹣4y)=7﹣6=1.故选:C.8.如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A.40°B.50°C.55°D.60°【考点】切线的性质.【分析】连接OC,先根据圆周角定理得∠DOC=2∠A=50°,再根据切线的性质定理得∠OCD=90°,则此题易解.【解答】解:连接OC,∵OA=OC,∴∠A=∠OCA=25°,∴∠DOC=2∠A=50°,∵过点D作⊙O的切线,切点为C,∴∠OCD=90°,∴∠D=40°.故选:A.9.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.78【考点】规律型:图形的变化类.【分析】由已知图形中空心小圆圈个数,知第n个图形中空心小圆圈个数为4n﹣(n+2)+n(n﹣1),据此可得答案.【解答】解:∵第①个图形中空心小圆圈个数为:4×1﹣3+1×0=1个;第②个图形中空心小圆圈个数为:4×2﹣4+2×1=6个;第③个图形中空心小圆圈个数为:4×3﹣5+3×2=13个;…∴第⑦个图形中空心圆圈的个数为:4×7﹣9+7×6=61个;故选:A.10.数学活动课,老师和同学一起去测量校内某处的大树AB的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF 为8m处的D点,测得大树顶端A的仰角为α,已知sinα=,BE=1.6m,此学生身高CD=1.6m,则大树高度AB为()m.A.7.4 B.7.2 C.7 D.6.8【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】根据题意结合坡度的定义得出C到AB的距离,进而利用锐角三角函数关系得出AB的长.【解答】解:如图所示:过点C作CG⊥AB延长线于点G,交EF于点N,由题意可得:==,解得:EF=2,∵DC=1.6m,∴FN=1.6m,∴BG=EN=0.4m,∵sinα==,∴设AG=3x,则AC=5x,故BC=4x,即8+1.6=4x,解得:x=2.4,故AG=2.4×3=7.2m,则AB=AG﹣BG=7.2﹣0.4=6.8(m),答:大树高度AB为6.8m.故选:D.11.在矩形ABCD中,AB=,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为()A.﹣ B.﹣C.π﹣D.π﹣【考点】扇形面积的计算;矩形的性质.【分析】连接AE,根据勾股定理求出BE的长,进而可得出∠BAE的度数,由余角的定义求出∠DAE的度数,根据S阴影=S扇形DAE﹣S△DAE即可得出结论.【解答】解:连接AE,∵在矩形ABCD中,AB=,BC=2,∴AE=AD=BC=2.在Rt△ABE中,∵BE===,∴△ABE是等腰直角三角形,∴∠BAE=45°,∴∠DAE=45°,∴S阴影=S扇形DAE﹣S△DAE=﹣×2×=﹣.故选A.12.能使分式方程+2=有非负实数解且使二次函数y=x2+2x﹣k﹣1的图象与x轴无交点的所有整数k的积为()A.﹣20 B.20 C.﹣60 D.60【考点】抛物线与x轴的交点;分式方程的解.【分析】①解分式方程,使x≥0且x≠1,求出k的取值;②因为二次函数y=x2+2x﹣k﹣1的图象与x轴无交点,所以△<0,列不等式,求出k的取值;③综合①②求公共解并求其整数解,再相乘.【解答】解: +2=,去分母,方程两边同时乘以x﹣1,﹣k+2(x﹣1)=3,x=≥0,∴k≥﹣5①,∵x≠1,∴k≠﹣3②,由y=x2+2x﹣k﹣1的图象与x轴无交点,则4﹣4(﹣k﹣1)<0,k<﹣2③,由①②③得:﹣5≤k<﹣2且k≠﹣3,∴k的整数解为:﹣5、﹣4,乘积是20;故选B.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.2016年重庆高考报名人数近250000人,数据250000用科学记数法表示为2.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:250000=2.5×105,故答案为:2.5×105.14.计算:()﹣2+(π﹣3)0﹣=2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=4+1﹣3=2,故答案为:215.如图,在△ABC中,=,DE∥AC,则DE:AC=5:8.【考点】相似三角形的判定与性质.【分析】由比例的性质得出=,由平行线得出△BDE∽△BAC,得出比例式,即可得出结果.【解答】解:∵=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,故答案为:5:8.16.“2016重庆国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再找出其中小明和小刚被分配到不同项目组的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中小明和小刚被分配到不同项目组的结果数为6,所以小明和小刚被分配到不同项目组的概率==.故答案为.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发15秒.【考点】函数的图象.【分析】①先根据图形信息可知:300秒时,乙到达目的地,由出发去距离甲1300米的目的地,得甲到目的地是1300米,而乙在甲前面100米处,所以乙距离目的地1200米,由此计算出乙的速度;②设甲的速度为x米/秒,根据50秒时,甲追上乙列方程求出甲的速度;③丙出发95秒追上乙,且丙比乙不是同时出发,可设丙比甲晚出发a秒,列方程求出a的值.