河南省2013年高三年级高考预测数学理试卷(word版)
- 格式:doc
- 大小:723.00 KB
- 文档页数:11
河南开封市2013届高三第一次模拟数学(理)试题本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第(22)-(24)题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上.认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整.笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答.超出答题区域书写的答案无效。
4.保持卷面清洁,不折叠,不破掼。
5.做选考题时.考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式: 样本数据12,,n x x x 的标准差 锥体体积公式.(n s x x =++- 13V Sh =其中x 为样本平均数 其中S为底面面积,h 为高柱体体积公式 球的表面积,体积公式V Sh=23344S R V R ππ==其中S 为底面面积,h 为高 其中R为球的半径第Ⅰ卷一、选挥题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知M,N 为集合I 的非空真子集,且M ,N 不相等,若,INM φ=则MUN= ( )A .MB .NC .ID .φ 2.i 是虚数单位,复数31i i -=( )A.-1-iB 。
1 -iC 。
-1+iD. 1+i3.设等比数列{na }的公比q=2,前n 项和为S 。
,则43S a 的值为( )A .154B .152C .74D .724.1*110(1)(),nn n n n ax a x a x a x a n N --+=++++∈,点列(,)(0,1,2,)i i A i a i n =的部分图象如图所示,则实数a 的值为( )A .1B .12C .13D .145.三棱椎A —BCD 的三视图为如图所示的三个直角三角形,则三棱锥A —BCD 的表面积为( )A .225+B .4+45C 445+ D .66.执行右图所给的程序框图,则运行后输出的结果是 A .3 B . -3 C .-2D .27.已知三个互不重合的平面,,,a βγ且,,aa abc βγβγ===,给出下列命题:①若,,a b a c ⊥⊥则b c ⊥② 若a b P =,则a c P =;③若,,a b a c ⊥⊥则a γ⊥;④若a∥b,则a∥c.其中正确命题个数为( )A .1个B 。
2013年普通高等学校全国统一考试理科数学(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( ).A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3}D.{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ).A.-1+i B.-1-I C.1+i D.1-i3.(2013课标全国Ⅱ,理3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A.13 B.13-C.19 D.19-4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=().A.111 1+2310+++B.111 1+2!3!10!+++C.111 1+2311+++D.111 1+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△AB C分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.11,22⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
中原名校2013年高考仿真统一考试理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.B2.B3.A4.A5.B6.A7.C8.B9.D 10.A 11.D 12.C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.0.6 14. ()+∞,2 15. 31 16. ⎥⎦⎤⎢⎣⎡95,73 三、解答题:解答应写出文字说明.证明过程或演算步骤18.解:(1)由题意知b=0.06⨯5=0.03,a=100⨯0.3=30,d=1-0.05-0.35-0.1=0.2,c=100⨯0.2=20....................4分(2)三个组共60人,所以第三组应抽66030⨯=3人, 第四组应抽66020⨯=2人,第五组应抽66010⨯=1人, 所以甲、乙同时被抽取面试的概率p=0002.02.01.011011220119=⨯⨯⨯C C C C ........4分 (3)x 的所有可以取的分别为0,1,2P (x=0)=121)431()321(=-⨯- P (x=1)=12543)321()431(32=⨯-+-⨯ P (x=2)=214332=⨯所以分布列为:所以x 的数学期望E (x )=12172121251=⨯+⨯ ......................................12分。
19.解:(1)在梯形ABCD 中,∵AB ∥CD ,AD=DC=CB=1,∠ABC=60°,∴AB=2,∴AC 2=AB 2+BC 2-2AB·BC·cos60°=3,∴AB 2=AC 2+BC 2,∴BC ⊥AC.∵平面ACFE ⊥平面ABCD ,平面ACFE∩平面ABCD=AC ,BC ⊂平面ABCD ,∴BC ⊥平面ACFE.又因为BC ⊂平面FBC , 所以 平面ACFE ⊥平面FBC , ...............5分(2)由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令则C(0,0,0),,0,0),B(0,1,0),M(λ,0,1), ∴AB uu u r1,0),BM uuu r =(λ,-1,1),设n 1=(x,y,z)为平面MAB 的一个法向量, 由AB 0BM 0⎧=⎪⎨=⎪⎩n n 11,uu u r g uuu r g得y 0x y z 0,⎧+=⎪⎨λ-+=⎪⎩, 取x=1,则n 1-λ),∵n 2=(1,0,0)是平面FCB 的一个法向量,∴1212cos θ===n n n n ||||||g ...............10分 ∵∴当λ=0时,cosθ, 当时,cosθ有最大值12. ∴cosθ12]..............12分20. ......2分..........7分......................12分当m<0时,由mx x F 400)(-<<>'得, 由,40)(m x x F -><'得 此时F (x )在(0,m4-)上为增函数。
河南省郑州市2013年高中毕业年级第二次质量预测理科数学试题卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150 分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个符合 题目要求.A.第一象限B.第二象限C.第三象限D.第四象限A. 7x+24y=0B. 7x-24y=0C. 24x+7y=0D.24x-7y=03_在数列{a n }中,a n+1=ca n (c;为非零常数),前n 项和为S n = 3n+k,则实数k 为 A.-1B.0C.1D.24. 设a,β分别为两个不同的平面,直线l a ,则“l 丄β”是“a 丄β成立的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件A. c>b>aB. b>c>aC. a>b>cD. b>a>c6. 已知函数f(x)的导函数为)(x f ',且满足x e f x x f ln )(2)(+'=,则)(e f ' = A. 1B. —1C. –e -1 D. —e7. 一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是项重新排成一列,有理项都互不相邻的概率为D.)0,0(122>>=-b a by (a>0,b>0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支 的两个交点分别为A ,B,且ΔF 2AB 是等边三角形,则双曲线的 离心率为A. 12+B. 13+C.213+10. 函数f(x)=ax m (1-x)2在区间[0,1]上的图象 如图所示,则m 的值可能是A. 1B.2C. 3D.411. 设f(x)是定义在R 上的增函数,且对于任意的工都有f(2—x)+f(x)=0恒成立.如果实数m 、n 满足不等式组⎩⎨⎧><-++-3)8()236(22m n n f m m f ’则m 2+n 2的取值范围是 A. (3,7)B. (9,25)C. (13,49)D. (9,49)12. 已知函数x x x f cos 21)(-=,则方程)(=x fA. 0B.23π第II 卷本卷包括必考題和选考題两部分.第13题〜第21題为必考题,第22题〜24题为选考 題.考生根据要求作答.二、填空題:本大题共4小题,每小题5分.13.等差数列{a n }的前7项和等于前2项和,若a 1=1,a k +a 4=0,则k=______.14. 已知O 为坐标原点,点M(3,2),若N(x,y)满足不等式组⎪⎩⎪⎨⎧≤+≥≥401y x y x 则ON OM ·的最大值为______.15.已知不等式222y ax xy +≤,若对任意x ∈[l,2],且y ∈[2,3],该不等式恒成立,则 实数a 的取值范围是______.16.过点M(2,-2p)作抛物线x 2=2py(p>0)的两条切线,切点分别为A ,B,若线段AB 的中 点纵坐标为6,则p 的值是______.三、解答题:解答应写出说明文字,证明过程或演算步骤. 17. (本小题满分12分)如图所示,一辆汽车从O 点出发沿一条直线公路以50 公里/小时的速度勻速行驶(图中的箭头方向为汽车行驶方 向),汽车开动的同时,在距汽车出发点O 点的距离为5公 里,距离公路线的垂直距离为3公里的M 点的地方有一个 人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度勻速行驶才能实现他的愿望,此时 他驾驶摩托车行驶了多少公里?18. (本小题满分12分)每年的三月十二日,是中国的植树节.林管部门在植树前,为 保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两批 树苗中各抽测了 10株树苗的高度,规定高于128厘米的为“良种 树苗”,测得高度如下(单位:厘米)甲:137,121,131,120,129,119,132,123,125,133 乙:110,130,147,127,146,114,126,110,144,146(I)根据抽测结果,完成答题卷中的茎叶图,并根据你填写 的茎叶图,对甲、乙两批树苗的高度作比较,写出对两种树苗高度 的统计结论;(II)设抽测的10株甲种树苗髙度平均值为将这10株树 苗的高度依次输人按程序框图进行运算,(如图)问输出的S 大小为多少?