北师大版2019-2020学年六年级数学第二学期第一单元测试题
- 格式:doc
- 大小:158.50 KB
- 文档页数:2
○…………外…………○…………装…………○…………订…………○…………线…………○……学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○……绝密★启用前北师大版二年级下第一单元测试卷(拔高)题号 一 二 三 四 五 总分 得分注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 评卷人得分一、 选择题(共3题)1. (2020•全国同步)选一选.竖式中圈出的“4”,在分小棒的过程中表示的是(). A .要分的4捆 B .要分的4根 C .分走的4捆D .分走的4根2. (2020•全国单元测试)老师有65支铅笔奖励给5个同学,平均每个同学奖励()支.A .10B .13C .163. (2020•全国单元测试)有72盒粉笔分个3个班,平均每个班分()盒.A .24B .22C .20评卷人得分二、 判断题(共4题)4. (2019•全国期末)546÷,要使商是三位数,里只可以填7、8、9这三个数字.()A .√B .⨯5. (2019•全国期中)5155÷的商中间没有0.()A 、正确B 、错误6. (2019•全国单元测试)8417÷的商的末尾一定有一个0.()A .正确B .错误○…………外…………○…………装…………○…………订…………○…………线…………○……※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○……评卷人 得分三、 填空题(共4题)8. (2020•全国同步)被除数是536,除数是9,商是____,余数是___. 9. (2020•全国同步)534除以一个一位数,商是两位数,这个商最大是___. 10. (2020•全国单元测试)根据统计图完成填空.(1)________月男车产量最高,是________辆. (2)________月自行车产量最低,是________辆. (3)平均每月产自行车约________辆.(取整数) 11. (2020•全国单元测试)计算.15.614.4+=________ 9.5 3.6-=________ 6042÷=________评卷人 得分四、 计算题(共5题)12. (2019•全国同步)口算.① 2812⨯= ① 26568÷= ① 458⨯= ①870500-= ①275100+=13. (2019•全国期末)口算.7011⨯= 36006÷= 2 1.6-= 0.70.47-= 1258⨯= 0.510100⨯÷= 351635+-= 023÷=○…………外…………○…………装…………○…………订…………○…………线…………○……学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○……14. (2020•全国同步)列竖式计算,带*的要验算.7505÷= *6448÷= 9847÷= 8024÷=15. (2019•全国期末)用坚式计算,并验算.7864829+= 50403827-= 10908⨯= 61256÷=16. (2019•全国期末)递等式计算.29766743259+-= 30973⨯÷= 21633÷= 152740488-÷=41863604⨯+= (5826467)7+÷= 4180(119115)÷-=评卷人得分五、 应用题(共5题)17. (2020•全国同步)从这四张卡片中任意选取三张,组成一个三位数作为被除数,剩下的一张卡片作为除数.所得的商大于200小于300.你能写出算式并算出结果吗?18. (2020•全国同步)小马虎在计算一道三位数除以一位数的除法题时,把除数6写成了8,计算出商是123. 正确的商是多少?19. (2020•全国同步)学校春季运动会上,三(1)班平均每名选手一分钟跳绳95次,三(2)班4名选手一共跳了412次.三(2)班平均每名选手比三(1)班多跳几次?20. (2020•全国同步)学校每天下午都有大课间活动,学校体育室统一购买了一定数量的活动用品. 购买情况统计表 沙包呼啦圈羽毛球套装300个160个120套如果每班分9个沙包,8个呼啦圈,5套羽毛球套装,这些活动用品够发给多少个班?○…………外…………○…………装…………○…………订…………○…………线…………○……※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○……21. (2020•全国同步)图书室的张老师今天要把刚买来的400本图书分类整理到书架上.她用5小时整理了270本图书.按照这样整理,张老师今天需要加班吗?参考答案及解析一、 选择题 1. 【答案】C【解析】竖式本身就是把分的过程具体表现出来,对应题中左面的小棒图,以及分小棒的过程,可看出先要分4捆小棒,分完4捆小棒,再要分4根小棒,分完4根小棒,就都分完了.图与竖式相对应即可. 故选:C . 2. 【答案】B【解析】先每个同学分50510÷=支,再每个同学分1553÷=支,最后每个同学分得10313+=支.故选:B 3. 【答案】A【解析】先每个班分60320÷=盒,再每个班分1234÷=盒,最后每个班分得20424+=盒.故选:A 二、 判断题 4. 【答案】B【解析】546÷,要使商是三位数,里的数应该6,所以里可以填6、7、8、9. 故选:B . 5. 【答案】B【解析】根据三位数除以一位数的计算方法可知,5155103÷=,商中间有1个0. 故选:B . 6. 【答案】A【解析】84171201÷=.商的末尾有一个0,所以原题说法正确.7. 【答案】错误【解析】两位数乘一位数,先用一位数去乘两位数的每一位,最后将两次算得的积加起来即可;三位数除以一位数,先看被除数的首位,首位不够除再看被除数的前两位,除到哪一位,商就写在那一位上面,每求出一位商,余下的数必须比除数小. 解:305150⨯=,450590÷=. 故错误 三、 填空题8. 【答案】59;5;【解析】用被除数除以除数,计算出商和余数. 9. 【答案】89;【解析】根据题意可知,商是两位数,则除数大于被除数的最高位,被除数的最高位为5,除数要大于5,因为除数是一个一位数,所以除数可能是6、7、8、9.要想商最大,除数应该最小,除数是6,534689÷=. 10. 【答案】(1)3,1600;(2)6,1850;(3)2533;【解析】(1)整个图中,1600最大,所以3月男车产量最高,是1600辆;(2)从直条的长度看,6月的两个直条最短,说明自行车产量最低,是9009501850+=(辆); (3)(1400150012001350160014001200110014001200900950)61520062533+++++++++++÷=÷≈(辆)故答案为:(1)3,1600;(2)6,1850;(3)2533 11. 【答案】30;5.9;302;【解析】15.614.430+=;9.5 3.6 5.9-=;6042302÷=. 故答案为:30;5.9;302 四、 计算题12. 【答案】①336;① 332;① 360;① 370;① 375 【解析】略 13. 【答案】770;6000.4;0.23 1000;0.05 16;0 1.69;20【解析】略.14. 【答案】7505150÷= *6448804÷= 98471404÷=80242002÷=验算【解析】计算商末尾有0的除法时要注意:(1)被除数的末尾是0,且被除数的十位正好除尽没有余数,要在个位上商0占位,如÷;7505(2)一位数除三位数,除到被除数的十位正好除尽,而被除数个位上的数又比除数小,就÷、不必再除,只要在商的个位上写0,再把被除数个位上的数落下来作余数即可,如6448÷.984715. 【答案】5615;1213;8720;10205【解析】本题根据整数加法,减法,乘法与除法的运算法则计算即可.由于本题中的数据较大,所以可列竖式进行计算.+=;78648295615-=;504038271213⨯=;1090887206125610205÷=.故答案为:5615;1213;8720;1020516. 【答案】391;721;721;1021;6112;1007;1045【解析】在解答上述问题时,要注意运算顺序,先算乘除再算加减,有括号的,要先算括号内的,再算括号外的.(1)29766743259+- 36503259=- 391=; (2)30973⨯÷ 21633=÷ 721=; (3)21633÷ 721=; (4)152740488-÷ 1527506=- 1021=; (5)41863604⨯+ 25083604=+ 6112=; (6)(5826467)7+÷ 70497=÷ 1007=;(7)4180(119115)÷- 41804=÷ 1045=.故答案为:391;721;721;1021;6112;1007;1045 五、 应用题17. 【答案】7953265÷=|||7593253÷=【解析】商的最高位决定了商的大小.要使得商大于200小于300,那么被除数的百位上的数除以除数就得2.在9、7、5,3这几个数中,只有7除以3的商可以是2,因此被除数的百位上只能是7,除数只能是3.那么十位和个位就分别是5和9或9和5.因此被除数有两种可能,即759和795.所以列式计算是7953265÷= 7593253÷=. 18. 【答案】123869846164⨯÷=÷=答:正确的商是164.【解析】解决这类问题时我们可以“将错就错”.小马虎用被除数除以除数8得到了商123,根据“被除数=商⨯除数”,可以用123乘8计算出被除数,再用被除数除以正确的除数6,就可以得到正确的商. 19. 