【解答】解:由图可知:①50秒时,甲追上乙,②300秒时,乙到达目的地,∴乙的速度为:=4,设甲的速度为x米/秒,则50x﹣50×4=100,x=6,设丙比甲晚出发a秒,则(50+45﹣a)×6=(50+45)×4+100,a=15,则丙比甲晚出发15秒;故答案为:15.18.在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是cm2.【考点】相似三角形的判定与性质;正方形的性质.【分析】如图,过F作FI⊥BC于I,连接FE,FA,得到FI∥CD,设BE=EI=IC=a,CE=FI=2a,AB=3a,由勾股定理得到FE=FC=FA=a,推出HE=AE=,根据正方形的性得到BG平分∠ABC,由三角形角平分线定理得到=,求得HG=AE=a=2,于是得到结论.【解答】解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴HE=AE=,∵四边形ABCD是正方形,∴BG平分∠ABC,∴=,∴HG=AE=a=2,∴a=,=S△HEF+S△CEF﹣S△CEH=(a)2+•2a•2a﹣•2a•a=a2=,∴S△CHF故答案为:.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知如图,点F、A、E、B在一条直线上,∠C=∠F,BC∥DE,AB=DE求证:AC=DF.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据平行线的性质可得∠B=∠DEF,再利用AAS判定△DEF≌△ABC,进而可得AC=DF.【解答】证明:∵BC∥DE,∴∠B=∠DEF,在△ABC和△DEF中,∴△DEF≌△ABC(AAS),∴AC=DF.20.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.【考点】频数(率)分布直方图;统计表;扇形统计图;加权平均数.【分析】(1)根据第三组的频数是20,对应的百分比是40%,据此即可求得调研的总分人数,然后利用总人数减去其他组的人数即可求得第五组的人数,从而补全直方图;(2)利用加权平均数公式即可求解.【解答】解:(1)调研的总人数是20÷40%=50(人),则第五组的人数少50﹣6﹣8﹣20﹣14=2.;(2)综合分数是=137(分).答:这位同学的综合得分是137分.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)x(x+2y)﹣(x﹣y)2+y2(2)(﹣x+3)÷.【考点】分式的混合运算;单项式乘多项式;完全平方公式.【分析】(1)先去括号,再合并同类项即可解答本题;(2)先化简括号内的式子,再根据分式的除法即可解答本题.【解答】解:(1)x(x+2y)﹣(x﹣y)2+y2=x2+2xy﹣x2+2xy﹣y2+y2=4xy;(2)(﹣x+3)÷====.22.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.【考点】反比例函数与一次函数的交点问题;解直角三角形.【分析】(1)过A作AE⊥x轴于点E,在Rt△AOE中,可根据OA的长求得A点坐标,代入反比例函数解析式可求反比例函数解析式,进一步可求得B点坐标,利用待定系数法可求得直线AB的解析式,则可求得D点坐标;(2)过M作MF⊥x轴于点F,可证得△MFC∽△AEC,可求得MF的长,代入直线AB解析式可求得M点坐标,进一步可求得△MOB的面积.【解答】解:(1)如图1,过A作AE⊥x轴于E,在Rt△AOE中,tan∠AOC==,设AE=a,则OE=3a,∴OA==a,∵OA=,∴a=1,∴AE=1,OE=3,∴A点坐标为(﹣3,1),∵反比例函数y2=(k≠0)的图象过A点,∴k=﹣3,∴反比例函数解析式为y2=﹣,∵反比例函数y2=﹣的图象过B(,m),∴m=﹣3,解得m=﹣2,∴B点坐标为(,﹣2),设直线AB解析式为y=nx+b,把A、B两点坐标代入可得,解得,∴直线AB的解析式为y=﹣x﹣1,令x=1,可得y=﹣1,∴D点坐标为(0,﹣1);(2)由(1)可得AE=1,∵MA=2AC,∴=,如图2,过M作MF⊥x轴于点F,则△CAE∽△CMF,∴==,∴MF=3,即M点的纵坐标为3,代入直线AB解析式可得3=﹣x﹣1,解得x=﹣6,∴M点坐标为(﹣6,3),=OD•(x B﹣x M)=×1×(+6)=,∴S△MOB即△MOB的面积为.23.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)购买甲票x张,则购买乙票张,根据题意列出不等式解答即可;(2)根据题意列出方程解答即可.【解答】解:(1)设:购买甲票x张,则购买乙票张.由条件得:x≥3∴x≥375,故:“铁血巴渝”球迷协会至少购买375张甲票.(2)由条件得:500[1+(m+10)%](m+20)=56000∴m2+130m﹣9000=0∴m1=50,m2=﹣180<0(舍)故:m的值为50.24.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.【考点】因式分解的应用.【分析】(1)根据“快乐数”的定义计算即可;(2)设三位“快乐数”为100a+10b+c,根据“快乐数”的定义计算.