并说明S 的统计学意义;(III)若小王在甲批树苗中随机领取了 5株进行种植,用样本的频率分布估计总体分布, 求小王领取到的“良种树苗”株数X 的分布列.19. (本小题满分12分)如图,正三棱柱ABC-A 1B 1C 1的所有棱长都为2,)(1R CC ∈=λλ20. (本小题满分12分)已知椭圆C: 13422=+y x 的右焦点为F ,左顶点为A ,点P 为曲线D 上的动点,以PF 为直径的圆恒与y 轴相切.(I)求曲线D 的方程;(II)设O 为坐标原点,是否存在同时满足下列两个条件的ΔAPM?①点M 在椭圆C 上;②点O 为ΔAPM 的重心.若存在,求出点P 的坐标;若不存在,说明理由.(若三角形 ABC 的三21. (本小题满分12分)已知函数f(x)=lnx 与g(x)=kx+b(k,b ∈R)的图象交于P ,Q 两点,曲线y=f(x)在P ,Q 两点处的切线交于点A.(I)当k = e ,b=-3时,求f(x) — g(x)的最大值(e 为自然常数) (II )若)11,1(--e e e A |,求实数k ,b 的值.选做题(本小题满分10分,请从22、23、24三个小题中任选一题作答,并用铅笔在对应 方框中涂黑)22.选修4—1:几何证明选讲如图,已知0和M 相交于A 、B 两点,AD 为M 的直径,直线BD 交O 于点C,点G 为弧BD 中点,连结 AG 分别交0、BD 于点E 、F ,连结CE.(I )求证:AG ·EF=CE ·GD ;22CEEF =23. 选修4一4:坐标系与参数方程已知直线C 1: ⎩⎨⎧=+=a t y a t x sin cos 1’(t 为参数),曲线C 2: ⎩⎨⎧==θθsin cos y x (θ为参数).(II)过坐标原点0作C 1的垂线,垂足为A,P 为OA 中点,当a 变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24. 选修4一5:不等式选讲 已知函数f(x)=|x —a|(I)若不等式f(x)≤3的解集为{x|-1≤x ≤5},求实数a 的值; (II)在(I)的条件下,若f(x)+f(x + 5)m 对一切实数x 恒成立,求实数m 的取值范围.2013年高中毕业年级第二次质量预测数学(理科) 参考答案一、选择题(每小题5分,共60分)DDAA BCCD BACC二、填空题(每小题5分,共20分)13.6;14.12;15.1a ≥-;16.1或2. 三、解答题17.解:作MI 垂直公路所在直线于点I ,则3=MI ,54cos 4,5=∠∴=∴=MOI OI OM ――――2分 设骑摩托车的人的速度为v 公里/小时,追上汽车的时间为t 小时 由余弦定理:()()545052505222⨯⨯⨯-+=t t vt ――――6分 900900)81(25250040025222≥+-=+-=⇒tt t v -――――8分 ∴当81=t 时,v 的最小值为30,∴其行驶距离为415830==vt 公里――――11分 故骑摩托车的人至少以30公里/时的速度行驶才能实现他的愿望, 他驾驶摩托车行驶了415公里. ――――12分 18.解: (Ⅰ)茎叶图略. ―――2分统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗的中位数为127,乙种树苗的中位数为128.5; ④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散. ―――4分(每写出一个统计结论得1分)(Ⅱ)127,135.x S ==――――6分S 表示10株甲树苗高度的方差,是描述树苗高度离散程度的量.S 值越小,表示长得越整齐,S 值越大,表示长得越参差不齐.――――8分(Ⅲ)由题意,领取一株甲种树苗得到“良种树苗”的概率为12,则1~(5,)2X B ―――10分所以随机变量X 的分布列为――――12分 19.解:(Ⅰ)取BC 的中点为O ,连结AO在正三棱柱111ABC A B C -中面ABC ⊥面1CB ,ABC ∆为正三角形,所以AO BC ⊥, 故AO ⊥平面1CB .以O 为坐标原点建立如图空间直角坐标系O xyz -,――――2分则A ,1(1,2,0)B ,(1,1,0)D -,1A ,(1,0,0)B .所以1(1,3)AB =,1(1,1DA =,(2,1,0)DB =-,因为1111230,220AB DA AB DB ⋅=+-=⋅=-=, 所以111,AB DA AB DB ⊥⊥,又1DA DB D =,所以1AB ⊥平面1A BD . ――――-6分(Ⅱ)由⑴得(1,2,0)D λ-,所以1(1,223)DA λ=-,(2,2,0)DB λ=-,(1,2DA λ=-,设平面1A BD 的法向量1(,,)n x y z =,平面1AA D 的法向量2(,,)n s t u =,由1110,0,n DA n DB ⎧⋅=⎪⎨⋅=⎪⎩得平面1A BD的一个法向量为1(n λ=, 同理可得平面1AA D 的一个法向量2(3,0,1)n =-, 由1212121cos ,2||||n n n n n n ⋅<>==⋅,解得14λ=,为所求.――――12分20.解:(Ⅰ)设(,)P xy ,由题知(1,0)F ,所以以PF 为直径的圆的圆心1(,)2x E y +, 则|1|1||22x PF +== 整理得24y x =,为所求. ――――4分(Ⅱ)不存在,理由如下: ――――5分若这样的三角形存在,由题可设211122(,)(0),(,)4y P y y M x y ≠,由条件①知2222143x y +=, 由条件②得0OA OP OM ++=,又因为点(2,0)A -,所以2121220,40,y x y y ⎧+-=⎪⎨⎪+=⎩即222204y x +-=,故2223320416x x -+-=,――――9分解之得22x =或2103x =(舍), 当22x =时,解得(0,0)P 不合题意,所以同时满足两个条件的三角形不存在. ――――12分21、解:(Ⅰ)设()()()ln 3(0)h x f x g x x ex x =-=-+>,则11()()e h x e x x x e '=-=--, ――――1分 当10x e <<时,()0h x '>,此时函数()h x 为增函数;当1x e>时,()0h x '<,此时函数()h x 为减函数.所以max 1()()1131h x h e==--+=,为所求. ――――4分(Ⅱ)设过点A 的直线l 与函数()ln f x x =切于点00(,ln )x x ,则其斜率01k x =, 故切线0001:ln ()l y x x x x -=-, 将点1(,)11e A e e --代入直线l 方程得:00011ln ()11ex x e x e -=---,即0011ln 10e x e x -+-=,――――7分 设11()ln 1(0)e v x x x e x -=+->,则22111()()1e e ev x x ex x ex e --'=-=--, 当01ex e <<-时,()0v x '<,函数()v x 为增函数;当1ex e >-时,()0v x '>,函数()v x 为减函数.故方程()0v x =至多有两个实根, ――――10分 又(1)()0v v e ==,所以方程()0v x =的两个实根为1和e , 故(1,0),(,1)P Q e ,所以11,11k b e e==--为所求.――――12分22.证明:(Ⅰ)连结AB 、AC ,∵AD 为⊙M 的直径,∴∠ABD =90°,∴AC 为⊙O 的直径, ∴∠CEF =∠AGD =90°.――――2分∵G 为弧BD 中点,∴∠DAG =∠GAB =∠ECF . ――――4分∴△CEF ∽△AGD ∴GDAG EF CE =, ∴AG ·EF = CE ·GD ――――6分 (Ⅱ)由⑴知∠DAG =∠GAB =∠FDG ,∠G =∠G ,∴△DFG ∽△AGD ,∴DG 2=AG ·GF . ――――8分 由⑴知2222AGGD CE EF =,∴22CE EF AG GF = ――――10分 23.解:(Ⅰ)当3π=a 时,C 1的普通方程为)1(3-=x y ,C 2的普通方程为122=+y x ,联立方程组⎪⎩⎪⎨⎧=+-=1)1(322y x x y ,解得C 1与C 2的交点坐标为(1,0),)23,21(-.――――5分 (Ⅱ)C 1的普通方程为0sin cos sin =--αααy x ,A 点坐标为)cos sin ,(sin 2ααα-,故当α变化时,P 点轨迹的参数方程为21sin ,21sin cos ,2x y ααα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数) P 点轨迹的普通方程为161)41(22=+-y x . 故P 点轨迹是圆心为)0,41(,半径为41的圆.――――10 24.解:(Ⅰ)由3)(≤x f 得3||≤-a x ,解得33+≤≤-x x a .又已知不等式3)(≤x f 的解集为{}51|≤≤-x x ,所以⎩⎨⎧=+-=-5313a a ,解得2=a .――――4分(Ⅱ)当2a =时,|2|)(-=x x f ,设)5()()(++=x f x f x g ,于是⎪⎩⎪⎨⎧>+≤≤--<--=++-=.2,12,23,5,3,12|3||2|)(x x x x x x x x g ――――6分所以当3-<x 时,5)(>x g ; 当23≤≤-x 时,5)(=x g ; 当2x >时,5)(>x g .综上可得,()g x 的最小值为5.――――9分从而若m x f x f ≥++)5()(,即m x g ≥)(对一切实数x 恒成立,则m 的取值范围为(-∞,5].――――10分。
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+ (C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) (B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16xx ≥1,x+y ≤3, y ≥a(x-3). {(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
