生化实验酶的特性1
- 格式:ppt
- 大小:137.00 KB
- 文档页数:29
酶的作用及特点
一、酶的基本概念
酶是一类生物催化剂,通常是蛋白质形成的,可以加速细
胞内多种生物化学反应的进行,而不自身受影响。
酶作为生物体中的工程师,对维持生物体内的平衡起着至关重要的作用。
二、酶的作用机制
酶通过特定的亲合力选择性地结合底物,形成酶-底物复合物。
酶通过在底物分子上施加一定的作用力,促使底物分子发生构象变化,使反应发生。
酶不参与反应本身,也不改变反应的平衡常数,但却能加快化学反应的速度。
三、酶的特点
1.高效性:酶作为生物催化剂,可以在较温和的条件
下加速化学反应速率,提高生物体的代谢效率。
2.特异性:酶对底物有高度的选择性,能够选择性地
作用于特定的底物,避免不必要的反应发生。
3.可再生性:酶在催化反应中并不参与反应本身,因
此在反应完成后可以继续催化其他底物分子,表现出较好
的可再生性。
4.适应性:酶具有一定的适应性,可以根据环境的变
化对其催化性质进行调整和调节,以适应周围环境的变化。
5.催化速率受限:酶的催化速率受到多种因素的影响,
例如温度、pH值等都能影响酶的催化速率。
四、酶在生物体内的作用
在生物体内,酶广泛参与于各种生物化学反应,比如代谢反应、合成反应、分解反应等。
在细胞内,酶扮演着调节代谢平衡的角色,帮助生物体维持内部环境的稳定。
五、结语
总而言之,酶作为生物体内不可或缺的催化剂,发挥着重要的作用。
其高效性、特异性、可再生性使其在生物体内发挥着重要的催化作用,促进了生物体的正常代谢过程。
我们应该深入了解酶的工作原理和特性,以更好地理解生物体内复杂的代谢网络。
生物化学实验指导:酶的活性测定实验1. 引言在生物化学领域,测定酶的活性是一项重要的实验技术。
酶是生物体内参与许多生化反应的催化剂,能够加速反应速率。
通过测定酶的活性,我们可以了解其催化效率和特性。
本实验旨在教授如何测定某一种酶的活性,并提供相应步骤和分析方法。
我们选择一种常见的酶作为例子,详细介绍实验操作步骤和数据处理方法。
2. 实验材料•酶提取物•底物(适合所选酶催化反应的底物)•缓冲溶液(pH值适合所选酶催化反应的缓冲溶液)•辅助试剂(如辣根过氧化物酸)•试剂盒或相关仪器设备3. 实验步骤步骤1:制备必要溶液1.准备合适浓度并调整pH值适合实验目标的缓冲溶液。
2.准备底物溶液,确保其浓度符合实验要求。
步骤2:制备标准曲线1.准备一系列不同底物浓度的标准溶液。
2.按照指定的方法将不同底物浓度的标准溶液与酶提取物混合。
3.在一定时间间隔内,记录反应进程中释放的产物(如颜色变化)。
步骤3:样品预处理1.从所需生物样品中提取目标酶。
可以采用相关提取方法,如超声波法、机械破碎法等。
2.将提取得到的酶溶液进行适当稀释,以便后续操作过程中能够在合适浓度范围内工作。
步骤4:活性测定实验1.将提取得到的目标酶与底物溶液以及其他必要试剂加入适当容器中,形成反应体系。
2.控制温度和pH值,确保反应条件符合要求。
3.运行反应体系一段时间,并记录反应进程。
步骤5:数据处理和分析1.使用已经制备好的标准曲线,根据测试产生的光吸光度(或其他测量结果)计算出底物的浓度。
2.根据所得底物浓度和反应时间,计算出酶催化反应速率。
3.通过对不同条件组的实验数据进行比较和统计分析,可以进一步了解酶活性受到哪些因素影响。
4. 结论通过本实验指导,我们能够学会如何进行酶的活性测定实验,并熟悉基本的数据处理和分析方法。
这一实验可以为进一步探究酶催化机制、优化酶工艺等提供基础。
实践中,可以根据具体需求对该实验设计进行适当调整和补充。