【解答】解:(1)∵12+02=1,∴最小的两位“快乐数”10,∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,∴19是快乐数;证明:∵4→37→58=68→89→125→30→9→81→65→61→37,37出现两次,所以后面将重复出现,永远不会出现1,所以任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设三位“快乐数”为100a+10b+c,由题意,经过两次运算后结果为1,所以第一次运算后结果一定是10或者100,则a2+b2+c2=10或100,∵a、b、c为整数,且a≠0,∴当a2+b2+c2=10时,12+32+02=10,①当a=1,b=3或0,c=0或3时,三位“快乐数”为130,103,②当a=2时,无解;③当a=3,b=1或0,c=0或1时,三位“快乐数”为310,301,同理当a2+b2+c2=100时,62+82+02=100,所以三位“快乐数”有680,608,806,860.综上一共有130,103,310,301,680,608,806,860八个,又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,所以只有310和860满足已知条件.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.在△ABC中,以AB为斜边,作直角△ABD,使点D落在△ABC内,∠ADB=90°.(1)如图1,若AB=AC,∠BAD=30°,AD=6,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP(3)如图3,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).【考点】三角形综合题.【分析】(1)在直角三角形中,利用锐角三角函数求出AB,即可;(2)先利用互余判断出,∠BDP=∠PEC,得到△BDP和△CEQ,再用三角形的外角得到∠EPC=∠PQC,即可;(3)利用线段垂直平分线上的点到两端点的距离相等,判断出∠AFB=90°即可.【解答】(1)解:∵∠ADB=90°,∠BAD=30°,AD=6,∴cos∠BAD=,∴AB===12,∴AC=AB=12,∵点P、M分别为BC、AB边的中点,∴PM=AC=6,(2)如图2,在ED上截取EQ=PD,∵∠ADB=90°,∴∠BDP+∠ADE=90°,∵AD=AE,∴∠ADE=∠AED,∵把△ABD绕点A逆时针旋转一定角度,得到△ACE,∴∠AEC=∠ADB=90°∵∠AED+∠PEC=90°,∴∠BDP=∠PEC,在△BDP和△CEQ中,,∴△BDP≌△CEQ,∴BP=CQ,∠DBP=∠QCE,∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE,∴∠EPC=∠PQC,∴PC=CQ,∴BP=CP(3)BF2+FC2=2AD2,理由:如图3,连接AF,∵EF⊥AC,且AE=EC,∴FA=FC,∠FAC=∠FCA,∵EF⊥AC,且AE=EC,∴∠DAC=∠DCA,DA=DC,∵AD=BD,∴BD=DC,∴∠DBC=∠DCB,∵∠FAC=∠FCA,∠DAC=∠DCA,∴∠DAF=∠DCB,∴∠DAF=∠DBC,∴∠AFB=∠ADB=90°,在RT△ADB中,DA=DB,∴AB2=2AD2,在RT△ABB中,BF2+FA2=AB2=2AD2,∵FA=FC∴BF2+FC2=2AD2.26.已知如图1,抛物线y=﹣x2﹣x+3与x轴交于A和B两点(点A在点B 的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC(1)求出直线AD的解析式;(2)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN=(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;(3)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC 为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,求CP的值.【考点】二次函数综合题.【分析】(1)先求出点A,B坐标,再用待定系数法求出直线AD解析式;=﹣(m+)2+,进而求出F点的坐标,再确定出点M的(2)先建立S△ADF位置,进而求出点A1,A2坐标,即可确定出A2F的解析式为y=﹣x﹣①,和直线BD解析式为y=﹣x﹣1②,联立方程组即可确定出结论;(3)分四种情况讨论计算,利用锐角三角函数和勾股定理表示出线段,用相似三角形的性质即可求出PC的值.【解答】解:(1)∵抛物线y=﹣x2﹣x+3与x轴交于A和B两点,∴0=﹣x2﹣x+3,∴x=2或x=﹣4,∴A(﹣4,0),B(2,0),∵D(0,﹣1),∴直线AD解析式为y=﹣x﹣1;(2)如图1,过点F作FH⊥x轴,交AD于H,设F(m,﹣m2﹣m+3),H(m,﹣m﹣1),∴FH=﹣m2﹣m+3﹣(﹣m﹣1)=﹣m2﹣m+4,=S△AFH+S△DFH=FH×|y D﹣y A|=2FH=2(﹣m2﹣m+4)=﹣m2﹣m+8=﹣∴S△ADF(m+)2+,当m=﹣时,S最大,△ADF∴F(﹣,)如图2,作点A关于直线BD的对称点A1,把A1沿平行直线BD方向平移到A2,且A1A2=,连接A2F,交直线BD于点N,把点N沿直线BD向左平移得点M,此时四边形AMNF的周长最小.∵OB=2,OD=1,∴tan∠OBD=,∵AB=6,∴AK=,∴AA1=2AK=,在Rt△ABK中,AH=,A1H=,∴OH=OA﹣AH=,∴A1(﹣,﹣),过A2作A2P⊥A2H,∴∠A1A2P=∠ABK,∵A1A2=,∴A2P=2,A1P=1,∴A2(﹣,﹣)∵F(﹣,)∴A2F的解析式为y=﹣x﹣①,∵B(2,0),D(0,﹣1),∴直线BD解析式为y=﹣x﹣1②,联立①②得,x=﹣,∴N点的横坐标为:﹣.