【答案】4124103÷= (次)103958-= (次)答:三(2)班平均每名选手比三(1)班多跳8次.【解析】要想知道三(2)班平均每名选手比三(1)班多跳几次,首先要知道三(2)班平均每名选手跳多少次.4名选手共跳412次,将412平均分成4份,其中的1份就是三(2)班平均每名选手跳的次数,用除法计算,列式计算是4124103÷= (次).知道三(2)班平均每名选手跳103次,三(1)班平均每名选手跳95次,用减法就能求出三(2)班平均每名选手比三(1)班多跳103958-= (次). 20. 【答案】300933÷= (个)3 (个)160820÷= (个) 120524÷= (个) 332420>>答:这些活动用品够发给20个班.【解析】按每班9个沙包,8个呼啦圈,5套羽毛球套装分,需要分别看看每种用品够分多少个班.沙包300个按每班9个,够分给33个班还剩3个,呼啦圈160个按每班8个,够分给20个班,羽毛球套装120套按每班5套,够分给24个班.综合以上情况,能够备齐9个沙包、8个呼啦圈和5套羽毛球套装的有20个班.21. 【答案】方法一:270554÷= (本),548432⨯= (本),432400>方法二:270550÷≈ (本),508400⨯= (本),400400= 方法三:400850÷= (本),270554÷= (本),5450> 答:张老师今天不需要加班.【解析】方法多样,可以精确计算,也可以估算解决.如:方法一精算,先通过列式计算270554÷= (本),算出了每小时可以整理图书54本,再用每小时整理的54本乘一天工作8小时,就可以得到一天可以整理图书432本.买来的图书是400本.因此张老师不需要加班就可以整理完这些图书.(方法不唯一)。
2019-2020学年四年级数学上册第一单元测试卷一、填空。
(每空0.5分,共20分)1.10个一千是(),10个一千万是(),一亿里面有()个一万,()个十万是一千万。
2.800906000是由()个亿、()个万和()个一组成的。
3.百万和()或()之间的进率是十。
4.在9000900000中,左边的“9”在()位上,表示();右边的“9”在()位上,表示();左边的“9”表示的数是右边的“9”表示的数的()倍。
5.1950400800是一个()位数,它的最高位是()位,它是由1个()、9个()、5个()、4个()和8个()组成的。
6.一个数由5个千万、3个十万、6个百组成,这个数写作()。
7.7999万≈7亿,里最大填();70000000≈8亿,里最小填()。
8.在里填上“>”“<”或“=”。
8007080700 350000350万20000199999 8170005008亿210000000021亿770007万9.在数字8和5之间添上()个0,才能读作八千万零五;如果添上7个0,读作()。
10.找规律,填一填。
(1)2003,2006,2009,(),()。
(2)2800,2600,2400,(),()。
(3)(),(),2477,2487,2497,(),()。
二、判断。
(对的画“√”,错的画“×”。
每题1分,共5分) 1.千万位上的2是千位上的2的1000倍。
() 2.最小的自然数是1,没有最大的自然数。
() 3.一个数省略万位后面的尾数约是49万,这个数最大是494999。
() 4.一个数含有三级,这个数一定是十二位数。
() 5.一个数如果写出了几个0,这个数就一定要读出几个0。
() 三、选择。
(每题1分,共6分)1.用3个7和3个0组成的六位数中,读数时,一个零也不读出来,这个数可能是()。
A.777000 B.700077C.707070 D.7700072.用0,0,2,4,6组成的最小的五位数是()。
北师大版2019-2020学年六年级数学上册第一单元测试卷满分:100分时间:90分钟姓名:得分:一、我会填1、( )决定圆的大小,( )决定圆的位置。
表示,保留两位小数取近似值约为( )。
4、把一个圆平均分成若干份后,能够拼成一个近似于长方形的图形,这个长方形的长相当于圆周长的( ),宽相当于圆的( )。
5、一个圆的半径是2 cm,它的周长是( )cm,面积是( )cm26、算一算。
25.12÷3.14=72=3.14×8= 3.14×32=7、一个圆环,外圆的半径是5分米,内圆的半径是3分米,它的面积是()平方分米8、圆的半径扩大2倍,直径就扩大()倍,周长扩大()倍,面积扩大()倍9、有一个圆形的时钟,分针长12厘米,分针走一圈。
针尖走过的路程是()厘米。
10、圆周率用字母()表示,半径用字母()表示,直径用字母()表示。
二、判断题1、画圆时,圆规两脚间的距离就是圆的直径。
( )2、圆有无数条对称轴。
()3、π=3.14( )4、如果两个圆的周长相等,那么它们的面积也一定相等。
( )5、圆心决定圆的位置,半径决定圆的大小。
三、我会选1、在一个边长是5㎝的正方形内,画一个最大的圆。
它的半径是( )。
A、5㎝B、10㎝C、任意长D、2.5㎝2、外圆半径为R,内圆半径为r的一个圆环的面积等于( )。
A. π(R2-r2)B. π(R-r)2C. 2πR-2πrD. π(R+r)23、画圆时,圆规两脚分开4㎝,所画的圆的直径是( )㎝。
A、2.5B、4C、84、直径是8 cm的圆,面积是( )。
A. 25.12 cm2B. 50.24 cm2C. 12.56 cm2D. 6.28 cm25、大圆的直径是1米,小圆的直径是1厘米。
那么下列说法正确的是( )。
A. 大圆的圆周率大于小圆的圆周率B. 大圆的圆周率小于小圆的圆周率C. 大圆的圆周率等于小圆的圆周率D. 大圆的圆周长等于小圆的圆周长四、我会做1、画出一个半径为3厘米的圆,并用字母标出圆心、半径、直径。
最新北师大版小学六年级数学下册期第二单元检测试卷(附答案)时间:90分钟 满分:100分学校: _______姓名:________班级:________考号:________题号 一 二 三 四 五 六 七 八 B 卷 总分 得分A 卷 基础训练(100 分)一、选择题(每题2分,共20分)1.(2020•重庆模拟)一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是( ) A .8分米B .8毫米C .8厘米2.(2020•法库县期末)把44352153⨯=⨯改写成一个比例,可以是( )A .4435::2153= B .4435:21:35=C .4435::2135= D .4421:35:35= 3.(2020•新华区期末)把线段比例尺改写成数值比例尺是( ) A .1:8000B .1:80C .1:8000004.(2020•郑州)在比例尺是1:4000000的地图上,量得A 、B 两港距离为9厘米,一般货轮于上午6时以每小时24千米的速度从A 开向B 港,到达B 港的时间是( ) A .17点B .19点C .21点D .23点5.(2020•保定模拟)把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地实际面积是( ) A .480平方米B .240平方米C .1200平方米6.一根长50cm 的线刚好围成一个长方形,长和宽的比是3:2,这个长方形的长和宽各是多少? ( ) A .长3cm 、宽2cmB .长15cm 、宽10cmC .长30cm 、宽20cm7.(2020•应城市校级模拟)在比例4:85:10=中,如果第一个比的前项加上4,要使这个比例仍然成立,第二个比的前项加上( ) A .4B .5C .2D .无法确定8.(2020•东海县期中)把一个圆的半径按:1n 的比放大,放大后与放大前圆的面积比是( ) A .:1nB .2:1nC .2:1nD .2:2n9.(2020•建昌县校级期中)张老师的自行车前齿轮有48个齿,后齿轮有17个齿,后车轮直径是59厘米;李老师的自行车前齿轮有26个齿,后齿轮有12个齿,后车轮直径是61厘米.两位老师同样蹬一圈,()走得远.A.无法判定B.张老师C.李老师10.(2020·辽宁六年级单元测试)如下图所示,一个大长方形被两条线段分成四个小长方形。
2019-2020学年北师大版五年级数学下册第一单元试卷一、填空。
(每空1分,共29分)1.计算38+45要先( ),结果是( )。
2.715与13的和是( ),差是( )。
3.在里填上适当的运算符号。
5912=118 3814=58 71213=143416=11124.0.064里面有( )个千分之一,化成分数是( )。
5.在下面的括号里填上适当的小数或分数。
0.48=( )( )1.75=( )( )1425=( ) 512≈( ) 6.如果58<0.□,□里可以填( ),如果( )7>0.5,括号里最小填( )。
7.在里填上“>”“<”或“=”。
0.66723 7250.279 780.87512+1434 13+1514+16 23-1934-1812-16110+1308.从10里面连续减去12,减去( )次后结果是0。
9.在横线上面的括号里填上合适的小数,横线下面的括号里填上合适的分数。
二、判断。
(对的画“√”,错的画“×”,每题1分,共5分) 1.1-27+57=0。
( ) 2.整数加法的运算定律对于分数加法同样适用。
( ) 3.718+112-718+112=0。
( )4.0.25化成分数一定是25100。
( )5.计算12+29时,分子不能直接相加,是因为分数单位不同。
( )三、选择。
(将正确答案的字母填在括号里,每题1分,共5分) 1.一个长方形的长是35 m ,宽是14m ,它的周长是( )。
A .1720 m B .710 m C .1710m D .320m 2.2-23的计算结果是( )。