生物大分子·酶——相关生化实验报告小组成员:王书洋张斌贾官斐杨翀左天宇单位:武警后勤学院临床医学系四队四班邮编:300162关键词淀粉酶; 活性; 温度; 抑制剂; 激活剂; 专一性【前言】目前临床主要以检测指标作为依据对疾病的诊断作出较为准确的判断。
其中,酶学上的应用占了相当一部分。
所以,从临床疾病诊断以及治疗的角度去对酶学知识的具体化了解和应用深化是十分有必要的。
酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化。
因此,一切对蛋白质活性有影响的因素都影响酶的活性。
酶与底物作用的活性,受温度、pH值、酶液浓度、底物浓度、酶的激活剂或抑制剂等许多因素的影响。
对酶活性的测定对临床诊断以及基础医学的研究都有着重要意义。
很多酶其实包含几种具有同样催化效用的蛋白质,但它们的分子组成、理化性质与免疫学特性却有明显差异,这类蛋白质统称为该酶的同工酶。
同工酶在组织和器官中的分布不同,通过测定不同同工酶的含量与活性的变化,可以推算出改组织和器官的变化。
本综述旨在对后文的三次实验作为基础医学和临床医学的一次应用上的联系。
实验一影响酶促反应速度的因素【实验原理】唾液淀粉酶催化淀粉水解生成各种糊精和麦芽糖。
淀粉溶液与碘反应呈蓝色;糊精根据分子大小,与碘反应分别呈蓝、紫、红、无色等不同的颜色;麦芽糖不与碘呈色。
唾液淀粉酶的活性受温度、酸碱度、抑制剂与激活剂等的影响。
温度:温度降低,酶促反应减弱或停止;温度升高,反应速度加快。
当上升至某一温度时,酶促反应速度达最大值,此温度称为酶的最适温度。
由于酶的化学本质是蛋白质,温度过高会导致蛋白质构象的改变,因此如果温度继续升高,反应速度反而会迅速下降甚至完全丧失。
酸碱度:唾液淀粉酶最适pH为pH6.9,高于或低于酶的最适pH值,都将引起酶活性的降低,过酸或过碱的反应条件可使酶活性丧失。
抑制剂与激活剂:酶的活性常受某些物质的影响,能增加酶的活性称为酶的激活剂:降低酶活性且不使酶蛋白变性的称为酶的抑制剂。
生物化学中的酶动力学实验与分析总结酶动力学是研究生物体内酶催化反应速率规律的一门学科。
通过实验与分析,可以深入了解酶的特性和反应机制。
本文将就酶动力学的实验设计、数据分析和结果解读进行总结。
一、实验设计1. 实验目的酶动力学实验的目的是测定酶催化反应的速率常数(Km和Vmax),以及研究酶的催化机制和底物浓度对反应速率的影响。
2. 实验方案a. 实验物质准备:选择适当的酶和底物,准备所需的酶活性测定试剂。
b. 实验条件设置:控制温度、pH值和离子浓度等实验条件,确保实验结果的准确性和可重复性。
c. 底物浓度梯度:制备一系列底物浓度不同的反应体系,并设置对照组。
d. 反应体系建立:将酶、底物和缓冲溶液等适量加入试管中,充分混合后开始定时记录反应时间。
e. 控制实验时间:观察反应的起始时间以及适当的结束时间,避免过长或过短的反应时间。
二、数据分析1. 绘制酶动力学曲线a. 计算反应速率:根据实验所记录的反应时间和底物浓度,计算得到反应速率。
b. 绘制底物浓度与反应速率的曲线:将底物浓度作为X轴,反应速率作为Y轴,用散点图的方式绘制。
c. 拟合动力学模型:根据实验所得数据,采用合适的拟合方法,得到符合实验结果的动力学模型。
2. 计算酶动力学参数a. Km值计算:通过酶动力学方程和数据拟合得到的动力学模型,计算得到酶底物复合物的解离常数Km。
b. Vmax值计算:由动力学模型计算酶饱和时的反应速率常数Vmax。
c. 其他参数计算:如果实验需要,还可以计算酶的催化效率、半饱和常数等。
三、结果解读1. Km值解读Km值表示底物浓度达到一半时酶反应速率的一半,是衡量酶与底物结合力强弱的指标。
较小的Km值表示酶与底物的亲和力较大。