(3)∵C(0,3),B(2,0),D(0,﹣1)∴CD=4,BC=,OB=2,BC边上的高为DH,根据等面积法得,BC×DH=CD×OB,∴DH==,∵A(﹣4,0),C(0,3),∴OA=4,OC=3,∴tan∠ACD=,①当PC=PQ时,简图如图1,过点P作PG⊥CD,过点D作DH⊥PQ,∵tan∠ACD=∴设CG=3a,则QG=3a,PG=4a,PQ=PC=5a,∴DQ=CD﹣CQ=4﹣6a∵△PGQ∽△DHQ,∴,∴,∴a=,∴PC=5a=;②当PC=CQ时,简图如图2,过点P作PG⊥CD,∵tan∠ACD=∴设CG=3a,则PG=4a,∴CQ=PC=5a,∴QG=CQ﹣CG=2a,∴PQ=2a,∴DQ=CD﹣CQ=4﹣5a∵△PGQ∽△DHQ,同①的方法得出,PC=4﹣,③当QC=PQ时,简图如图1过点Q作QG⊥PC,过点C作CN⊥PQ,设CG=3a,则QG=4a,PQ=CQ=5a,∴PG=3a,∴PC=6a∴DQ=CD﹣CQ=4﹣5a,利用等面积法得,CN×PQ=PC×QG,∴CN=a,∵△CQN∽△DQH同①的方法得出PC=④当PC=CQ时,简图如图4,过点P作PG⊥CD,过H作HD⊥PQ,设CG=3a,则PG=4a,CQ=PC=5a,∴QD=4+5a,PQ=4,∵△QPG∽△QDH,同①方法得出.CP=综上所述,PC的值为:;4﹣,,=.中考数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.截止到2015年底,我国已实现31个省市志愿服务组织区域全覆盖,志愿者总数已超110 000 000人.将110 000 000用科学记数法表示应为()A.110×106B.11×107 C.1.1×108D.0.11×1082.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D3.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()A.B.C.D.4.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不是轴对称图形的是()A.B.C.D.。
全等、相似十七(针对陕西中考第19、23题)1.如图,在△ABC 中,∠BAC =90°,M 是BC 的中点,过点A 作AM 的垂线,交CB 的延长线于点D.求证:△DBA ∽△DAC.证明:∵∠BAC =90°,点M 是BC 的中点,∴AM =CM ,∴∠C =∠CAM ,∵DA ⊥AM ,∴∠DAM =90°,∴∠DAB =∠CAM ,∴∠DAB =∠C ,∵∠D =∠D ,∴△DBA ∽△DAC2.如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连接AE ,DE ,D C .(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.解:(1)在△ABE 和△CBD 中,⎩⎨⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (SAS ) (2)∵△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =30°+45°=75°,则∠BDC =75°3.(导学号 30042266)如图,点C 是线段AB 上一点,△ACD 和△BCE 都是等边三角形,连接AE ,BD ,设AE 交CD 于点F.(1)求证:△ACE ≌△DCB ;(2)求证:△ADF ∽△BAD.证明:(1)∵△ACD 和△BCE 都是等边三角形,∴AC =CD ,CE =CB ,∠ACD =∠BCE =60°,∴∠ACE =∠DCB =120°.∴△ACE ≌△DCB (SAS ) (2)∵△ACE ≌△DCB ,∴∠CAE =∠CDB.∵∠ADC =∠CAD =∠ACD =∠CBE =60°,∴DC ∥BE ,∴∠CDB =∠DBE ,∴∠CAE =∠DBE ,∴∠DAF =∠DBA.∴△ADF ∽△BAD4.(导学号 30042267)如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HG BC; (2)求这个矩形EFGH 的周长.解:(1)∵四边形EFGH 是矩形,∴EF ∥GH ,∴∠AHG =∠B, 又∵∠HAG =∠BAC ,∴△AHG ∽△ABC ,∴AM AD =HG BC(2)设HE =MD =x cm ,∵AD =30 cm ,∴AM =(30-x ) cm ,∵HG =2HE, ∴HG =2x cm ,∵AM AD =HG BC ,∴30-x 30=2x 40,解得x =12,则2x =24,∴这个矩形EFGH 的周长=2×(12+24)=72(cm ),答:这个矩形的周长为72 cm。
2017成都中考数学27题妙解2017成都中考27题妙解问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE 并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.解题思路及方法归纳:在今年中考阅卷中发现学生对于迁移应用中的两个小问解决起来较为轻松,但是拓展延伸的两个小问难倒了很多学生,当然也有部分学生的解法非常新颖,现主要将拓展延伸第1问各种解法及教学建议分享给大家。