18.解:⑴设第(1,2,,8)i i =组的频率为i f ,则由频率分布直方图知71(0.0040.010.010.020.020.0160.008)100.12.f =-++++++⨯=所以成绩在260分以上的同学的概率780.142f p f ≈+=, 故这2 000名同学中,取得面试资格的约为280人. ――――-4分⑵不妨设三位同学为甲、乙、丙,且甲的成绩在270分以上,记事件,,M N R 分别表示甲、乙、丙获得B 类资格的事件,则113()1884P M =--=,17()()188P N P R ==-=,――――6分 所以1(0)()256P X P M N R ===, 17(1)()256P X P M N R M N R M NR ==++=,91(2)()256P X P MN R M NR M NR ==++=, 147(3)()256P X P MNR ===, 所以随机变量X 的分布列为:――――10分 117911475()01232562562562562E X =⨯+⨯+⨯+⨯=.――――12分X 0 1 23 P 1256 17256 91256 147256所以,可取()1,1,1m =-.同理可以求得平面A CD '的一个法向量()0,1,0.n =cos ,m nm n m n ⋅===⋅ 故平面A CD '与平面A BE '夹角的余弦值为.33――――12分整理得22211(0,)34344k m k k==∈++, 所以在线段2OF 上存在点)0,(m M 符合题意,其中1(0,)4m ∈.――――12分综上,当0≤a 时,函数()f x 的增区间为),1(),1,1(+∞-,无减区间; 当0>a 时,函数()f x 的增区间为),(),,1(21+∞-x x ,减区间为),1(),1,(21x x , 其中282,2822221a a a x a a a x +++=+-+=.―-6分 ⑵证明:当1=a 时,由⑴知,函数xx x x f --+=1)1ln()(在)1,0(上为减函数,――7分 则当10<<x 时,0)0(1)1ln()(=<--+=f x x x x f ,即xx x -<+1)1ln(, 令1()201321m x m N *=∈⨯+,则11ln(1)20132120132m m +<⨯+⨯,即201311ln(1)2013212m m+<⨯+, 所以1201321(1)201321m m m a e =+<⨯+,―――10分 又111112422120,3m m m m a a a a e e e e e ->∴⋅⋅⋅<⋅⋅⋅=<<.――――12分24.解:⑴原不等式可化为2123x x -+-≤,依题意,当2x >时,333,x -≤则2,x ≤无解, 当122x ≤≤时,+13,x ≤则2,x ≤所以122x ≤≤, 当1<2x 时,3-33,x ≤则0,x ≥所以10<2x ≤, 综上所述:原不等式的解集为[]0,2. ――――5分 ⑵原不等式可化为2321x a x -≤--,因为[]1,2x ∈,所以24-2x a x -≤,即24242x a x x -≤-≤-,故3424x a x -≤≤-对[]1,2x ∈恒成立,当12x ≤≤时,34x -的最大值2,4x -的最小值为2, 所以为a 的取值范围为1.――――10分。
2013年高考数学理科仿真试题(有答案河南十名校)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效,考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷选择题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数=a-bi,则a+b=A.1B.3C.-1D.-32.已知全集U={x∈Z|-9x+8<0},M={3,5,6},N={x|-9x+20=0},则集合{2,7}为A.M∪NB.M∩NC.CU(M∪N)D.CU(M∩N)3.设x∈R,向量a=(2,x),b=(3,-2),且a⊥b,则|a-b|=A.5B.C.2D.64.一个几何体的三视图如图所示,则这个几何体的体积为A.B.16C.D.5.将函数f(x)=sin(2x+)的图象向右平移个单位后得到函数y=g (x)的图象,则g(x)的单调递增区间为A.2kπ-,2kπ+](k∈Z)B.2kπ+,2kπ+](k∈Z)C.kπ-,kπ+](k∈Z)D.kπ+,kπ+](k∈Z)6.如果执行下面的程序框图,输出的S=240,则判断框中为A.k≥15?B.k≤16?C.k≤15?D.k≥16?7.已知中心在坐标原点的双曲线C与抛物线=2py(p>0)有相同的焦点F,点A是两曲线的交点,且AF⊥y轴,则双曲线的离心率为A.B.C.D.8.已知实数x,y满足如果目标函数z=5x-4y的最小值为-3,则实数m=A.3B.2C.4D.9.已知四面体ABCD中,AB=AD=6,AC=4,CD=2,AB⊥平面ACD,则四面体ABCD外接球的表面积为A.36πB.88πC.92πD.128π10.设函数f(x)=2-2k(a>0且a≠1)在(-∞,+∞)上既是奇函数又是减函数,则g(x)=的图象是11.若直线y=-nx+4n(n∈N﹡)与两坐标轴所围成封闭区域内(不含坐标轴)的整点的个数为(其中整点是指横、纵坐标都是整数的点),则(a1+a3+a5+…+a2013)=A.1012B.2012C.3021D.400112.定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意实数x,存在实常数t使得f(t+x)=-tf(x)恒成立,则称f(x)是一个“关于t函数”.有下列“关于t函数”的结论:①f(x)=0是常数函数中唯一一个“关于t函数”;②“关于函数”至少有一个零点;③f(x)=是一个“关于t函数”.其中正确结论的个数是A.1B.2C.3D.0第Ⅱ卷非选择题本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答.第22题-第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知某化妆品的广告费用x(万元)与销售额y(百万元)的统计数据如下表所示:从散点图分析,y与x有较强的线性相关性,且=0.95x+,若投入广告费用为5万元,预计销售额为____________百万元.14.已知递增的等比数列{}(n∈N﹡)满足b3+b5=40,b3•b5=256,则数列{}的前10项和=_______________.15.在平面直角坐标系xOy中,圆C的方程为-8x+15=0,若直线y =kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值为_________.16.对于(m,n∈N,且m,n>2)可以按如下的方式进行“分解”,例如的“分解”中最小的数是1,最大的数是13.若的“分解”中最小的数是651,则m=___________.三、解答题:解答应写出文字说明。
高考压轴卷一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
1A .-3 -4iB .-3+4iC .3-4iD .3+4i2P 的个数是A . 1B .3C .4D .83.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8 BC D4.等比数列{a n }中,“公比q >1”是“数列{a n }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5 ( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称6.设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为A .6B .4C .2D 7. 若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( )A .60种B .63种C .65种D .66种 8. 已知直线l m 、,平面βα、,且βα⊂⊥l m ,,给出下列命题: ①若α∥β,则m ⊥l ; ②若α⊥β,则m ∥l ; ③若m ⊥l ,则α∥β; ④若m ∥l ,则α⊥β 其中正确命题的个数是( ) A .1B .2C .3D .49.已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A . 1 B . 9 C .10 D .5510. 已知直线1sin cos :=+θθy x l ,且l OP ⊥于P ,O 为坐标原点,则点P 的轨迹方程为( )A .122=+y xB .122=-y xC .1=+y xD .1=-y x非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
11.展开式中4x 的系数为 (用数字作答) .12,则输入的实数x 的值是____.13.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________________.14.已知数列{a n }满足a 1=1,a n +1=a n +2n ,则a 10=____________.15.已,若a ,t 均为正实数),则类比以上等式,可推测a ,t 的值,a+t = .16. P 是圆C ,则OP OA的最小值为______17.若函数f (x )=(2x 2-a 2x-a )lg x 的值域为[)0,+∞,则a =_________三、解答题本大题共5小题.共72分。
2013年高中毕业年级第一次质量预测理科数学 参考答案一、选择题BDCCD BAABC DA二、填空题13. 14.π+6; 15.⎪⎭⎫ ⎝⎛-53,32; 16.4-. 三、解答题17.解:⑴由正弦定理得2sin cos 2sin sin B C A C =-,――――2分在ABC ∆中,sin sin()sin cos sin cos A B C B C C B =+=+,sin (2cos 1)0C B ∴-=,又0,sin 0C C π<<>, 1cos 2B ∴=,注意到0,3B B ππ<<∴=.―――――6分⑵1sin 42ABC S ac B ac ∆==∴=,――――8分 由余弦定理得222222cos 4b a c ac B a c ac ac =+-=+-≥=,当且仅当2a c ==时,“=”成立,2b ∴≥为所求. ――――12分18.解:⑴设第(1,2,,8)i i =组的频率为i f ,则由频率分布直方图知71(0.0040.010.010.020.020.0160.008)100.12.f =-++++++⨯= 所以成绩在260分以上的同学的概率780.142f p f ≈+=, 故这2 000名同学中,取得面试资格的约为280人. ――――-4分⑵不妨设三位同学为甲、乙、丙,且甲的成绩在270分以上,记事件,,M N R 分别表示甲、乙、丙获得B 类资格的事件,则113()1884P M =--=,17()()188P N P R ==-=,――――6分 所以1(0)()256P X P M N R ===, 17(1)()256P X P M N R M N R M NR ==++=, 91(2)()256P X P MN R M NR M NR ==++=,147(3)()256P X P MNR ===, 所以随机变量X 的分布列为:――――10分 117911475()01232562562562562E X =⨯+⨯+⨯+⨯=.――――12分 19.解:⑴F 为棱A B '的中点.证明如下:取C A '的中点G ,连结GF EF DG ,,,则由中位线定理得BC DE BC DE 21,//=,且.21,//BC GF BC GF = 所以GF DE GF DE =,//,从而四边形DEFG 是平行四边形,.//DG EF又⊄EF 平面CD A ',⊂DG 平面CD A ',故F 为棱A B '的中点时,//EF A CD '平面.――――4分⑵在平面A CD '内作CD H A ⊥'于点H ,DE A DDE CD DE A CD A H DE A D CD D '⊥⎫⎪''⊥⇒⊥⇒⊥⎬⎪'=⎭平面,又DE CD D =,⊥'∴H A 底面BCDE ,即H A '就是四棱锥A BCDE '-的高.由A H AD '≤知,点H 和D 重合时, 四棱锥A BCDE '-的体积取最大值.――――8分分别以A D DE DC ',,所在直线为z y x ,,轴,建立空间直角坐标系如图,则()0,0,A a ',()0,2,a a B ,()0,,0a E , (),2,A B a a a '=-,()0,,A E a a '=-,设平面A BE '的法向量为(),,m x y z =,由0,0,m A B m A E ⎧'⋅=⎪⎨'⋅=⎪⎩得20,0,ax ay az ay az +-=⎧⎨-=⎩即20,,x y z y z +-=⎧⎨=⎩ 所以,可取()1,1,1m =-.同理可以求得平面A CD '的一个法向量()0,1,0.n =cos ,m nm n m n ⋅===⋅ X 0 1 23 P 1256 17256 91256 147256故平面A CD '与平面A BE '夹角的余弦值为.33――――12分 20.