A .13B .113C .213D .2233.算式110-111的结果最接近( )。
A .1B .12C .13D .04.计算79+310+29+710=⎝ ⎛⎭⎪⎫79+29+⎝ ⎛⎭⎪⎫310+710时运用了( )。
A .加法交换律B .加法结合律C .加法交换律和结合律D .无法确定5.用简便方法计算43-⎝ ⎛⎭⎪⎫13+16的第一步算式是( )。
2019-2020学年度第二学期期末考试八年级数学试题一、选择题:(每题2分,12小题,共24分)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.604.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.55.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣87.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+208.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.149.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣110.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.811.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.512.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3二、填空题:(每题2分,8小题,共16分)13.因式分解:m2n+2mn2+n3=.14.若分式有意义,则实数x的取值范围是.15.若关于x的分式方程=有增根,则m的值为.16.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有(只填序号).三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=222.解方程:(1)x2﹣2x﹣5=0;(2)=.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.参考答案与试题解析一.选择题(共12小题)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.2.下面的多边形中,内角和与外角和相等的是()A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:B.3.长和宽分别是a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15 B.16 C.30 D.60【分析】直接利用矩形面积求法结合提取公因式法分解因式计算即可.【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为6,∴2(a+b)=10,ab=6,故a+b=5,则a2b+ab2=ab(a+b)=30.故选:C.4.如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是()A.4.5 B.5 C.2 D.1.5【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:A.5.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C.=D.=【分析】分别根相似三角形的判定方法,逐项判断即可.【解答】解:∵∠BAC=∠DAE,∴当∠B=∠D或∠C=∠E时,可利用两角对应相等的两个三角形相似证得△ABC∽ADE,故A、B选项可判断两三角形相似;当=时,可得=,结合∠BAC=∠DAE,则可证得△ABC∽△AED,而不能得出△ABC∽△ADE,故C不能判断△ABC∽ADE;当=时,结合∠BAC=∠DAE,可证得△ABC∽△ADE,故D能判断△ABC∽△ADE;故选:C.6.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣8【分析】利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>0【解答】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>0,得c>﹣2根据选项,只有C选项符合,故选:C.7.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程()A.82(1+x)2=82(1+x)+20 B.82(1+x)2=82(1+x)C.82(1+x)2=82+20 D.82(1+x)=82+20【分析】根据题意可以列出相应的方程,本题得以解决.【解答】解:由题意可得,82(1+x)2=82(1+x)+20,故选:A.8.如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.14【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为24,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.9.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.B.C.1 D.﹣1【分析】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(,),即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.10.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2B.2C.6 D.8【分析】由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.5【分析】根据题意和三角形相似的判定和性质,可以求得CD的长,本题得以解决.【解答】解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.12.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A.B.2 C.D.3【分析】延长BC到E使BE=AD,则四边形ACED是平行四边形,根据三角形的中位线的性质得到CM=DE=AB,根据跟勾股定理得到AB===5,于是得到结论.【解答】解:延长BC到E使BE=AD,则四边形ACED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.二.填空题(共8小题)13.因式分解:m2n+2mn2+n3=n(m+n)2.【分析】首先提取公因式n,再利用完全平方公式分解因式得出答案.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.若分式有意义,则实数x的取值范围是x≠5 .【分析】根据分式有意义的条件可得x﹣5≠0,再解即可.【解答】解:由题意得:x﹣5≠0,解得:x≠5,故答案为:x≠5.15.若关于x的分式方程=有增根,则m的值为 3 .【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入计算即可求出m的值.【解答】解:去分母得:3x=m+3,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:6=m+3,解得:m=3,故答案为:316.设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=0 .【分析】直接根据根与系数的关系求解.【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.故答案为:0.17.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为10 .【分析】由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故答案为10.18.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.【分析】证出∠ACD=∠DCB=∠B,证明△ACD∽△ABC,得出=,即可得出结果.【解答】解:∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD×AB=2×5=10,∴AC=.故答案为:.19.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.【分析】连接DE,CD,根据三角形中位线的性质得到DE∥BC,DE=BC,推出四边形DCFE是平行四边形,得到EF=CD,根据勾股定理即可得到结论.【解答】解:连接DE,CD,∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴DE∥CF,∵CF=BC,∴DE=CF,∴四边形DCFE是平行四边形,∴EF=CD,∵在Rt△ABC中,∠B=90°,AB=2,BC=3,∴CD===,∴EF=CD=,故答案为:.20.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有①②④⑤(只填序号).