根据对称,很容易得到FE=FC,但关键是如何证得60°,在阅卷过程中,我们整理了同学们的解法,大致可分为:形题数解,几何变换和辅助圆三种思路。
一).形题数解自从解析几何之父XXX将坐标系引入几何后,我们的几何推理及证明就又多了一种解决的思路。
当然对于初中生来说,解析几何这个词语似乎太“高大上”,但是形题数解的方法却是学生见惯不惊,使用的非常顺手的解题方法之一。
1.解法赏析解法一:连接BE,点C,E关于BM对称,因此BE=BC,XXX。
设∠CBM=α,则∠EBC=2α,∠ABE=120°-2α。
因此BA=BC=BE,∠BEC=1/2(180-∠EBC)=90°-α,∠AEB=1/2(180-∠ABE)=30°+α。
CEF=180°-∠BEC-∠AEB=60°,XXX。
因此△CEF是等边三角形。
专题跟踪突破9 统计与概率的应用1.(2016·娄底)在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在表中的频数分布表中,m=__80__,n=__0.2__;(2)(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4 000人参赛,请估计约有多少人进入决赛?解:(1)根据题意得m=200×0.40=80(人),n=40÷200=0.20(2)根据(1)可得70≤x<80的人数有80人,补图如下:(3)根据题意得4 000×(0.20+0.10)=1 200(人).答:估计约有1 200人进入决赛2.(2016·陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 ml )、红茶(500 ml )和可乐(600 ml ),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为15(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2253.(2016·大庆)为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题: ①求m 值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数. ③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为90360=14,∵课外阅读时间为2小时的有15人,∴m =15÷14=60②560×360°=30° ③第三小组的频数为:60-10-15-10-5=20,补全条形统计图为:(2)∵课外阅读时间为3小时的有20人,最多,∴众数为 3小时;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时,∴中位数为3小时;平均数为10×1+15×2+20×3+10×4+5×560=2.75(小时)4.(导学号:01262070)(2016·宜宾)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表(1)a =__16__,b =__17.5__;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约__90__人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A ,B ,C )和2位女同学(D ,E ),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.解:(1)a =5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b =17.5 (2)600×[6÷(5÷12.5%)]=90(人)(3)如图,∵共有20种等可能的结果,双打组合恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=1220=35。
考点跟踪突破17 线段、角、相交线和平行线一、选择题1.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是( C) A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边2.如图,C,D是线段AB上两点,D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长等于( B )A.2 cm B.3 cm C.4 cm D.6 cm3.(2016·陕西)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=( B )A.65°B.115°C.125°D.130°,第3题图) ,第4题图) 4.(2016·十堰)如图,AB∥EF,CD⊥EF于点D,若∠ABC=40°,则∠BCD=( B ) A.140°B.130°C.120°D.110°5.(2015·内江)将一副直角三角板如图放置,使含30°角的三角板的较短直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为( A )A.75°B.65°C.45°D.30°6.(2016·西宁)将一张长方形纸片折叠成如图所示的形状,则∠ABC=( A )A.73°B.56°C.68°D.146°,第6题图) ,第7题图)7.(2016·威海)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( B) A.65°B.55°C.45°D.35°8.