解:⑴由题意1212390,cos 5AF F F AF ∠=∠=, 注意到12||2F F =,所以121235||,||,2||||422AF AF a AF AF ===+=, 所以2222,1,3a c b a c ===-=,即所求椭圆方程为22143x y +=.――――4分 ⑵存在这样的点M 符合题意.――――-5分设线段PQ 的中点为N ,112200(,),(,),(,)P x y Q x y N x y ,直线PQ 的斜率为(0)k k ≠,注意到2(1,0)F ,则直线PQ 的方程为(1)y k x =-, 由221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消y 得2222(43)84120k x k x k +-+-=,由求根公式得:1,2x = 所以2122843k x x k +=+,故212024243x x k x k +==+, 又点N 在直线PQ 上,所以22243(,)4343k k N k k -++.―――――8分 由QP MP PQ MQ ⋅=⋅可得()20PQ MQ MP PQ MN ⋅+=⋅=,即PQ MN ⊥,所以22230143443MN k k k k k m k ++==--+,――――10分 整理得22211(0,)34344k m k k==∈++, 所以在线段2OF 上存在点)0,(m M 符合题意,其中1(0,)4m ∈.――――12分21.解:⑴由题意,函数的定义域为),1()1,1(+∞- ,2)1(11)(x a x x f --+=',―――1分 当0≤a 时,注意到0)1(,0112≤->+x a x ,所以0)(>'x f , 即函数()f x 的增区间为),1(),1,1(+∞-,无减区间; ―――2分当0>a 时,222)1)(1(1)2()1(11)(x x a x a x x a x x f -+-++-=--+=', 由0)(='x f ,得01)2(2=-++-a x a x , 此方程的两根282,2822221a a a x a a a x +++=+-+=, 其中2111x x <<<-,注意到0)1)(1(2>-+x x ,所以2110)(x x x x x f ><<-⇔>'或,21110)(x x x x x f <<<<⇔<'或,即函数()f x 的增区间为),(),,1(21+∞-x x ,减区间为),1(),1,(21x x ,综上,当0≤a 时,函数()f x 的增区间为),1(),1,1(+∞-,无减区间;当0>a 时,函数()f x 的增区间为),(),,1(21+∞-x x ,减区间为),1(),1,(21x x , 其中282,2822221a a a x a a a x +++=+-+=.―-6分 ⑵证明:当1=a 时,由⑴知,函数xx x x f --+=1)1ln()(在)1,0(上为减函数,――7分 则当10<<x 时,0)0(1)1ln()(=<--+=f x x x x f ,即xx x -<+1)1ln(, 令1()201321m x m N *=∈⨯+,则11ln(1)20132120132m m +<⨯+⨯, 即201311ln(1)2013212m m +<⨯+, 所以1201321(1)201321m m m a e =+<⨯+,―――10分A 又111112422120,3m m m m a a a a e e e e e ->∴⋅⋅⋅<⋅⋅⋅=<<.――――12分22. 证明:⑴连接DB ,AB 是⊙O 的直径,090ADB ∴∠=,Rt ABD Rt AFG ABD AFE ∆∆∠=∠在与中,,又ABD ACD ∠=∠, ACD AFE ∠=∠,,,,C D E F ∴四点共圆.――――5分⑵ 2 C D F E GE GF GC GD GH O H GH GC GD ⇒⋅=⋅⎫⎬⇒=⋅⎭、、、四点共圆切于点⇒2GH GE GF =⋅又因为6,4GH GE ==,所以9,5GF EF GF GE ==-=. ―――10分23.解:⑴曲线C 的普通方程为22(2)4x y -+=,即2240x y x +-=,化为极坐标方程是θρcos 4=.――――5分⑵ 直线l 的直角坐标方程为40x y +-=,由2240,4,x y x xy ⎧+-=⎨+=⎩得直线l 与曲线C 的交点坐标为(2,2),(4,0),所以弦长22=OA .――――10分24.解:⑴原不等式可化为2123x x -+-≤,依题意,当2x >时,333,x -≤则2,x ≤无解,当122x ≤≤时,+13,x ≤则2,x ≤所以122x ≤≤,当1<2x 时,3-33,x ≤则0,x ≥所以10<2x ≤,综上所述:原不等式的解集为[]0,2. ――――5分⑵原不等式可化为2321x a x -≤--,因为[]1,2x ∈,所以24-2x a x -≤,即24242x a x x -≤-≤-,故3424x a x -≤≤-对[]1,2x ∈恒成立,当12x ≤≤时,34x -的最大值2,4x -的最小值为2,所以为a 的取值范围为1.――――10分。
2013年河南省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n∁n的三边长分别为a n,b n,c n,△A n B n∁n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求P A;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g (x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年河南省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b 求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n∁n的三边长分别为a n,b n,c n,△A n B n∁n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【分析】由a n+1=a n可知△A n B n∁n的边B n∁n为定值a1,由b n+1+c n+1﹣2a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n∁n中边长B n∁n=a1为定值,另两边A n c n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、c n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n ﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n∁n的边B n∁n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∵b1+c1=2a1,∴b1+c1﹣2a1=0,∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、c n为焦点的椭圆上,又由题意,b n+1﹣c n+1=,∴=a1﹣b n,∴b n+1﹣a1=,∴b n﹣a1=,∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴t cos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}是以1为首项,﹣2为公比的等比数列,∴a n=(﹣2)n﹣1.故答案为:(﹣2)n﹣1.【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=﹣.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:方法一:f(x)=sin x﹣2cos x=(sin x﹣cos x)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.方法二:f(x)=sin x﹣2cos x=(其中tanφ=﹣2,φ∈(﹣)),因为当x=θ时,f(x)取得最大值,所以θ+φ=,所以θ=,所以cosθ=cos()=sinφ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b =15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f (x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f (x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求P A;(2)若∠APB=150°,求tan∠PBA.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得P A.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°==.∴P A=.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C 的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l 的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M 的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据(r1=2),可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则(r1=2),可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g (x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f (x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE 为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,联立,解得或,∴C1与C2交点的极坐标为()和(2,).【点评】本题考查曲线极坐标方程的求法,考查两曲线交点的极坐标的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.【分析】(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.(Ⅱ)不等式化即1+a≤x+3,故x≥a﹣2对x∈[﹣,]都成立,分析可得﹣≥a﹣2,由此解得a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[﹣,]都成立.故﹣≥a﹣2,解得a≤,故a的取值范围为(﹣1,].【点评】本题考查绝对值不等式的解法与绝对值不等式的性质,关键是利用零点分段讨论法分析函数的解析式.。