【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;③可以直接求出FC的长,计算S△ACF≠1,错误;④根据正方形边长为2,分别计算CE和AF的长得结论正确;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,得出⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,在△ABH和△ADF中,,∴△ABH≌△ADF(SAS),∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,故③不正确;④AF==2,∵△ADF∽△CEF,∴=,∴CE=,∴CE=AF,故④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴∠GEF=∠GCE,∴△EFG∽△CEG,∴=,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;故答案为:①②④⑤.三、计算题:(4小题,共18分)21.(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=2【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:(1)原式=•=•=m+1;(2)原式=•=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=19.22.解方程:(1)x2﹣2x﹣5=0;(2)=.【分析】(1)利用公式法求解可得;(2)两边都乘以(x+1)(x﹣2)化为整式方程,解之求得x的值,继而检验即可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣5,∴△=4﹣4×1×(﹣5)=24>0,则x==1±,∴;(2)两边都乘以(x+1)(x﹣2),得:x+1=4(x﹣2),解得x=3,经检验x=3是方程的解.四、解答题:(5小题,共42分)23.阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t =±9因为2m2+n2≥0,所以2m2+n2=9.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.【分析】设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,然后解该方程即可.【解答】解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,整理,得16t2﹣9=27,所以t2=.∵t≥0,∴t=.∴x2+y2的值是.【点评】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.24.某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.【分析】(1)设典籍类图书的标价为x元,根据购买两种图书的数量差是10本,列出方程并解答;(2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).【解答】解:(1)设典籍类图书的标价为x元,由题意,得﹣10=.解得x=18.经检验:x=18是原分式方程的解,且符合题意.答:典籍类图书的标价为18元;(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,化简得y2+26y﹣56=0,∴y=2或﹣28(不合题意,舍去),答:折叠进去的宽度为2cm.【点评】此题考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.25.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD 的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB与点O,若BC=8,AO=3,求△ABC的面积.【分析】(1)先求出四边形ADBE是平行四边形,根据等腰三角形的性质求出∠ADB=90°,根据矩形的判定得出即可;(2)根据矩形的性质得出AB=DE=2AO=6,求出BD,根据勾股定理求出AD,根据三角形面积公式求出即可.【解答】(1)证明:∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∵AB=AC,AD是BC边的中线,∴AD⊥BC,即∠ADB=90°,∴四边形ADBE为矩形;(2)解:∵在矩形ADBE中,AO=3,∴AB=2AO=6,∵D是BC的中点,∴DB=BC=4,∵∠ADB=90°,∴AD===2,∴△ABC的面积=BC•AD=×8×2=8.【点评】本题考查了等腰三角形的性质和矩形的性质和判定,能求出四边形ADCE是矩形是解此题的关键.26.如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.(1)求证:DE=DF(2)若BH:HC=11:5;①求:DF:DA的值;②求证:四边形HGAP为平行四边形.【分析】(1)由AAS证明△BDE≌△CDF,即可得出结论;(2)①设BH=11x,则HC=5x,BC=16x,则,DH=3x,由平行线得出△EDH∽△ADB,得出,即可得出结论;②求出=,证出FH∥AC,即PH∥AC,即可得出结论.【解答】(1)证明:∵AD为△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF;(2)①解:设BH=11x,则HC=5x,BC=16x,则,DH=3x,∵EG∥AB,∴△EDH∽△ADB,∴,∵DE=DF,∴;②证明:∵,∴,∵,∴=,∴FH∥AC,∴PH∥AC,∵EG∥AB,∴四边形HGAP为平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握平行四边形的判定是关键.27.如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连接DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出C的最小值.【分析】(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE﹣AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【解答】解:(1)∵BC=AD=9,BE=4,∴CE=9﹣4=5∵AF=CE即:3t=5,∴t=,∵EH∥DF∴△DAF∽△EBH,∴=即:=解得:BH=;当t=时,AF=CE,此时BH=;(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF,∴即=∴BH=当点F在点B的左边时,即t<4时,BF=12﹣3t此时,当△BEF∽△BHE时:即42=(12﹣3t)×解得:t1=2此时,当△BEF∽△BEH时:有BF=BH,即12﹣3t=解得:t2=当点F在点B的右边时,即t>4时,BF=3t﹣12此时,当△BEF∽△BHE时:即42=(3t﹣12)×解得:t3=2+2(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=FH•AD=(12﹣3t+t)×9=54﹣②如图,∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'==,∴C的最小值=13+.【点评】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.。
第一单元测试卷一、填空题。
1.一个圆有()条直径,所有的直径都(),直径的长度是半径的()倍。
2.一个圆的半径是1分米,直径是()分米,周长是()分米,面积是()平方分米。
3.圆有()条对称轴,长方形有()条对称轴。
4.要画一个周长是12.56厘米的圆,圆规两脚间的距离应定为()厘米,这个圆的面积是()平方厘米。
5.用一张长8分米、宽6分米的纸剪一个最大的圆,这个圆的面积是()平方分米。
6.一个时钟的时针长5厘米,它转动一周形成的图形是(),这个时针的尖端转动一昼夜所走的路程是()厘米。
二、判断题。
(对的画“√”,错的画“✕”)1.把圆形纸片按不同的方向对折,折痕一定都经过圆心。
()2.圆的周长是这个圆的直径的3.14倍。
()3.圆越大,圆周率也越大。
()4.一个半圆只有一条对称轴。
()5.若大圆半径等于小圆的直径,则大圆面积是小圆面积的4倍。
()三、选择题。
(把正确答案的序号填在括号里)1.要画一个直径是5厘米的圆,圆规两脚之间的距离是()厘米。
A.5B.2.5C.10D.152.一个圆的直径和一个正方形的边长相等,这个圆的面积和这个正方形的面积的关系为()。
A.圆的面积大B.正方形的面积大C.两者的面积相等D.不能比较3.一个圆的半径由2厘米增加到3厘米,那么这个圆的面积增加了()平方厘米。
A.12.56B.28.26C.15.7D.3.144.车轮滚动一周,求所行的路程就是求车轮的()。
A.直径B.周长C.面积D.半径四、计算题。
1.求下面各图形的面积和周长。
2.求下图中阴影部分的面积。
五、解决问题。