(2015·金华)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( C )A.如图①,展开后测得∠1=∠2B.如图②,展开后测得∠1=∠2且∠3=∠4C.如图③,测得∠1=∠2D.如图④,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD二、填空题9.(2015·吉林)图中是对顶角量角器,用它测量角的原理是__对顶角相等__.,第9题图) ,第10题图) 10.(2016·广安)如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=___70°__.11.(2016·绥化)如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=__15°__.,第11题图) ,第12题图) 12.(2015·宜宾)如图,直线a∥b,∠1=45°,∠2=30°,则∠P=__75°__.13.(2016·衡阳)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为__10__.14.(2016·湖州)如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.15.(2016·菏泽)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是___15°__.三、解答题16.(2016·厦门)如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.证明:∵OC =OE ,∴∠E =∠C =25°,∴∠DOE =∠C +∠E =50°,∵∠A =50°,∴∠A =∠DOE ,∴AB ∥CD17.(导学号:01262027)如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC =60°时,∠MON 的度数是多少?(2)如图②,当∠AOB =α,∠BOC =60°时,猜想∠MON 与α的数量关系;(3)如图③,当∠AOB =α,∠BOC =β时,猜想∠MON 与α,β有数量关系吗?如果有,指出结论并说明理由.解:(1)如图①,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC -∠NOC =45°(2)如图②,∠MON =12α,理由是:∵∠AOB =α,∠BOC =60°,∴∠AOC =α+60°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =12α+30°,∠NOC =12∠BOC =30°∴∠MON =∠MOC -∠NOC =(12α+30°)-30°=12α (3)如图③,∠MON =12α,与β的大小无关.理由:∵∠AOB =α,∠BOC =β,∴∠AOC =α+β. ∵OM 是∠AOC 的平分线,ON 是∠BOC 的平分线,∴∠MOC =12∠AOC =12(α+β),∠NOC =12∠BOC =12β,∴∠MON =∠MOC -∠NOC =12(α+β)-12β=12α,1 2α即∠MON=。
2014年中考数学综合题复习(动点问题详细分层解析,尖子生首选资料 )所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1 )如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, .∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:HM NGPOAB图1①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =,AEDCB 图2A3(2)3(1)∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4 如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;ABCO 图8HC分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
专题跟踪突破1 巧解选择、填空题一、选择题1.(2015·呼和浩特)下列运算结果正确的是( D )A .m 2+m 2=m 4B .(m +1m )2=m 2+1m2 C .(3mn 2)2=6m 2n 4 D .2m 2n ÷m n=2mn 22.(2016·齐齐哈尔)下列算式:①9=±3;②(-13)-2=9;③26÷23=4;④(-2016)2=2016;⑤a +a =a 2.运算结果正确的概率是( A ) A .15B .25C .35D .453.(2016·南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1∶S 2等于( D )A .1∶ 2B .1∶2C .2∶3D .4∶94.(2016·潍坊)运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( C )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤235.(2015·酒泉)如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E.