2013年河南省南阳一中高考数学三模试卷(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上)1.(5分)(2011•武汉模拟)复数=()A.i B.﹣i C.12﹣13i D.12+13i考点:复数代数形式的乘除运算.专题:计算题.分析:复数的分子中利用﹣i2=1代入3,然后化简即可.解答:解:故选A.点评:本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.2.(5分)(2012•安徽模拟)若全集为实数集R,集合A={x|(2x﹣1)>0},则∁R A=()A.B.(1,+∞)C.D.考点:指、对数不等式的解法;补集及其运算.专题:计算题.分析:求出集合A中对数不等式的解集,确定出集合A,根据全集为R,找出不属于集合A的部分,即可得到集合A的补集.解答:解:由集合A中的对数不等式,解得:x<1,∴集合A=(,1),又全集为R,则C R A=.故选D.点评:此题属于以对数不等式的解法为平台,考查了补集的运算,是高考中常考的基本题型.同时在求补集时注意全集的范围.3.(5分)阅读如图所示的程序框图,运行相应的程序,若输入m=72,n=30,则输出n的值为()A.12 B.6C.3D.0考点:循环结构.专题:图表型.分析:先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,进行迭代,一直算到余数为零时m的值即可.解答:解:当m=72,n=30,m除以n的余数是8,此时m=30,n=8,m除以n的余数是6,此时m=8,n=6,m除以n的余数是2,此时m=6,n=2,m除以n的余数是0,退出程序,输出结果为m=2.故选B.点评:算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.4.(5分)(2007•湖南模拟)已知数列{a n}是公差为2的等差数列,且a1,a2,a5成等比数列,则a2为()A.﹣2 B.﹣3 C.2D.3考点:等比数列的性质;等差数列的性质.专题:计算题.分析:先用a2分别表示出a1和a5,再根据等比中项的性质得a22=a1a5进而求得a2.解答:解:a1=a2﹣2,a5=a2+6∴a22=a1a5=(a2﹣2)(a2+6),解得a2=3故选D点评:本题主要考查了等差数列和等比数列的性质.属基础题.5.(5分)设P是双曲线上一点,双曲线的一条渐近线方程为3x﹣2y=O,F1、F2分别是双曲线的左、右焦点,若|PF1|=3,则|PF2|=()A.1或5 B.6C.7D.9考点:双曲线的简单性质.专题:计算题.分析:由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.解答:解:由双曲线的方程、渐近线的方程可得=,∴a=2.由双曲线的定义可得||PF2|﹣3|=2 a=4,∴|PF2|=7,故选 C.点评:本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,由双曲线的方程、渐近线的方程求出a是解题的关键.6.(5分)函数y=e x﹣lnx的图象是()A.B.C.D.考点:利用导数研究函数的单调性;对数函数的图像与性质.专题:函数的性质及应用;导数的概念及应用.分析:由于函数的定义域是(0,+∞),故可排除B选项,再借助于函数的导数就可判断出函数的极值个数,即可得到正确结论.解答:解:由题意知,函数y=e x﹣lnx的定义域为(0,+∞),可排除B;∵y=e x﹣lnx ,∴而在区间(0,+∞)上,函数y=e x由1→+∞,函数由+∞→0,故若令函数的导函数,则有且仅有一解,亦即函数y=e x﹣lnx只有一个极值点.故答案为A.点评:本题考查的是函数的图象与性质,函数的图象是函数的一种表达形式,形象地显示了函数的性质,为研究它的“形”的直观性常借助于函数的导数来完成..7.(5分)下列有关命题说法正确的是()A.命题p:“∃x∈R,sinx+cosx=”,则¬p是真命题B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0“的否定是:“∀x∈R,x2+x+1<0”D.“a>l”是“y=log a x(a>0且a≠1)在(0,+∞)上为增函数”的充要条件考点:命题的真假判断与应用.专题:阅读型.分析:A、判断出命题p的真假,即可得到¬p的真假;B、若P Q,则P是Q的充分不必要条件;C、特称命题的否定是全称命题;D 、若,则p是q的充要条件.解答:解:A、由于sinx+cosx=sin(x+),当x=时,sinx+cosx=,则命题p:“∃x∈R,sinx+cosx=”为真命题,则¬p是假命题;B、由于x2﹣5x﹣6=0的解为:x=﹣1或x=6,故“x=﹣1”是“x2﹣5x﹣6=0”的充分不必要条件;C、由于命题“∃x∈R,使得x2+x+1<0”则命题的否定是:“∀x∈R,x2+x+1≥0”;D、若y=log a x(a>0且a≠1)在(0,+∞)上为增函数,则必有a>l,反之也成立故“a>l”是“y=log a x(a>0且a≠1)在(0,+∞)上为增函数”的充要条件故答案为D.点评:本题考查的知识点是,判断命题真假,我们需对四个结论逐一进行判断,方可得到正确的结论8.(5分)2名男生和3名女生站成一排照相,若男生甲不站两端,3名女生中有且只有两名相邻,则不同的排法种数是()A.36 B.42 C.48 D.60考点:排列、组合及简单计数问题.专题:计算题.分析:先站女生,再站甲,最后站另一名男生,利用乘法原理,可得结论.解答:解:将3名女生分成两组,共有=6种,其中2名女生的位置可以交换,且两组的位置可交换,故有6×2×2=24种;中间排甲,另一名男生站一端,共有2种站法根据乘法原理,不同的排法种数是24×2=48种故选C.点评:本题考查乘法原理,考查学生分析解决问题的能力,考查计算能力,属于中档题.9.(5分)(2011•西山区模拟)若,则等于()A.B.C.D.考点:两角和与差的余弦函数.专题:计算题.分析:将看作整体,将化作的三角函数.解答:解:==﹣=﹣=2﹣1=2×﹣1=.故选A点评:观察已知的角与所求角的练习,做到整体代换.10.(5分)(2010•济南一模)已知三棱锥的三视图如图所示,则它的外接球表面积为()A.16πB.πC.4πD.2π考点:由三视图求面积、体积.专题:计算题.分析:由三棱锥的三视图我们可以得三棱锥的外接球半径为1,球心为俯视图斜边上的中点,则易求它的外接球表面积.解答:解:由三棱锥的三视图我们易得俯视图斜边上的中点到三棱锥各顶点的距离均为1 所以三棱锥的外接球球心为俯视图斜边上的中点,半径为1故它的外接球表面积为4π故选C点评:根据三视图判断空间几何体的形状,进而求几何的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N棱锥(N值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N棱柱(N值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台.11.(5分)(2013•临沂二模)双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,则双曲线C的离心率为()A.B.C.D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用条件可得A()在双曲线上,=c,从而可得(c,2c)在双曲线上,代入化简,即可得到结论.解答:解:∵双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,∴A()在双曲线上,=c∴(c,2c)在双曲线上,∴∴c4﹣6a2c2+a4=0∴e4﹣6e2+1=0∴∵e>1∴e=故选B.点评:本题考查双曲线的几何性质,考查双曲线与抛物线的位置关系,考查学生的计算能力,属于中档题.12.(5分)(2013•临沂二模)已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=﹣f(x),当﹣1≤x<1时,f(x)=x3,若函数g(x)=f(x)﹣log a|x|至少6个零点,则a取值范围是()A .B.C.D.考点:根的存在性及根的个数判断;函数的周期性.专题:压轴题;函数的性质及应用.分析:函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log5|x|的交点的个数,由函数图象的变换,分别做出y=f(x)与y=log a|x|的图象,结合图象可得log a5<1 或 log a5≥﹣1,由此求得a的取值范围.解答:解:函数g(x)=f(x)﹣log a|x|的零点个数,即函数y=f(x)与y=log a|x|的交点的个数;由f(x+1)=﹣f(x),可得f(x+2)=f(x+1+1)=﹣f(x+1)=f(x),故函数f(x)是周期为2的周期函数,又由当﹣1≤x<1时,f(x)=x3,据此可以做出f(x)的图象,y=log a|x|是偶函数,当x>0时,y=log a x,则当x<0时,y=log a(﹣x),做出y=log a|x|的图象,结合图象分析可得:要使函数y=f(x)与y=log a|x|至少有6个交点,则 log a5<1 或 log a5≥﹣1,解得 a>5,或 0<a≤,故选A.点评:本题考查函数图象的变化与运用,涉及函数的周期性,对数函数的图象等知识点,关键是作出函数的图象,由此分析两个函数图象交点的个数.二、填空题:本大题共4小题,每小题5分,共20分13.(5分)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的,且样本容量为160,则中间一组的频数为32 .考点:频率分布直方图.专题:计算题.分析:由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解答:解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有:,解得:x=0.2,∴中间一组的频数=160×0.2=32.故填:32.点评:本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=.14.(5分)(2013•牡丹江一模)设函数f(x)=(x﹣2)n,其中n=6cosxdx,则f(x)展开式中x4的系数为60 .考点:二项式系数的性质;定积分.专题:计算题.分析:利用定积分基本定理可求得n,再利用二项式定理可求得f(x)展开式中x4的系数.解答:解:∵n=6cosxdx=6sinx=6,∴f(x)=(x﹣2)6展开式中x4的系数为:•(﹣2)2=15×4=60.故答案为:60.点评:本题考查二项式定理,考查定积分,求得n是关键,属于中档题.15.(5分)设实数x,y满足则的取值范围是.考点:简单线性规划.专题:计算题.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出分析可行域中各点的坐标,分析后易得的取值范围.解答:解:由约束条件得如图所示的阴影区域,由图可知,当x=3,y=1时,u有最小值,当x=1,y=2时,u有最大值,故的取值范围是,故答案为:.点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.16.(5分)如图,它满足①第n行首尾两数均为n,②表中的递推关系类似杨辉三角,则第n行(n≥2)第2个数是.考点:归纳推理.专题:压轴题;探究型;等差数列与等比数列.分析:依据“中间的数从第三行起,每一个数等于它两肩上的数之和”则第二个数等于上一行第一个数与第二个数的和,即有a n+1=a n+n(n≥2),再由累加法求解即可.解答:解:依题意a n+1=a n+n(n≥2),a2=2所以a3﹣a2=2,a4﹣a3=3,…,a n﹣a n﹣1=n累加得 a n﹣a2=2+3+…+(n﹣1)=∴故答案为:点评:本题考查学生的读图能力,通过三角数表构造了一系列数列,考查了数列的通项及求和的方法,属于中档题.三、解答题:解答应写出文字说明,证明过程和演算步骤17.