1.一块圆形桌布,半径是6分米,给它的周围缝上花边,花边长多少分米?这块桌布用料多少平方分米?2.一个直径为18米的圆形花坛,周围有一条宽1米的小路,这条小路的面积是多少平方米?3.一根圆柱形木材,它的横截面的周长是1.884米,这根木材的横截面的面积是多少平方米?(得数保留两位小数)4.一台压路机前轮的半径是0.4米,如果前轮每分转动6周,10分可以从路的一端行到另一端,这条路大约有多长?5.公园里有一个圆形的养鱼池,量得养鱼池的周长是100.48米,养鱼池的中间有一个圆形小岛,半径是6米。
北师大版七年级数学下册2019-2020 年度第二学期期末模拟测试卷一一、选择题(共10 小题,每小题 3 分,计30 分,每小题只有一个选项是符合要求的)1.下列计算正确的是()A.3a2﹣4a2=a2 B.a2•a3=a6 C.a10÷a5=a2 D.(a2)3=a62.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)3.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3 相差2 的概率是()A.B.C.D.5.已知三角形三边分别为2,a﹣1,4,那么a 的取值范围是()A.1<a<5 B.2<a<6 C.3<a<7 D.4<a<66.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了 10 分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路7.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形8.已知实数a、b 满足a+b=2,ab=,则a﹣b=()A.1 B.﹣ C.±1 D.±9.如图:∠A+∠B+∠C+∠D+∠E+∠F 等于()A.180°B.360°C.540°D.720°10.如图,在△ABC 中,点D、E、F 分别是BC、AD、EC 的中点,若△ABC 的面积是16,则△BEF 的面积为()A.4 B.6 C.8 D.10二、填空题(共 4 小题,每小题 3 分,计12 分)11.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300 亿元人民币等值专项贷款,将300 亿元用科学记数法表示为元.12.∠1 与∠2 有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=.13.如图,点P 关于OA、OB 的对称点分别为C、D,连接CD,交OA 于M,交OB 于N,若PMN 的周长=8 厘米,则CD 为厘米.14.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是(只需添加一个条件即可)三、解答题(共9 小题,计78 分解答应写出过程)15.(12分)计算(1)106÷10﹣2×100(2)(a+b﹣3)(a﹣b+3)(3)103×97(利用公式计算)(4)(﹣3a2b)2(2ab2)÷(﹣9a4b2)16.(6分)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.17.(6分)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x),其中x=﹣,y=1.18.(6分)如图,在正方形网格中,△ABC 是格点三角形,画出△ABC 关于直线l对称的△A1B1C1.19.(9分)将分别标有数字 1,2,3 的三张卡片洗匀后,背面朝上放在桌面上.请完成下列各题.(1)随机抽取1 张,求抽到奇数的概率.(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?(3)在(2)的条件下,试求组成的两位数是偶数的概率.20.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F 的度数.21.(9分)如图,直线 AB 与 CD 相交于点 O,∠AOM=90°.(1)如图1,若射线OC 平分∠AOM,求∠AOD 的度数;(2)如图2,若∠BOC=4∠NOB,且射线OM 平分∠NOC,求∠MON 的度数.22.(10分)已知一个等腰三角形的两个内角分别为(2x﹣2)°和(3x﹣5)°,求这个等腰三角形各内角的度数.23.(12 分)如图 1,在△ABC 中,∠BAC=90°,AB=AC,过点 A 作直线 DE,且满足BD⊥DE 于点 D,CE⊥DE 于点 E,当 B,C 在直线 DE 的同侧时,(1)求证:DE=BD+CE.(2)如果上面条件不变,当B,C 在直线DE 的异侧时,如图2,问BD、DE、CE 之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C 在直线DE 的异侧时,如图3,问BD、DE、CE 之间的数量关系如何?写出结论并证明.参考答案一、选择题1.D.2.D.3.C.4.B.5.C.6.B.7.A.8.C.9.B.10.A.二、填空题(共4 小题,每小题3 分,计12 分)11.3×1010.12.60°或120°.13.8.14.AE=AC.三、解答题(共9 小题,计78 分解答应写出过程)15.解:(1)原式=106+2+0=108;(2)原式=a2﹣(b﹣3)2=a2﹣b2+6b﹣9;(3)原式=(100+3)×(100﹣3)=1002﹣32=10000﹣9=9991;(4)原式=(9a4b2)•(2ab2)÷(﹣9a4b2)=﹣2ab2.16.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.17.解:原式=(x2+4xy+4y2﹣9x2+y2﹣5y2)÷2x=(﹣8x2+4xy)÷2x=﹣4x+2y,当x=﹣、y=1 时,原式=﹣4×(﹣)+2×1=2+2=4.18.解:如图,△A1B1C1 即为所求.19.解:(1)在这三张卡片中,奇数有:P(抽到奇数)=;(2)可能的结果有:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(3)由(2)得组成的两位数是偶数的概率==.20.证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC 和△DEF 中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°21.解(1)∵∠AOM=90°,OC 平分∠AOM,∴∠AOC=∠AOM=×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD 的度数为135°;(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM 平分∠CON,∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90°,∴x=36°,∴∠MON=x°=×36°=54°,即∠MON 的度数为54°.22.解:①当(2x﹣2)°和(3x﹣5)°是两个底角时,2x﹣2=3x﹣5,x=3,∴三个内角分别是4°,4°,172°;②当2x﹣2 是顶角时,2x﹣2+2(3x﹣5)=180°,解得x=24,∴三个内角分别是46°,67°,67°;③当3x﹣5 是顶角时,3x﹣5+2(2x﹣2)=180°,解得x=27,∴三个内角分别是76°,52°,52°23.(1)证明:如图1,∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)解:BD=DE+CE,理由:如图2,∵BD⊥DE,CE⊥DE,∴∠ADB=∠CEA=90°.∴∠BAD+∠ABD=90°.∵∠BAD+∠EAC=90°∴∠ABD=∠EAC.在△ADB 和△CEA 中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AE=AD+ED,∴BD=DE+CE.(3)解:DE=CE﹣BD,理由是:如图3,同理易证得:△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD﹣AE,∴DE=CE﹣BD.。