设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( C ),A ) ,B ),C) ,D)6.(2015·荆门)在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是( D ) A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面,第6题图) ,第7题图)7.(2016·重庆)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1∶ 3 ,则大楼AB的高度约为( D )(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)A.30.6 B.32.1 C.37.9 D.39.48.(2015·宜昌)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10 cm处,铁片与直尺的唯一公共点A落在直尺的14 cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( C ) A.圆形铁片的半径是4 cmB.四边形AOBC为正方形C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2,第8题图) ,第10题图) 9.(2015·朝阳)已知两点A(5,6),B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的12得到线段CD,则点A的对应点C的坐标为( A )A.(2,3) B.(3,1) C.(2,1) D.(3,3)10.(导学号:01262055)(2016·昆明)如图,在正方形ABCD中,AC为对角线,E为AB 上一点,过点E作EF∥AD,与AC,DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AE AB =23,则3S △EDH=13S △DHC ,其中结论正确的有( D )A .1个B .2个C .3个D .4个 点拨:①∵四边形ABCD 为正方形,EF ∥AD ,∴EF =AD =CD ,∠ACD =45°,∠GFC =90°,∴△CFG 为等腰直角三角形,∴GF =FC ,∵EG =EF -GF ,DF =CD -FC ,∴EG =DF ,故①正确②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =12∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,⎩⎪⎨⎪⎧EF =CD ,∠EFH =∠DCH ,FH =CH ,∴△EHF ≌△DHC(SAS ),∴∠HEF =∠HDC ,∴∠AEH +∠ADH =∠AEF +∠HEF +∠ADF -∠HDC =∠AEF +∠ADF =180°,故②正确③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =12∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,⎩⎪⎨⎪⎧EF =CD ,∠EFH =∠DCH ,FH =CH ,∴△EHF ≌△DHC(SAS ),故③正确④∵AE AB =23,∴AE =2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =GH ,∠FHG=90°,∵∠EGH =∠FHG +∠HFG =90°+∠HFG =∠HFD ,在△EGH 和△DFH 中,⎩⎪⎨⎪⎧EG =DF ,∠EGH =∠DFH ,GH =FH ,∴△EGH ≌△DFH(SAS ),∴∠EHG =∠DHF ,EH =DH ,∠DHE =∠EHG +∠DHG =∠DHF +∠DHG =∠FHG =90°,∴△EHD 为等腰直角三角形,过H 点作HM 垂直CD 于M 点,如图所示,设HM =x ,则DM =5x ,DH =26x ,CD =6x ,则S △DHC =12·HM ·CD =3x 2,S △EDH =12·DH 2=13x 2,∴3S △EDH =13S △DHC ,故④正确;故选D二、填空题11.(2015·包头)化简:(a -2a -1a )÷a 2-1a =__a -1a +1__.12.(2016·黔南州)若ab =2,a -b =-1,则代数式a 2b -ab 2的值等于___-2__.13.(2015·哈尔滨)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有__69__幅.14.(2015·荆州)若m ,n 是方程x 2+x -1=0的两个实数根,则m 2+2m +n 的值为__0__.15.(2015·宁夏)如图,在平面直角坐标系中,点A 的坐标为(0,4),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′是直线y =45x 上一点,则点B 与其对应点B ′间的距离为__5__.16.(2016·东营)如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__25__.17.(2016·凉山州)如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =32,CD=22,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P有__2__个.,第17题图) ,第18题图)18.