(8分)(2010•江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC 的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α﹣β最大?考点:解三角形的实际应用.专题:综合题.分析:(1)在Rt△ABE中可得AD=,在Rt△ADE中可得AB=,BD=,再根据AD﹣AB=DB 即可得到H.(2)先用d分别表示出tanα和tanβ,再根据两角和公式,求得tan(α﹣β)=,再根据均值不等式可知当d===55时,tan(α﹣β)有最大值即α﹣β有最大值,得到答案.解答:解:(1)=tanβ⇒AD=,同理:AB=,BD=.AD﹣AB=DB,故得﹣=,得:H===124.因此,算出的电视塔的高度H是124m.(2)由题设知d=AB,得tanα=,tanβ===,tan(α﹣β)====d+≥2,(当且仅当d===55时,取等号)故当d=55时,tan(α﹣β)最大.因为0<β<α<,则0<α﹣β<,所以当d=55时,α﹣β最大.故所求的d是55m.点评:本题主要考查解三角形的知识、两角差的正切及不等式的应用.当涉及最值问题时,可考虑用不等式的性质来解决.18.(6分)现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.月收入(单位百元) [15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数 5 10 15 10 5 5赞成人数 4 8 12 5 2 1(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;月收入不低于55百元的人数月收入低于55百元的人数合计赞成a= c=不赞成b= d=合计(Ⅱ)若对在[15,25),[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列及数学期望.参考公式:,其中n=a+b+c+d.参考值表:P(K^2≥k)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828考点:独立性检验;离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)根据数据统计,可得2×2列联表,利用公式计算K2,与临界值比较,即可得到结论;(Ⅱ)确定ξ所有可能取值,计算相应的概率,即可得到ξ的分布列与期望值.解答:解:(Ⅰ)2×2列联表月收入不低于55百元人数月收入低于55百元人数合计赞成a=3 c=29 32不赞成b=7 d=11 18合计10 40 50∴.∴没有99%的把握认为月收入以5500为分界点对“楼市限购令”的态度有差异.(6分)(Ⅱ)ξ所有可能取值有0,1,2,3,P(ξ=0)===P(ξ=1)=+==P(ξ=2)=+==P(ξ=3)===,所以ξ的分布列是ξ0 1 2 3P所以ξ的期望值是Eξ=0×+1×+2×+3×=(12分)点评:本题考查概率与统计知识,考查独立性检验的运用,考查离散型随机变量的分布列与期望,正确计算概率是关键.19.(6分)在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥底面ABC,∠ACB=90°,且AC=BC=CC1,O为AB1中点.(1)求证:CO⊥平面ABC1;(2)求直线BC与平面ABC1所成角的正弦值.考点:直线与平面所成的角;直线与平面垂直的判定.专题:空间角.分析:(1)要证CO⊥平面ABC1,只需证CO垂直于该面中的两条相交直线即可,通过取AB的中点M,连结CM,OM,由AB垂直于面COM得到CO垂直于AB,证明BC垂直于面A1ACC1得到BC垂直于AC1,再由AC1⊥A1C得到AC1⊥平面A1BC,从而有AC1⊥CO,这样得到了CO垂直于平面ABC1内的两条相交直线;(2)由(1)知CO⊥平面ABC1,设CO与面ABC1的交点为N,连结BN,则∠CBN为BC与平面ABC1所成的角,然后通过求解直角三角形即可得到结论.解答:(1)证明:如图,取AB中点M,连结CM、OM,∵AC=BC,∴CM⊥AB,又∵OM∥BB1,∴OM⊥AB,OM∩CM=M,OM,CM⊂平面OCM,∴AB⊥平面OCM,∴AB⊥CO,连结A1C,∵BC⊥AC,BC⊥CC1,∴BC⊥平面A1ACC1,且AC1⊂平面A1ACC1,∴BC⊥AC1,又∵A1C⊥AC1,且A1C∩BC=C,A1C,BC⊂平面A1BC,∴AC1⊥平面A1BC,CO⊂平面A1BC,∴CO⊥AC1,AB∩AC1=A,又∵AB,AC1⊂平面ABC1,∴CO⊥平面ABC1;(2)解:连结MC1交CO于N,连结BN,∵CO⊥面ABC1,∴∠CBN为BC与平面ABC1所成的角,令AC=BC=CC1=a,在Rt△C1CM中,C1C=a,CM=a,∴MC1=a,∵CN⊥MC1,∴CN•MC1=CM•CC1,∴CN==a,∵CB=a,∴Rt△CBN中,sin∠CBN===,∴直线BC与平面ABC1所成角的正弦值为.点评:本题考查了直线与平面垂直的判定,考查了线面角的求法,综合考查了学生的空间想象能力和思维能力,解答此题的关键是线面角的招法,是中档题.20.(8分)椭圆E:=1(a>b>0)离心率为,且过P(,).(1)求椭圆E的方程;(2)已知直线l过点M(﹣,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直线l与椭圆E交于A,B两点,与y轴交与D点,若=,,且λ+μ=,求抛物线C的标准方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(1)利用离心率计算公式、点在椭圆上及a,b,c的关系可得,解出即可;(2)设抛物线C的方程为y=ax2(a>0),直线与抛物线C切点为.利用导数的几何意义可得切线的斜率,进而得到切线方程,即可得到切点N,进一步简化切线方程,把直线l的方程与椭圆的方程联立得到根与系数的关系,再利用已知向量关系式=,,且λ+μ=,即可得到a及抛物线C的标准方程.解答:解.(1)由题意可得,解得,∴椭圆E的方程为.(2)设抛物线C的方程为y=ax2(a>0),直线与抛物线C切点为.∵y′=2ax,∴切线l的斜率为2ax0,∴切线方程为,∵直线l过点M,∴,∵点N在第二象限,∴x0<0,解得x0=﹣1.∴N(﹣1,a).∴直线l的方程为y=﹣2ax﹣a.代入椭圆方程并整理得:代入椭圆方程整理为(1+16a2)x2+16a2x+4a2﹣8=0.设A(x1,y1),B(x2,y2).∴,.由,,∴,.∴λ+μ===.∵,∴,又a>0,解得.∴抛物线C的标准方程为,其标准方程为.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为根与系数的关系、直线与抛物线相切问题、导数的几何意义、向量的运算等基础知识与基本技能,考查了推理能力和计算能力.21.(12分)已知a>0,函数f(x)=ax2﹣x,g(x)=ln(ax)(1)若直线y=kx﹣1与函数f(x)、g(x)相切于同一点,求实数a,k的值;(2)是否存在实数a,使得f(x)≥g(x)成立,若存在,求出实数a的取值集合,不存在说明理由.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(1)设g(x)的切点(x0,ln(ax0)),则g′(x0)==k=f′(x0),及g(x0)=kx0﹣1可求得答案;(2)令h(x)=f(x)﹣g(x)=ax2﹣x﹣ln(ax),则问题等价于h(x)min≥0,h′(x)=,令p(x)=2ax2﹣x﹣1,△=1+8a>0,设p(x)=0有两不等根x1,x2,不妨令x1<0<x2,利用导数可求得h(x)min=h(x2)≥0;由p(x2)=0可对h(x2)进行变形,再构造函数,利用导数可判断h (x2)≤0,由此刻求得x2=1,进而求得a值;解答:解(1)设g(x)的切点(x0,ln(ax0)),g′(x0)==k,∴g(x0)=ln(ax0)=kx0﹣1=0,∴ax0=1,设f(x)切点(x0,f(x0)),f′(x0)=2ax0﹣1=k=1,∴a=x0=1,∴a=k=1;(2)令h(x)=f(x)﹣g(x)=ax2﹣x﹣ln(ax),即h(x)min≥0,h′(x)=,令p(x)=2ax2﹣x﹣1,△=1+8a>0,所以p(x)=0有两不等根x1,x2,<0,不妨令x1<0<x2,所以h(x)在(0,x2)上递减,在(x2,+∞)上递增,所以h(x2)=0成立,因为p(x2)=﹣1=0,所以,所以h(x2)=0,且=,令k(x)=,k′(x)=,所以k(x)在(0,1)上递增,在(1,+∞)上递减,所以k(x2)≤k(1)=0,又h(x2)=,所以x2=1代入a,a=1,所以a∈{1}.点评:本题考查导数的几何意义、闭区间上函数的最值、函数恒成立问题,考查学生综合运用所学知识分析解决问题的能力,根据问题恰当构造函数是解决该题目的关键,要认真领会.22.(10分)选修4﹣1:几何证明选讲如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE 交AD于点F.(1)求证:DE是⊙O的切线;(2)若,求的值.考点:圆的切线的判定定理的证明;相似三角形的判定;与圆有关的比例线段.专题:计算题;证明题.分析:(1)连接OD,得∠ODA=∠OAD=∠DAC,所以OD∥AE.由此能够证明DE是的⊙O切线.(2)过D作DH⊥AB于H 则有∠DOH=∠CAB,cos∠DOH=cos∠CAB=,设OD=5x,则AB=10x,OH=3x,DH=4x,AH=8x,AD2=80x2,由△AED∽△ADB,能够求出的值.解答:解:(1)证明:连接OD,得∠ODA=∠OAD=∠DAC,…(2分)∴OD∥AE,又A E⊥DE,…(3分)∴DE⊥OD,又OD为半径∴DE是的⊙O切线…(5分)(2)过D作DH⊥AB于H,则有∠DOH=∠CABcos∠DOH=cos∠CAB=,…(6分)设OD=5x,则AB=10x,OH=3x,DH=4x,∴AH=8x,AD2=80x2,由△AED∽△ADB,得AD2=AE•AB=AE•10x,∴AE=8x,…(8分)又由△AEF∽△DOF,得AF:DF=AE:OD=,∴.…(10分)点评:本题考查圆的切线定理的证明和求的值.解题时要认真审题,仔细解答,注意圆的性质的灵活运用.23.(10分)选修4﹣4:坐标系与参数方程C1:(t为参数),C2:(θ为参数).(I)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,且当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.考点:圆的参数方程;直线的参数方程.专题:直线与圆.分析:(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),由P为OA中点,利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.解答:解:(Ⅰ)当α=时,C1的普通方程为x﹣y﹣1=0,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0)、(﹣,﹣).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0.A点坐标为(sin2α,﹣cosαsinα),故当α变化时,OA中点P点轨迹的参数方程为:(α为参数),P点轨迹的普通方程(x﹣)2+y2=.故P点轨迹是圆心为(,0),半径为的圆.点评:本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)已知函数f(x)=|x﹣a|﹣|x﹣5|,a>0.(I)若a=2,求f(x)≥0的解集.(II)若不等式f(x)≤2x的解集为[5,+∞),求a的值.考点:带绝对值的函数;绝对值不等式的解法.专题:压轴题;不等式的解法及应用.分析:(I)当a=2时,ff(x)≥0可化为|x﹣2|≥|x﹣5|,直接求出不等式|x﹣2|≥|x﹣5|的解集即可.(II)由题设知:|x﹣a|﹣|x﹣5|≤2x.下面就a的取值分类讨论,在同一坐标系中作出函数y=f (x)和y=2x的图象,结合图象即可求得 a 的值.解答:解:( I) a=2时,f(x)=|x﹣2|﹣|x﹣5|,f(x)≥0,即|x﹣2|≥|x﹣5|,x,所以f(x)≥0的解集[,+∞).( II) f(x)≤2x即|x﹣a|﹣|x﹣5|≤2x ①(1)a=5时,解①得x≥0,不合题意.(2)a>5时,f(x)=函数图象如图,∵f(x)≤2x的解集为[5,+∞),∴直线y=2x过(5,a﹣5),∴a﹣5=10,a=15.(3)0<a<5时,f(x)=函数图象如下图,不合题意.综上,a=15.点评:本题考查绝对值不等式的解法,函数图象的特征,体现了数形结合的数学思想,画出函数f(x)的图象,是解题的关键.。