2. Vmax值解读Vmax值表示酶催化反应速率的极限值,与酶的催化活性有关。
较大的Vmax值表明酶催化活性较高。
3. 反应机制解读根据实验结果和酶动力学方程,可以推断酶催化反应的可能机制,如竞争性抑制、非竞争性抑制等。
细菌的生化实验报告细菌的生化实验报告细菌是一类微小而广泛存在于自然界中的生物体,它们在地球上的生物圈中起着重要的作用。
通过对细菌的生化实验,我们可以更深入地了解它们的生物特性和功能。
本文将介绍一系列细菌的生化实验,包括细菌的酶活性、代谢产物以及对环境的影响等方面。
实验一:酶活性研究酶是细菌体内的重要生物催化剂,它们参与了多种代谢过程。
我们可以通过测定细菌体内特定酶的活性来了解其代谢能力。
以大肠杆菌为例,我们可以使用酶活性检测试剂盒来测定其β-半乳糖苷酶活性。
实验结果显示,大肠杆菌中β-半乳糖苷酶活性较高,这表明其在代谢乳糖方面具有较强的能力。
实验二:代谢产物分析细菌的代谢过程会产生各种化合物,这些化合物可以作为细菌代谢的指标。
我们可以通过气相色谱-质谱联用技术(GC-MS)来分析细菌培养液中的代谢产物。
以枯草杆菌为例,通过GC-MS分析,我们发现其培养液中存在着丰富的有机酸和氨基酸,这些代谢产物反映了枯草杆菌的代谢途径和能力。
实验三:抗生素敏感性测试细菌对抗生素的敏感性是临床治疗中的重要指标。
我们可以通过纸片扩散法来测试不同细菌株对不同抗生素的敏感性。
实验结果显示,金黄色葡萄球菌对青霉素敏感,而对庆大霉素耐药。
这些结果对于合理使用抗生素和治疗细菌感染具有重要的指导意义。
实验四:细菌对环境的影响细菌在自然界中广泛存在,它们对环境有着重要的影响。
我们可以通过测定细菌在不同环境条件下的生长情况来研究其对环境的适应性。
以耐盐菌为例,我们可以将其分别培养在不同盐浓度的培养基中,观察其生长情况。
实验结果显示,耐盐菌在高盐浓度环境中生长较好,这表明其对高盐环境具有较强的适应能力。
细菌的生化实验为我们深入了解细菌的生物特性和功能提供了重要的手段。
通过研究细菌的酶活性、代谢产物以及对环境的影响,我们可以更好地理解细菌的代谢途径、生态角色以及与人类健康的关系。
这些实验结果对于开发新的抗菌药物、改良环境治理策略以及预防细菌感染具有重要的指导意义。
探究酶活性的实验报告一、实验目的通过实验了解酶的基本特性,探究酶的活性与温度和pH值的变化之间的关系。
二、实验原理酶是一种生物催化剂,在生化代谢过程中发挥着重要作用,它可以促进化学反应的进行,而不被反应过程消耗。
酶活性受到多种因素的影响,如温度、pH值、离子强度等。
这些因素的变化会引起酶的构象变化,从而影响其活性。
本实验中选用过氧化氢酶(catalase)为研究对象,它能够将过氧化氢分解为水和氧气。
当酶浓度一定时,通过改变温度和pH值,研究其对酶活性的影响。
三、实验方法1. 实验器材:加热水浴器、移液管、吸管、比色皿、计时器、pH仪、酶测定仪2. 实验步骤:(1)准备不同温度下的酶液(20℃,30℃,40℃,50℃,60℃),将酶液分别置于加热水浴器中,加热至相应温度;(2)将5ml过氧化氢(H2O2)倒入比色皿中,加入不同温度下的酶液;(3)记录酶液加入H2O2后,时间的变化,并观察气体产生情况;(4)用酶测定仪测定不同温度下酶液的酶活性;(5)重复上述实验步骤,改变pH值为3、5、7、9、11。
四、实验结果与分析实验结果如下表所示:温度/℃时间/s 氧气/体积 mL 酶活性/U 20 60 4.1 20030 46 5.6 31040 31 6.0 42050 25 4.8 32060 20 3.0 120pH 值时间/s 氧气/体积 mL 酶活性/U 3 150 2.8 905 41 4.2 1807 25 5.5 3009 28 5.0 25011 38 3.6 150从实验结果中我们可以发现,当温度升高时,酶活性增强,达到最高点后随温度升高而降低;当pH值接近于酶的最适pH值时,酶活性最高,当pH值变得偏离最适值时,酶活性明显下降。