(2015·十堰)如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF ⊥AB ,垂足为F ,连接DF ,当AC AB =__32__时,四边形ADFE 是平行四边形.19.(2015·重庆)如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是__2π__.(结果保留π),第19题图) ,第20题图)20.(导学号:01262056)(2016·温州)如图,点A ,B 在反比例函数y =kx (k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD =k ,已知AB =2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是__372.点拨:∵E 是AB 的中点,∴S △ABD =2S △ADE ,S △BAC =2S △BCE ,又∵△BCE 的面积是△ADE 的面积的2倍,∴2S △ABD =S △BAC .设点A 的坐标为(m ,k m ),点B 的坐标为(n ,kn),则有⎩⎪⎨⎪⎧m -n =k ,k m =-2k n ,(m -n )2+(k m -k n )2=2km ,解得⎩⎪⎨⎪⎧k =372,m =72,n =-7,或⎩⎪⎨⎪⎧k =-372,m =-72(舍去),n =7.故答案为372。
考点跟踪突破27 视图与投影
一、选择题
1.(2016·咸宁)下面四个几何体中,其主视图不是中心对称图形的是( C ) A . B . C . D .
2.(2016·南宁)把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( A )
A .
B .
C .
D .
3.(2016·绥化)如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是( B )
A .
B .
C .
D .
4.(2016·黄石)某几何体的主视图和左视图如图所示,则该几何体可能是( C )
,主视图) ,左视图)
A .长方体
B .圆锥
C .圆柱
D .球
5.(2016·齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( A )
,主视图) ,左视图)
A .5个
B .6个
C .7个
D .8个
二、填空题
6.(2016·盐城)如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为__5__.
,第6题图) ,第7题图)
7.(2016·荆州)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据
计算这个几何体的表面积为__4π__cm 2.
8.春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__.(写出符合题意的两个图形即可)
点拨:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形或线段.
9.(2016·北京)如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__3__m .
10.(2015·青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要__19__个小立方体,王亮所搭几何体的表面积为__48__.
三、解答题
11.画出如图所示立体图形的三视图.
解:如图所示:
12.一组合体的三视图如图所示,该组合体是由哪几个几何体组成,并求出该组合体的表面积.
解:由图形可知,该组合体是由上面一个圆锥和下面一个圆柱组成,π×(10÷2)2
+π
×10×20+12
×(π×10)×(10÷2)2+52=25π+200π+252π=(225+252)π(cm 2).故该组合体的表面积是(225+252)π cm 2
13.(导学号:01262041)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.
(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.
(2)根据三视图,请你求出这个组合几何体的表面积.(包括底面积)
解:(1)图形如图所示,
(2)几何体的表面积为:(3+4+5)×2=24.
14.(导学号:01262042)如图,公路旁有两个高度相等的路灯AB ,CD.小明上午上学时发现路灯AB 在太阳光下的影子恰好落到里程碑E 处,他自己的影子恰好落在路灯CD 的底部C 处.晚自习放学时,站在上午同一个地方,发现在路灯CD 的灯光下自己的影子恰好落在里程碑E 处.
(1)在图中画出小明的位置(用线段FG 表示),并画出光线,标明太阳光、灯光;
(2)若上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,他离里程碑E 恰好5米,求路灯高.
解:(1)如图所示:
(2)∵上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,∴小明的影长CF
为3米,∵GF ⊥AC ,DC ⊥AC ,∴GF ∥CD ,∴△EGF ∽△EDC ,∴GF CD =EF EC ,∴1.5CD =55+3
,解得CD =2.4.答:路灯高为2.4米。