2013年河南省开封市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2011•辽宁)已知M,N为集合I的非空真子集,且M,N不相等,若N∩(∁I M)=∅,2.(5分)(2012•顺河区一模)i是虚数单位,复数等于()解:复数==i3.(5分)(2012•顺河区一模)设等比数列{a n}的公比q=2,前n项和为S n,则的值为()..===15a=.4.(5分)(2012•开封一模),点列A i(i,a i)(i=0,1,2,…n)的部分图象如图所示,则实数a的值为()..a,,5.(5分)(2012•顺河区一模)三棱椎A﹣BCD的三视图为如图所示的三个直角三角形,则三棱锥A﹣BCD的表面积为(),∴AB=;.PC=.S=1++1+=2+26.(5分)(2012•顺河区一模)执行如图所给的程序框图,则运行后输出的结果是()7.(5分)(2012•顺河区一模)已知三个互不重合的平面α,β,γ,且α∩β=a,α∩γ=b,β∩γ=c,给出下列命题:①若a⊥b,a⊥c,则b⊥c;②若a∩b=P,则a∩c=P;③若a⊥b,a⊥c,则α⊥γ;④若a∥b,则a∥c.8.(5分)(2012•开封一模)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点p在C上,∠F1pF2=60°,..=,所以9.(5分)(2012•开封一模)函数f(x)满足f(0)=0,其导函数f′(x)的图象如图,则f(x)的图象与x轴所围成的封闭图形的面积为()..(﹣10.(5分)(2009•宁夏)有四个关于三角函数的命题:P1:∃x∈R,sin2+cos2=;P2:∃x、y∈R,sin(x﹣y)=sinx﹣siny;P3:∀x∈[0,π],=sinx;P4:sinx=cosy⇒x+y=.2+cos2=1,所以,11.(5分)(2012•顺河区一模)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天12.(5分)(2012•开封一模)已知以T=4为周期的函数,,),,),与第二个椭圆相交,而与=1与第二个椭圆(++代入(+y==1,二、填空题:本文题共4小题,每小题5分.13.(5分)(2012•开封一模)已知实数x,y满足条件,则目标函数z=2x﹣y的最大值是6.14.(5分)(2012•顺河区一模)在数列{a n}中,S n为其前n项和,a1=1,a2=2,a n+2﹣a n=1+(﹣1)n,则S20=120.=10+=12015.(5分)(2012•开封一模)将A、B、C、D四名学生分到三个不同的班,每个班至少分到一名学生,且A、B两名学生不能分到同一个班,则不同分法的种数为30.16.(5分)(2012•顺河区一模)向量a=(2,o),b=(x,y),若b与b一a的夹角等于,则|b|的最大值为4.与对应的点,构造出三角形后运用余弦定理得关于向量,则的夹角为,在,整理得:,得:三、解答题:解答应写出文字说明,证明过程和演算步骤17.(12分)(2012•顺河区一模)设函数.(I)求函数f(x)的最小正周期和最大值;(Ⅱ)△ABC的内角A.B、C的对边分别为a、b、c,c=3,,若向量=(1,sinA)与=(2,sinB)共线,求a,b的值.=+cos2x==(Ⅱ)∵=,C=)与=cos根据上表信息解答以下问题:(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.,解得:η,,,,.19.(12分)(2012•开封一模)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB,G为PD的中点,E点在AB上,平面PEC⊥平面PDC.(I)求证:AG∥平面PEC;(Ⅱ)求面PEC与面PAD所成二面角的余弦值.CD,∴所成二面角,∴所以所求的二面角的余弦值为,然后借助于公式20.(12分)(2004•湖南)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m >0)作直线与抛物线交于A ,B 两点,点Q 是点P 关于原点的对称点. (I)设点P 分有向线段所成的比为λ,证明:(II )设直线AB 的方程是x ﹣2y+12=0,过A ,B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.,得.由此可以推出(Ⅱ)由,则所成的比为.(Ⅱ)由得.的方程是21.(12分)(2012•开封一模)已知函数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设函数g(x)=xf(x)+tf'(x)+e﹣x(t∈R).是否存在实数a、b、c∈[0,1],使得g(a)+g (b)<g(c)?若存在,求实数t的取值范围;若不存在,请说明理由.(Ⅰ)时,,函数在区间(,∴得)即(★)知而四、选做题:(22、23、24题任选一题做)22.(10分)(2012•顺河区一模)选做题:几何证明选讲如图,ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点F,延长CF交AB于E.(1)求证:E是AB的中点;(2)求线段BF的长.的弦,得到23.(2012•顺河区一模)平面直角坐标系中,将曲线(a为参数)上的每~点横坐标不变,纵坐标变为原来的2倍得到曲线C1.以坐标原点为极点,x轴的非负半轴为极轴,建立的极坐标系中,曲线C2的方程为p=4sinθ.(I)求C l和C2的普通方程.(Ⅱ)求C l和C2公共弦的垂直平分线的极坐标方程.)若将曲线:故其极坐标方程为:24.(2012•顺河区一模)设函数f(x)=|2x﹣m|+4x.(I)当m=2时,解不等式:f(x)≤1;(Ⅱ)若不等式f(x)≤2的解集为{x|x≤﹣2},求m的值.①②,分当<﹣①,②.﹣﹣≥。
2013年高中毕业年级第一次质量预测理科数学试题卷注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题〉两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2. 回答第I卷时:若选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3. 回答第II卷时:将答案写在答题卡上。
写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 —项是符合题目要求的.1. 若集合A={0,1,2,x},=A,则满足条件的实数x的个数有A. 1个B. 2个C. 3个D. 4个2. 若复数z=2-i,则等于A.2-IB. 2 + iC. 4 + 2iD. 6+3i3. 直线与曲线相切于点A(l, 3),则的值等于A. 2B. -1C. 1D. —24. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有A. 12B. 18C. 24D.485. 执行如图所示的程序框图,若输入x==2,则输出y的值为A. 5B. 9C. 14D. 416. 图中阴影部分的面积S是h的函数(〉,则该函数的大致图象是7. 已知双曲线!的离心率为,则双曲线的渐近线方程为A. B. C. D.8.把70个面包分5份给5个人,使每人所得成等差数列,且使较大的三份之和的1/6是较小的两份之和,问最小的1份为.A.2B. 8C. 14D. 209.在三棱锥A—BCD中,侧棱AB、AC、AD两两垂直,的面积分别为,则该三棱锥外接球的表面积为A. B. C. D.10. 设函数,把f(x)的图象按向量a=(m,0)(m>0)平移后的图象恰好为函数的图象,则m的最小值为A. B . C. D.11. 已知抛物线上有一条长为6的动弦Ab,则AB中点到X轴的最短距离为A. B. C. 1 D. 212. 设函数,对任意,恒成立,则实数m的取值范围是A. B. C. D.第II卷本卷包括必考题和选考题两部分。
河南省郑州市2013年高中毕业年级第二次质量预测理科数学试题卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150 分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个符合 题目要求.A.第一象限B.第二象限C.第三象限D.第四象限A. 7x+24y=0B. 7x-24y=0C. 24x+7y=0D.24x-7y=03_在数列{a n }中,a n+1=ca n (c;为非零常数),前n 项和为S n = 3n +k,则实数k 为 A.-1B.0C.1D.24. 设a,β分别为两个不同的平面,直线l a ,则“l 丄β”是“a 丄β成立的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件A. c>b>aB. b>c>aC. a>b>cD. b>a>c6. 已知函数f(x)的导函数为)(x f ',且满足x e f x x f ln )(2)(+'=,则)(e f ' = A. 1B. —1C. –e -1D. —e7. 一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是项重新排成一列,有理项都互不相邻的概率为)0,0(122>>=-b a by (a>0,b>0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支 的两个交点分别为A ,B,且ΔF 2AB 是等边三角形,则双曲线的 离心率为A. 12+B. 13+C.213+10. 函数f(x)=ax m(1-x)2在区间[0,1]上的图象 如图所示,则m 的值可能是A. 1B.2C. 3D.411. 设f(x)是定义在R 上的增函数,且对于任意的工都有f(2—x)+f(x)=0恒成立.如果实数m 、n 满足不等式组⎩⎨⎧><-++-30)8()236(22m n n f m m f ’则m 2+n 2的取值范围是 A. (3,7)B. (9,25)C. (13,49)D. (9,49)第II 卷本卷包括必考題和选考題两部分.第13题〜第21題为必考题,第22题〜24题为选考 題.考生根据要求作答.二、填空題:本大题共4小题,每小题5分.13.等差数列{a n }的前7项和等于前2项和,若a 1=1,a k +a 4=0,则k=______.14. 