2019-2020学年八年级数学第一学期期末测试卷一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.22.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,94.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.86.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣29.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=.12.命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.13.计算:(3+)()=.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.18.解方程组:19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为km/h,放学回家的速度为km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求线段OM的长;(3)求点B的坐标.2019-2020学年八年级数学第一学期期末测试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.2【分析】根据无理数、有理数的定义逐一对每个选择支进行判断.【解答】解:是分数,属于有理数,故选项A正确;﹣,2π,2是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意:带根号的开不尽方的数是无理数,无限不循环小数为无理数,含π的数是无理数.如2π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,9【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.【点评】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.4.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.6.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【解答】解:在y=﹣2x﹣1中,∵﹣2<0,﹣1<0,∴此函数的图象经过二、三、四象限,故选:D.【点评】本题考查的是一次函数的图象,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解答此题的关键.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等),正确;C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),错误;故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣2【分析】根据平方根、算术平方根的定义逐一判别可得.【解答】解:A.1的平方根是±1,此选项错误;B.﹣8的立方根是﹣2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.9.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟【分析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为(1)、(4)、(5)步时间之和.【解答】解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开7分钟,同时洗菜3分钟,准备面条及佐料2分钟,总计7分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+7+3=12分钟.故选:C.【点评】解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=2.【分析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【解答】解:==,|﹣|==2,故答案为:,2.【点评】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.12.命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货4吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,由“2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨”,即可得出关于x,y的二元一次方程组,将方程组的两方程相加再除以3,即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是()2012.【分析】先求出直线y =kx +b 的解析式,求出直线与x 轴、y 轴的交点坐标,求出直线与x 轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x 轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A 3的坐标,进而得出各点的坐标的规律.【解答】解:∵A 1(1,1),A 2(,)在直线y =kx +b 上,∴,解得,∴直线解析式为y =x +;设直线与x 轴、y 轴的交点坐标分别为N 、M ,当x =0时,y =,当y =0时, x +=0,解得x =﹣4,∴点M 、N 的坐标分别为M (0,),N (﹣4,0),∴tan ∠MNO ===,作A 1C 1⊥x 轴与点C 1,A 2C 2⊥x 轴与点C 2,A 3C 3⊥x 轴与点C 3,∵A 1(1,1),A 2(,),∴OB 2=OB 1+B 1B 2=2×1+2×=2+3=5,tan ∠MNO ===,∵△B 2A 3B 3是等腰直角三角形,∴A 3C 3=B 2C 3,∴A 3C 3==()2,同理可求,第四个等腰直角三角形A 4C 4==()3,依此类推,点A n 的纵坐标是()n ﹣1.∴A2013=()2012故答案为:,()2012.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.【分析】先利用二次根式的除法法则和完全平方公式运算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:原式=8﹣4+1﹣(﹣)=9﹣4﹣2+=9﹣5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x﹣2x+3=8,解得:x=5,把x=5代入①得y=7,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.【分析】(1)利用勾股定理求解可得;(2)分别作出点B与点C关于x轴的对称图形,再与点A首尾顺次连接即可得.【解答】解:(1)AC==,故答案为:;(2)所画图形如下所示,其中△DEF即为所求,【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点及勾股定理.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.【分析】设我市去年外来旅游的有x万人,外出旅游的有y万人,根据去年同期外来旅游比外出旅游的人数多20万人及今年外来与外出旅游的人数与去年人数之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设我市去年外来旅游的有x万人,外出旅游的有y万人,根据题意得:,解得:.答:我市去年外来旅游的有100万人,外出旅游的有80万人,【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【分析】(1)利用众数、中位数的定义分别计算即可;(2)利用平均数和方差的公式计算即可;(3)利用方差的意义进行判断.【解答】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.【分析】(1)根据题意可以写出推理过程,从而可以解答本题;(2)根据三角形外角的性质和三角形的内角和即可得到结论..【解答】解:(1)证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C,(2)证明:∵∠CFN是△ACF的一个外角(三角形外角的定义),∴∠CFN=∠β+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∵PQ∥MN(已知),∴∠CFN=∠α(两直线平行,同位角相等)∴∠α=∠β+∠C(等量代换).∵∠C=45°(已知),∴∠α=∠β+45°(等量代换).【点评】本题考查了三角形外角的性质,平行线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为5km/h,放学回家的速度为3km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?【分析】(1)根据题意和图象中的数据可以求得小亮上学的速度和放学回家的速度;(2)根据图象中的数据和题意可以求得线段BC所表示的y与x之间的函数关系;(3)由题意可知,小明从家到超市和从超市到家的时间之和是总的时间减去两次经过超市的时间间隔,从而可以解答本题.【解答】解:(1)由题意可得,小明上学的速度为:3÷0.6=5km/h,放学回家的速度为:3÷(9.6﹣0.6﹣8)=3km/h,故答案为:5,3;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,将B(8.6,3)、C(9.6,0)代入y=kx+b,得,得,∴线段BC所表示的y与x之间的函数关系式为y=﹣3x+28.8(8.6≤x≤9.6);(3)设超市离家skm,=9.6﹣8.48,解得:s=2.1.答:超市离家2.1km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=∠CAB =31°,然后根据互余可计算出∠AEC=59°;(2)①在Rt△ABC中,利用勾股定理即可得到BC的长;②设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【解答】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=∠CAB=×62°=31°,Rt△ACE中,∠ACE=90°∴∠AEC=90°﹣31°=59°.(2)①在Rt△ABC中,AC=6,AB=10,∴BC===8.②∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点评】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,将△AOC 沿AC 折叠得到△ABC ,请解答下列问题:(1)点C 的坐标为 (5,0) ;(2)求线段OM 的长;(3)求点B 的坐标.【分析】(1)利用勾股定理求出OA 的长即可解决问题;(2)求出直线AC 的解析式,利用待定系数法即可解决问题;(3)只要证明AB =AC =5,AB ∥x 轴,即可解决问题;【解答】解:(1)∵A (﹣3,4),∴OA ==5,∴OA =OC =5,∴C (5,0),故答案为(5,0);(2)设直线AC 的解析式y =kx +b ,函数图象过点A 、C ,得,解得,∴直线AC 的解析式y =﹣x +,当x =0时,y =,即M (0,),∴OM =.(3)∵△AOC沿着AC折叠得到△ABC,∴OA=BA,OC=BC,且∠ACO=∠ACB,又∵OA=OC,∴AB=AC=OC,∴∠BAC=∠ACB,∴∠ACO=∠BAC,∴AB∥x轴,由(1)知,C(5,0),∴OC=5.∵AB=AC=OC,∴AB=5.∵A坐标为(﹣3,4),AB∥x轴,∴B坐标为(2,4).【点评】本题属于三角形综合题,考查了翻折变换,等腰三角形的性质,一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
北师大版六年级上册数学第一单元《圆》单元测评卷(解析卷)必刷卷测试时间:70分钟满分:100分+30分A 卷基础训练(100 分)一、填空。
(每小题2分,共30 分)1.(2020·四川省成都市六年级期末)世界上第一个把圆周率精确到小数点右边第七位的数学家是________,这一成就在世界上领先了约1000年。
【答案】祖冲之【分析】我国的数学家祖冲之是第一个精确计算圆周率的古代数学家.【解析】解:世界上第一个把圆周率精确到小数点右边第七位的数学家是祖冲之.故答案为:祖冲之2.(2019·北京六年级单元测试)把一个周长是6.28厘米的圆平均分成两个半圆,每个半圆的周长是厘米.【答案】5.14.【分析】由题意可知:每个半圆的周长都由一条直径和圆的周长的一半组成,圆的周长已知,从而可以求出圆的直径,进而问题得解.【解析】圆的直径:6.28÷3.14=2(厘米),半圆的周长:6.28÷2+2=3.14+2=5.14(厘米);答:每个半圆的周长是5.14厘米.故答案为5.14.3.(2020·全国六年级期末模拟)一个圆的直径是20厘米,这个圆的周长是________厘米,面积是________平方厘米。
【答案】62.8314【分析】圆周长公式:C=πd,圆面积公式:S=πr²,由此根据公式分别计算周长和面积即可.【解析】解:周长:3.14×20=62.8(厘米);面积:3.14×(20÷2)²=3.14×100=314(平方厘米)故答案为:62.8;3144.(2020·江苏省小升初模拟)把一个直径是4厘米的圆分成若干等份,然后把它剪开,照下图的样子拼起来,拼成的图形的周长比原来圆的周长增加(______)厘米.【答案】4【解析】因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是4厘米.故答案为4.5.(2019·辽宁省六年级单元测试)用一根长25.12cm长的铁丝围成一个圆,圆的面积是________平方厘米。
第一单元测试卷(满分:100分时间:90分钟)姓名:得分:一、我是填空小能手。
(22分)1.一个圆的半径是 1.5厘米,周长是()厘米,面积是()平方厘米。
2.()决定圆的大小,()决定圆的位置。
3.一个圆的半径扩大到原来的2倍,直径扩大到原来的()倍,周长扩大到原来的()倍,面积扩大到原来的()倍。
4.正方形有()条对称轴,圆有()条对称轴。
5.绕半径为3m 的圆形花坛边缘走一圈要走()m ,该花坛的占地面积为()m 2。
6.一个圆的周长是28.26厘米,它的直径是()厘米,半径是()厘米,面积是()平方厘米。
7.如左下图,圆从位置A 向()平移()个方格后,再向()平移()个方格到位置B 。
8.一个圆的周长与一个正方形的周长相等,这个正方形的边长是 6.28厘米,圆的面积是()平方厘米。
9.在一个边长为8cm 的正方形内画一个最大的圆,圆的面积是()cm 2。
10.如右上图,体操运动员在单杠上旋转一周。
脚尖在空中所经过的路程是(),运动员的身体在空中所划过的面积是()。
二、火眼金睛辨对错。
(8分)1.所有的半径都相等,所有的直径也都相等。
()2.一个圆的周长是它的直径的 3.14倍。
()3.圆内最长的线段是直径。
()4.半径为2cm 的圆的周长和面积相等。
()六年级数学(上)(北师版)5.半圆的面积是圆面积的一半,周长是圆周长的一半。
()6.圆的半径增加1cm ,周长就增加2πcm 。
()7.圆越大,圆周率越大。
()8.两个圆的直径相等,这两个圆的面积一定相等。
()三、对号入座。
(5分)1.下列图形中,对称轴最多的是()。
2.自行车车轮转动一周行驶的距离是车轮的()。
①周长②面积③直径3.小圆的周长是大圆周长的31,大圆的面积是小圆面积的()。
①31②3倍③9倍4.圆环内圆的半径为5cm ,比外圆的半径少2cm ,这个圆环的面积为()cm 2。
①21π②16π③24π5.半径为r 的半圆,周长为()。
第一章特殊平行四边形一、选择题1.已知菱形的边长为,较短的一条对角线的长为,则该菱形较长的一条对角线的长为()A. B. C. D.2.下列说法中不正确的是()A. 四边相等的四边形是菱形B. 对角线垂直的平行四边形是菱形C. 菱形的对角线互相垂直且相等D. 菱形的邻边相等3.一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为()A. 48B. 24C. 24或40D. 48或804.如图,四边形的两条对角线相交于点,且互相平分.添加下列条件,仍不能判定四边形为菱形的是()A. B. C. D.5.对于任意的矩形,下列说法一定正确的是()A. 对角线垂直且相等B. 四边都互相垂直C. 四个角都相等D. 是轴对称图形,但不是中心对称图形6.如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是( )A. B. C. D.7.已知四边形的ABCD中,∠A=∠B=∠C=∠D,则这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形8.如图,矩形ABCD的两条对角线相交于点O,CE垂直平分DO,,则BE等于A. B. C. D. 29.正方形具有而菱形不一定具有的特征是()A. 对角线互相垂直平分B. 内角和为360°C. 对角线相等D. 对角线平分内角10.在四边形中,是对角线、的交点,能判定这个四边形为正方形的是()A. ,B. ,,C. ,,D. ,11.如图,四张大小不一的正方形纸片分别放置于矩形的四个角落,其中,①和②纸片既不重叠也无空隙.在矩形ABCD的周长己知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长()A. ①B. ②C. ③D. ④12.如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A. 2B. 4C. 4D. 2二、填空题13.若菱形两条对角线的长分别是6cm和8cm,则其面积为________cm2.14.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为________,面积为________.15.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是________.16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=________.17.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(添加一个条件即可).18.在矩形ABCD中,AB=2,BC=3,若点E为边CD的中点,连接AE,过点B作BF⊥AE于点F,则BF长为________.19.四边形ABCD中,AC⊥BD,顺次连接它的各边中点所得的四边形是________.20.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是________(只需添加一个即可)21.如图,正方形ABCD的边长为1,点E是BC边上一动点(点E不与点B、C重合),以线段DE为边长,作正方形DEFG,使得点F、G落在直线DE的下方,连接AF、BF.当△ABF为等腰三角形时,BE的长为________.22.如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG=________.三、解答题23.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.求证:四边形AECF是菱形.24.如图,△ABC≌△ABD,点E在边AB上,并且CE∥BD,连接DE.求证:四边形BCED是菱形.25.如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.26.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,且DE∥AC,AE∥BD.求OE的长.27.