五、实验结论本实验结果表明,酶的活性受到温度和pH值的影响,酶活性随温度和pH值的变化而变化。
当温度过高或过低时,酶的活性都会下降。
当pH值变得过高或过低时,也会导致酶的活性下降。
一、实验目的1. 了解酶的基本概念和特性。
2. 探究pH值、温度等因素对酶活性影响。
3. 分析酶催化反应的速度与底物浓度的关系。
二、实验原理酶是一种生物催化剂,具有高效、专一、温和等特性。
酶的活性受多种因素影响,如pH值、温度、底物浓度等。
本实验通过观察不同条件下酶催化反应的现象,分析影响酶活性的因素。
三、实验材料与仪器1. 实验材料:淀粉、碘液、NaOH、HCl、NaCl、蒸馏水、pH试纸、温度计等。
2. 实验仪器:试管、酒精灯、烧杯、移液器、计时器等。
四、实验步骤1. pH值对酶活性的影响(1)取三支试管,分别编号为1、2、3。
(2)向1号试管中加入2ml淀粉溶液,2号试管中加入2ml淀粉溶液和1滴HCl,3号试管中加入2ml淀粉溶液和1滴NaOH。
(3)观察并记录三支试管中淀粉溶液的颜色变化。
2. 温度对酶活性的影响(1)取三支试管,分别编号为1、2、3。
(2)向1号试管中加入2ml淀粉溶液,2号试管中加入2ml淀粉溶液和1滴HCl,3号试管中加入2ml淀粉溶液和1滴NaOH。
(3)将1号试管放入冷水浴中,2号试管放入温水浴中,3号试管放入热水浴中。
(4)观察并记录三支试管中淀粉溶液的颜色变化。
3. 底物浓度对酶活性的影响(1)取三支试管,分别编号为1、2、3。
(2)向1号试管中加入1ml淀粉溶液,2号试管中加入2ml淀粉溶液,3号试管中加入3ml淀粉溶液。
(3)向每支试管中加入1滴碘液,观察并记录三支试管中淀粉溶液的颜色变化。
五、实验结果与分析1. pH值对酶活性的影响实验结果显示,1号试管(中性)淀粉溶液颜色最深,2号试管(酸性)和3号试管(碱性)淀粉溶液颜色逐渐变浅。
这说明pH值对酶活性有显著影响,最适pH值约为中性。
2. 温度对酶活性的影响实验结果显示,1号试管(冷水浴)淀粉溶液颜色最深,2号试管(温水浴)淀粉溶液颜色变浅,3号试管(热水浴)淀粉溶液颜色最浅。
这说明温度对酶活性有显著影响,最适温度约为温水浴温度。
酶的特性名词解释酶(enzyme)是一类生物催化剂,其主要功能是加速化学反应速率并降低其能量活化需求,从而在细胞中实现生物转化。
酶在生物体内广泛存在,包括植物、动物和微生物,在生物学和生物工程领域具有重要的应用价值。
下面将对酶的一些重要特性进行详细解释。
1. 底物特异性(substrate specificity)酶的底物特异性是指酶与底物之间的选择性结合。
不同的酶对特定的底物有高度的选择性,只能与特定的底物发生相互作用。
这种底物特异性是由酶的活性中心及其结构决定的。
例如,淀粉酶只能催化淀粉分子的降解,而不能催化蛋白质或脂类的反应。
2. 酶促反应的速率酶促反应的速率远远高于非酶催化的化学反应速率。
这是由于酶能降低化学反应的能量活化需求。
酶的活性通常用单位时间内产生的产物的数量来衡量,常用单位是摩尔/秒。
酶促反应的速率受到多种因素的影响,包括底物浓度、酶浓度、温度和pH值等。
3. 反应条件的适应性酶对环境条件的适应性较强,可以在相对温和的条件下发挥其催化作用。
酶活性通常在特定的温度和pH范围内最高。
如果温度过高或pH值偏离最适范围,酶的结构会发生破坏,从而导致活性丧失或失活。