已知O 为坐标原点,点M(3,2),若N(x,y)满足不等式组⎪⎩⎪⎨⎧≤+≥≥401y x y x 则ON OM ·的最大值为______.15.已知不等式222y ax xy +≤,若对任意x ∈[l,2],且y ∈[2,3],该不等式恒成立,则 实数a 的取值范围是______.16.过点M(2,-2p)作抛物线x 2=2py(p>0)的两条切线,切点分别为A ,B,若线段AB 的中 点纵坐标为6,则p 的值是______.三、解答题:解答应写出说明文字,证明过程或演算步骤. 17. (本小题满分12分)如图所示,一辆汽车从O 点出发沿一条直线公路以50 公里/小时的速度勻速行驶(图中的箭头方向为汽车行驶方 向),汽车开动的同时,在距汽车出发点O 点的距离为5公 里,距离公路线的垂直距离为3公里的M 点的地方有一个 人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车 的人至少以多大的速度勻速行驶才能实现他的愿望,此时 他驾驶摩托车行驶了多少公里?18. (本小题满分12分)每年的三月十二日,是中国的植树节.林管部门在植树前,为 保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两批 树苗中各抽测了 10株树苗的高度,规定高于128厘米的为“良种 树苗”,测得高度如下(单位:厘米)甲:137,121,131,120,129,119,132,123,125,133 乙:110,130,147,127,146,114,126,110,144,146(I)根据抽测结果,完成答题卷中的茎叶图,并根据你填写 的茎叶图,对甲、乙两批树苗的高度作比较,写出对两种树苗高度 的统计结论;(II)设抽测的10株甲种树苗髙度平均值为将这10株树 苗的高度依次输人按程序框图进行运算,(如图)问输出的S 大小为多少?并说明S 的统计学意义;(III)若小王在甲批树苗中随机领取了 5株进行种植,用样本的频率分布估计总体分布, 求小王领取到的“良种树苗”株数X 的分布列.19. (本小题满分12分)如图,正三棱柱ABC-A 1B 1C 1的所有棱长都为2,)(1R CC ∈=λλ20. (本小题满分12分)已知椭圆C: 13422=+y x 的右焦点为F ,左顶点为A ,点P 为曲线D 上的动点,以PF 为直径的圆恒与y 轴相切.(I)求曲线D 的方程;(II)设O 为坐标原点,是否存在同时满足下列两个条件的ΔAPM?①点M 在椭圆C 上;②点O 为ΔAPM 的重心.若存在,求出点P 的坐标;若不存在,说明理由.(若三角形 ABC 的三))21. (本小题满分12分)已知函数f(x)=lnx 与g(x)=kx+b(k,b ∈R)的图象交于P ,Q 两点,曲线y=f(x)在P ,Q 两点处的切线交于点A.(I)当k = e ,b=-3时,求f(x) — g(x)的最大值(e 为自然常数) (II)若)11,1(--e e e A |,求实数k ,b 的值.选做题(本小题满分10分,请从22、23、24三个小题中任选一题作答,并用铅笔在对应 方框中涂黑)22.选修4—1:几何证明选讲如图,已知0和M 相交于A 、B 两点,AD 为M 的直径,直线BD 交O 于点C,点G 为弧BD 中点,连结 AG 分别交0、BD 于点E 、F ,连结CE.(I )求证:AG ·EF=CE ·GD ;22CEEF =23. 选修4一4:坐标系与参数方程已知直线C 1: ⎩⎨⎧=+=a t y a t x sin cos 1’(t 为参数),曲线C 2: ⎩⎨⎧==θθsin cos y x (θ为参数).(II)过坐标原点0作C 1的垂线,垂足为A,P 为OA 中点,当a 变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24. 选修4一5:不等式选讲 已知函数f(x)=|x —a|(I)若不等式f(x)≤3的解集为{x|-1≤x ≤5},求实数a 的值; (II)在(I)的条件下,若f(x)+f(x + 5)m 对一切实数x 恒成立,求实数m 的取值范围.2013年高中毕业年级第二次质量预测数学(理科) 参考答案一、选择题(每小题5分,共60分)DDAA BCCD BACC二、填空题(每小题5分,共20分)13.6;14.12;15.1a ≥-;16.1或2. 三、解答题17.解:作MI 垂直公路所在直线于点I ,则3=MI ,54cos 4,5=∠∴=∴=MOI OI OM ――――2分 设骑摩托车的人的速度为v 公里/小时,追上汽车的时间为t 小时 由余弦定理:()()545052505222⨯⨯⨯-+=t t vt ――――6分 900900)81(25250040025222≥+-=+-=⇒tt t v -――――8分 ∴当81=t 时,v 的最小值为30,∴其行驶距离为415830==vt 公里――――11分 故骑摩托车的人至少以30公里/时的速度行驶才能实现他的愿望, 他驾驶摩托车行驶了415公里. ――――12分 18.解: (Ⅰ)茎叶图略. ―――2分统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗的中位数为127,乙种树苗的中位数为128.5; ④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散. ―――4分(每写出一个统计结论得1分)(Ⅱ)127,135.x S ==――――6分S 表示10株甲树苗高度的方差,是描述树苗高度离散程度的量.S 值越小,表示长得越整齐,S 值越大,表示长得越参差不齐.――――8分(Ⅲ)由题意,领取一株甲种树苗得到“良种树苗”的概率为12,则1~(5,)2X B ―――10分 所以随机变量X 的分布列为――――12分 19.解:(Ⅰ)取BC 的中点为O ,连结AO在正三棱柱111ABC A B C -中面ABC ⊥面1CB ,ABC ∆为正三角形,所以AO BC ⊥, 故AO ⊥平面1CB .以O 为坐标原点建立如图空间直角坐标系O xyz -,――――2分则A ,1(1,2,0)B ,(1,1,0)D -,1(0,A ,(1,0,0)B .所以1(1,3)AB =,1DA = ,(2,1,0)DB =-,因为1111230,220AB DA AB DB ⋅=+-=⋅=-=,所以111,AB DA AB DB ⊥⊥,又1DA DB D = ,所以1AB ⊥平面1A BD . ――――-6分(Ⅱ)由⑴得(1,2,0)D λ-,所以1(1,223)DA λ=- ,(2,2,0)DB λ=-,(1,2DA λ=-,设平面1A BD 的法向量1(,,)n x y z = ,平面1AA D 的法向量2(,,)n s t u =,由1110,0,n DA n DB ⎧⋅=⎪⎨⋅=⎪⎩得平面1A BD的一个法向量为1(n λ= , 同理可得平面1AA D的一个法向量21)n =-,由1212121cos ,2||||n n n n n n ⋅<>==⋅,解得14λ=,为所求.――――12分20.解:(Ⅰ)设(,)P x y ,由题知(1,0)F ,所以以PF 为直径的圆的圆心1(,)2x E y +, 则22|1|11||(1)222x PF x y +==-+ 整理得24y x =,为所求. ――――4分(Ⅱ)不存在,理由如下: ――――5分若这样的三角形存在,由题可设211122(,)(0),(,)4y P y y M x y ≠,由条件①知2222143x y +=, 由条件②得0OA OP OM ++=,又因为点(2,0)A -,所以2121220,40,y x y y ⎧+-=⎪⎨⎪+=⎩即222204y x +-=,故2223320416x x -+-=,――――9分解之得22x =或2103x =(舍),当22x =时,解得(0,0)P 不合题意,所以同时满足两个条件的三角形不存在. ――――12分21、解:(Ⅰ)设()()()ln 3(0)h x f x g x x ex x =-=-+>,则11()()e h x e x x x e '=-=--, ――――1分 当10x e <<时,()0h x '>,此时函数()h x 为增函数;当1x e>时,()0h x '<,此时函数()h x 为减函数.所以max 1()()1131h x h e==--+=,为所求. ――――4分(Ⅱ)设过点A 的直线l 与函数()ln f x x =切于点00(,ln )x x ,则其斜率01k x =, 故切线0001:ln ()l y x x x x -=-, 将点1(,)11e A e e --代入直线l 方程得:00011ln ()11ex x e x e -=---,即0011ln 10e x e x -+-=,――――7分 设11()ln 1(0)e v x x x e x -=+->,则22111()()1e e ev x x ex x ex e --'=-=--, 当01ex e <<-时,()0v x '<,函数()v x 为增函数;当1ex e >-时,()0v x '>,函数()v x 为减函数.故方程()0v x =至多有两个实根, ――――10分 又(1)()0v v e ==,所以方程()0v x =的两个实根为1和e , 故(1,0),(,1)P Q e ,所以11,11k b e e==--为所求.――――12分22.证明:(Ⅰ)连结AB 、AC ,∵AD 为⊙M 的直径,第 10 页 共 11 页 金太阳新课标资源网∴∠ABD =90°,∴AC 为⊙O 的直径, ∴∠CEF =∠AGD =90°.――――2分∵G 为弧BD 中点,∴∠DAG =∠GAB =∠ECF . ――――4分 ∴△CEF ∽△AGD ∴GDAGEF CE =, ∴AG ·EF = CE ·GD ――――6分 (Ⅱ)由⑴知∠DAG =∠GAB =∠FDG ,∠G =∠G , ∴△DFG ∽△AGD ,∴DG 2=AG ·GF .――――8分由⑴知2222AG GD CE EF =,∴22CE EF AG GF = ――――10分23.解:(Ⅰ)当3π=a 时,C 1的普通方程为)1(3-=x y ,C 2的普通方程为122=+y x ,联立方程组⎪⎩⎪⎨⎧=+-=1)1(322y x x y ,解得C 1与C 2的交点坐标为(1,0),)23,21(-.――――5分 (Ⅱ)C 1的普通方程为0sin cos sin =--αααy x ,A 点坐标为)cos sin ,(sin 2ααα-,故当α变化时,P 点轨迹的参数方程为21sin ,21sin cos ,2x y ααα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数)P 点轨迹的普通方程为161)41(22=+-y x . 故P 点轨迹是圆心为)0,41(,半径为41的圆.――――10 24.解:(Ⅰ)由3)(≤x f 得3||≤-a x ,解得33+≤≤-x x a .又已知不等式3)(≤x f 的解集为{}51|≤≤-x x ,所以⎩⎨⎧=+-=-5313a a ,解得2=a .――――4分(Ⅱ)当2a =时,|2|)(-=x x f ,设)5()()(++=x f x f x g , 于是金太阳新课标资源网 第 11 页 共 11 页 金太阳新课标资源网 ⎪⎩⎪⎨⎧>+≤≤--<--=++-=.2,12,23,5,3,12|3||2|)(x x x x x x x x g ――――6分所以当3-<x 时,5)(>x g ; 当23≤≤-x 时,5)(=x g ; 当2x >时,5)(>x g .综上可得,()g x 的最小值为5.――――9分从而若m x f x f ≥++)5()(,即m x g ≥)(对一切实数x 恒成立, 则m 的取值范围为(-∞,5].――――10分。