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.28.如图,在正方形ABCD中,点E、F在对角线BD上,且BE=EF=FD,连接AF,AE,CE,CF,请你判断四边形AECF的形状,并证明你的结论.29.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD= ,求正方形ABCD的边长;(2)猜想线段CM与CN的数量关系并加以证明.参考答案一、选择题1. C2. C3. B4. C5. C6. A7. B8. A9. C 10. D 11. B 12.A二、填空题13. 24 14. 10cm;50 cm215. 24 16. 17. ∠ABC=90°或AC=BD.18.19.矩形20. ∠ABC=90°或AC=BD 21. 或1- 22.三、解答题23. 证明:∵四边形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF是菱形24.证明:∵≌,∴,在和中,∴≌,∴,又∵,∴,∴,∴,∴,∴四边形BCED是菱形.25.证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE.∵DF⊥AE,∴∠AFD=∠B=90°.在△ABE和△DFA中,∵∴△ABE≌△DFA,∴AB=DF26.解:∵四边形ABCD为菱形,∴AC⊥BD,OA= AC=3,OD= BD=4,∴∠AOD=90°,∴AD= = =5.∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形,∴OE=AD=527.解:证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.∴∠AFC=90°,∴∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.∵EA=EG,∴∠EAG=∠EGA.∵∠EGA=∠CGF,∴∠DAF=∠CGF.∴∠D=∠ECD.∴ED=EC28.解:四边形AECF是菱形.∵在正方形ABCD中,AB=AD,∴∠ABE=∠ADF,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF,同理可得,CE=CF,∵在正方形ABCD中,CD=AD,∠CDE=∠ADF,DF=DF,∴△ADF≌△CDF,∴AF=CF,∴AE=AF=CF=CE,∴四边形AECF是菱形.29.(1)解:∵四边形ABCD 是正方形,∴△ABD 是等腰直角三角形,∴2AB2=BD2,∵BD= ,∴AB=1,∴正方形ABCD的边长为1.(2)解:CN= CM.证明如下:∵CF=CA,CE是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF 和△CBN 中,∴△ABF≌△CBN(ASA),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF~△COM,∴,∴,即CN= CM.。
六年级数学上册第一单元测试卷一、填空(20分)1、画圆时,圆规两脚之间的距离是4cm,那么这个圆的直径是()cm,周长是()cm,面积是()cm2。
2、在一个边长为4dm的正方形里,画一个最大的圆,这个圆的直径为()dm,半径为()dm,周长为()dm,面积为()dm2.3、把一个圆平均分成若干份,可以拼成一个近似于长方形。
长方形的长相当于圆的(),宽相当于圆的()。
4、圆有()条对称轴,每条对称轴都与()在同一条直线上。
5、一个圆形花坛的周长是25.12m,这个花坛的直径是()m。
6、把一头牛用3m的绳子拴在一根木桩上,这头牛吃草的最大面积是()m2。
7、在一个周长是32cm的正方形里画一个最大的圆,这个圆的周长是()cm。
8、用一根12.56dm长的铁丝围成一个正方形,面积是()dm2,围成一个圆,面积是()dm2。
9、圆的半径是2cm,如果半径增加到5cm,那么圆的面积增加了(),cm2,周长增加了()cm。
10、一个挂钟的时针长9cm,经过12小时后,它扫过的面积是()cm2,走过的路程是()cm。
二、判断。
(6分)1、半圆的周长是与它等半径圆周长的一半。
()2、通过圆心的线段,叫做直径。
()3、一个圆的直径等于一个正方形的边长,那么正方形面积小于圆的面积。
()4、圆的半径扩大为原来的3倍,周长就扩大为原来的3倍。
()5、园内最长的线段是圆的直径。
()6、半径是2cm的圆,它的周长和面积相等。
()三、选择。
(8分)1、大圆内有两个小圆,大圆的周长与两个小圆的周长之和相比()。
A、大圆周长长B、同样长C、两个小圆周长之和长D、无法确定2、下列图形中对称轴最少的是()。
A、圆B、正方形C、长方形D、等腰三角形3、车轮滚动一周,所行的路程是求车轮的()。
A、周长B、半径C、直径D、面积4、在一个圆中画一个最大的五角星,所得到的图形有()条对称轴。
A、3B、4C、5D、无数5、大圆的半径为2cm,小圆的直径为2cm,小圆的面积是大圆的()。
第一单元测试卷(1)时间:90分钟满分:100分分数: 一、填空题。
(21分)二、判断题。
(正确的画“√”,错误的画“✕”)(10分)1.分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。
( )2.整数加法的交换律、结合律对分数不适用。
( )3.4. ( )5. 分母是15的分数,不能化成有限小数。
( )三、在里填上“>”“<”或“=”。
(9分)四、先在算式上面的图形中涂一涂,再写出得数。
(4分)五、计算题。
(29分)1.直接写出得数。
(8分)2.计算下面各题。
(12分)3.解方程。
(9分)六、按要求做一做。
(5分)1.计算下面各题,并找出得数的规律。
(3分)2.运用以上规律,直接写出下面算式的得数。
(2分)七、解决问题。
(22分)1.淘气用一张彩纸折轮船,笑笑用一张同样大的彩纸飞机。
淘气比笑笑多用了一张彩纸的几分之几?两人共用一张彩纸够吗?(5分)2.两堆沙子,第一堆重0.2吨,第二堆比第一堆。
两堆共重多少吨?(5分)3.(6分)(1)从体育馆到少年宫一共有多少千米?(2)从学校到体育馆比从学校到少年宫近多少千米?(3)小军从家经学校到体育馆要走1千米,他家离学校有多远?4.小明一家三口喝一盒牛奶。
(6分)(1)三人一共喝了多少升牛奶?(2)这盒1升的牛奶还剩多少升?(3)你还能提出什么问题?参考答案:二、1.√2.✕3.✕4.✕5.✕三、< < < > > > < < <六、每个算式的得数,分母和最后一个加数的分母相同,分子比分母小1。
2020-2021学年第二学期北师大版五年级数学第一单元测试卷及答案第一单元测试卷(2)时间:90分钟满分:100分分数:一填空。
(25分)1. +表示( )个加上( )个,和是( )个,是( )。
2. 里面有( )个,再加上( )个是最小的质数。
3. 计算-时,因为它们的分母不同,也就是( )不同,所以要先( ),再相减。
六年级下册数学第一单元测试卷一、填空:
1、一个圆柱的底面半径扩大为原来的2倍,高缩小到原来的1
2
,体积
()倍。
2、圆柱与圆锥的底相同,圆柱的高等于圆锥高的2倍,圆柱的体积是圆锥体积的()倍。
3、圆柱的两个圆面叫做(),周围的曲面叫做(),圆柱两个底面之间的距离叫做()。
4、圆锥有()个顶点,()个底面。
5、一个圆锥的底面直径和高都是6cm,这个圆锥的体积是()cm3。
6、一个圆柱和一个圆锥的体积相等,底面积也相等.已知圆柱的高是6厘米,圆锥的高是()厘米。
7、把一根2.5 m长的圆木锯成三段小圆木,表面积增加了24 dm2,这根圆木的体积是()dm3。
8、一根长1米的圆木,现将它锯成同样长短的两段,表面积增加了56平方厘米,这根圆木原来的体积是()立方厘米二、选择:
1、把一段圆柱形木头削成一个最大的圆锥,切掉部分重12千克,求原木材重多少千克。
正确算式是:()
A. 12÷
1
3
B. 12÷(1-
1
3
) C. 12×3
2、用一张长8cm、宽6cm的长方形纸卷成一个圆柱。
按()方式卷,得到的圆柱体积大。
A.以8cm作为圆柱的高
B.以6cm作为圆柱的高
C.无法判定
3、圆柱的底面半径是r,高是h,它的表面积可以表示为()。
A. B.
C. D.
4、下列关于圆柱和圆锥的高,说法错误的个数有()个。
①圆柱两个底面之间的距离叫做圆柱的高。
②从圆柱的顶点到底面圆心的距离叫做圆柱的高。
③圆锥有无数条高。
A、0
B、1
C、2
D、3
5、圆柱的底面半径和高都扩大到原来的2倍,它的体积扩大到原来的()倍。
A. 2
B. 4
C. 6
D. 8
6、圆柱的底面半径扩大3倍,高不变,体积扩大()。
A. 3倍
B. 9倍
C. 6倍
三、计算下面各圆锥的体积。
2、求下图(单位:厘米)钢管的体积。
四、解决问题。
1、一根圆柱形钢筋,
横截面是直径为2厘米的圆形,把它截成两段后,表面积的和为75.36平方厘米,求两端钢筋体积之和是多少立方厘米?2、一个圆锥形沙堆,底面周长是18.84m,高是0.6m。
(1)这个沙堆的占地面积是多少?
(2)这个沙堆的体积是多少立方米?
3、如右下图所示,圆锥形容器中装有5升水,水面高度正好是圆
锥高度的一半,这个容器还能装多少升水?
4、如右下图所示,一个粮仓,上面是圆锥形,下面是圆柱,如果
粮仓墙壁的厚度忽略不计,这个粮仓的容积大约是多少立方
米?
五、有一个圆柱形的零件,高12厘米,底面直径是8厘米,零件的一
端有一圆柱形的直孔(如右下图),圆孔的直径是6厘米,深7厘米,如果将这个零件接触空气的部分涂上防锈漆,一共需涂多少平方厘米?。