这一特性使得酶在生物体内能够稳定地催化众多生物转化反应。
4. 酶的可逆性和不可逆性酶催化的反应可以是可逆的或不可逆的,取决于反应的热力学和动力学条件。
可逆反应是指催化反应的产物可以再次转变为底物,形成平衡状态。
不可逆反应则是指催化反应形成的产物无法再转变为底物。
大部分酶催化反应属于可逆反应,但也有一些催化反应是不可逆的,例如酶在某些情况下能将底物转化为产物,但产物无法再逆向转化为底物。
5. 酶的酶促作用速度酶的酶促作用速度取决于酶底物复合物的形成和解离速度。
酶与底物结合后形成酶底物复合物,这一步骤受到底物浓度和酶与底物的亲和力影响。
酶底物复合物形成后,酶催化底物转化为产物,然后酶与产物解离,重新进入反应循环。
这两个步骤的速度共同决定了酶的酶促作用速度。
课程名称: 生物化学实验 指导老师: 史影 成绩: 实验名称: 酶的基本性质实验——底物专一性、激活剂和抑制剂、最适温度 同组学生姓名: 陈莞尔,潘盛警Ⅰ.酶的基本性质——底物专一性 一、实验目的1.了解酶的专一性。
2.掌握验证酶的专一性的基本原理及方法。
3.学会排除干扰因素,设计酶学实验。
二、基本原理酶是具有高度专一性的有催化功能的蛋白质。
酶蛋白结构决定了酶的功能——酶的高效性,酶促反应要比无机催化反应快数十倍。
酶催化的一个重要特点是具有高度的底物专一性,即一种酶只能对一种或一类底物其催化作用,对其他底物无催化反应。
根据各种酶对底物的选择程度不同,可分成下列几种:1.相对专一性。
一种酶能催化一类具有相同化学键或基团的物质进行某种类型的反应。
2.绝对专一性:有些酶对底物的要求非常严格只作用于一种底物,而不作用于任何其他物质。
如脲酶只能催化尿素进行水解而生成二氧化碳和氨。
如麦芽糖酶只作用于麦芽糖而不作用其它双糖,淀粉酶只作用于淀粉,而不作用于纤维素。
3.立体异构专一性:有些酶只有作用于底物的立体异构物中的一种,而对另一种则全无作用。
如酵母中的糖酶类只作用于D-型糖而不能作用于L-型的糖。
本实验以唾液淀粉酶和蔗糖酶对淀粉和蔗糖水解反应的催化作用来观察酶的专一性。
用Benedict 试剂检测反应产物。
Benedict 试剂是碱性硫酸铜溶液,具有一定的氧化能力,能与还原性的半缩醛羟基发生氧化还原反应,生成砖红色氧化铜沉淀。
Na 2CO 3+ 2H 2O 2NaOH + H 2CO 3 CuSO 4+ 2NaOH Cu(OH)2+ Na 2SO 4专业:____生物工程 姓名:_____陈传鑫 学号:___3090104963 日期:____2011.3.22_ 地点:_生物实验楼306实验报告还原糖(—CHO or —C=O)+ 2Cu(OH)2Cu2O + 2H2O + 糖的氧化产物(黄色或砖红色)淀粉和蔗糖无半缩醛基,无还原性,与Benedict试剂无显色反应。
第2课时酶的特性新课标核心素养1.阐明酶的高效性、专一性和作用条件较温和。
2.通过探究“影响酶促反应速率的环境因素”,培养科学探究能力。
1.科学思维——构建温度、pH和底物浓度对酶促反应速率影响的模型。
2.科学探究——通过探究酶的特性以及影响酶活性的条件来发展科学探究能力。
知识点(一)酶的特性酶的特性(连线)(1)一种酶只能催化一定的反应物发生反应(√)(2)高温、低温都使酶活性降低,二者的作用实质不同(√)(3)在测定胃蛋白酶活性时,将溶液的pH由10降到2的过程中,胃蛋白酶的活性将逐渐增强(×)(4)酶能调节机体内的代谢,增大反应速率(×)1.(科学思维)过酸、过碱、高温、低温对酶促反应速率的影响一样吗?提示:不一样,过酸、过碱、高温都会使酶变性失活,而低温只是抑制酶的活性,酶分子结构未被破坏,温度升高后可恢复活性。
2.(科学思维)加酶洗衣粉在日常生活中经常用到,某加酶洗衣粉的成分中标明含有淀粉酶和蛋白酶,若衣服不小心染上油滴,用上述洗衣粉效果如何,为什么?提示:效果不好,根据酶的专一性分析,蛋白酶和淀粉酶分解蛋白质和淀粉,而油滴的主要成分是脂肪,上述酶无法将其分解,故效果欠佳。
1.如图表示一个酶促反应,它所能反映的酶的一个特性和a、b、c最可能代表的物质依次是()A.高效性蛋白酶蛋白质多肽B.专一性淀粉酶淀粉麦芽糖C.专一性麦芽糖酶麦芽糖葡萄糖D.高效性脂肪酶脂肪甘油和脂肪酸解析:选B由题可知,a在反应前后形态结构未改变,是酶分子,b是反应物,c是产物。
酶的特殊空间结构,使其只能与具有相应结构的反应物结合,这体现了酶的专一性,A、D错误。
在a的作用下,b分解为含2个结构单元的小分子,分析B、C两个选项,淀粉是多糖,麦芽糖是二糖,符合图示现象,B正确、C错误。
2.为验证酶的专一性,采用的最佳实验方案是()选项等量的反应物分别加入等量的酶分别加入等量的试剂a组b组A 麦芽糖葡萄糖麦芽糖酶斐林试剂B 蔗糖麦芽糖蔗糖酶斐林试剂C 淀粉蔗糖淀粉酶斐林试剂D 淀粉蔗糖淀粉酶碘液解析:选C A选项中,麦芽糖和葡萄糖都是还原糖,因此使用斐林试剂检测,a、b 两组都会有砖红色沉淀生成。
第2课时酶的特性一、酶的特性1.酶具有高效性(1)酶的高效性是指同无机催化剂相比,酶降低活化能的作用更显著。
(2)酶的催化效率是无机催化剂的107~1013倍,说明酶具有高效性。
2.酶具有专一性(1)酶的专一性是指每一种酶只能催化一种或一类化学反应。
而无机催化剂催化的范围比较广,如酸能催化蛋白质、脂肪和淀粉水解。
(2)实例:脲酶只能催化尿素分解。
3.酶的作用条件较温和酶所催化的化学反应一般是在比较温和的条件下进行的。
过酸、过碱或温度过高,都会使酶的空间结构遭到破坏,使酶永久失活。
低温只能使酶活性降低,不会使酶失活。
(1)酶的作用需要适宜的温度在一定条件下,酶活性最大时的温度称为该酶的最适温度。
在一定温度范围内,酶促反应速率随温度的升高而加快;但当温度升高到一定限度时,酶促反应速率不仅不再加快反而随着温度的升高而下降。
(2)酶的作用需要适宜的pH在一定条件下,酶活性最大时的pH称为该酶的最适pH。
pH偏高或偏低,酶促反应速率都会下降。
(1)二肽酶能催化多种二肽水解,不能说明酶具有专一性()(2)催化脂肪酶水解的酶是蛋白酶()(3)酶在最适温度条件下活性最高,因此酶适合在此温度下保存()(4)低温、高温、强酸、强碱条件下酶的活性都很低,且酶的空间结构都发生了不可逆的改变() 答案(1)×(2)√(3)×(4)×淀粉和蔗糖都是非还原糖,但淀粉水解后会生成麦芽糖,蔗糖水解后会产生葡萄糖和果糖,它们都是还原糖。
下表为比较淀粉酶对淀粉和蔗糖的催化作用实验,请分析:试管编号 1 2可溶性淀粉溶液 2 mL -蔗糖溶液- 2 mL新鲜的淀粉酶溶液 2 mL 2 mL60 ℃水浴保温5 min新配制的斐林试剂 2 mL 2 mL沸水浴煮沸1 min实验现象有砖红色沉淀没有砖红色沉淀1.1号试管有砖红色沉淀生成,2号试管不出现砖红色沉淀,说明什么?你能从该实验得到什么结论?提示1号试管有砖红色沉淀生成,说明产生了还原糖,淀粉被水解,2号试管不出现砖红色沉淀,说明蔗糖没有被水解。
酶作为生物催化剂的特点:1,用量少而催化效率高;2,专一性高;3,反应条件温和4,可调节性影响酶催化作用的因素:1,底物浓度对酶促反应速度的影响在低底物浓度时, 反应速度与底物浓度成正比,表现为一级反应特征。
当底物浓度达到一定值,几乎所有的酶都与底物结合后,反应速度达到最大值(Vmax),此时再增加底物浓度,反应速度不再增加,表现为零级反应。
2. pH 的影响在一定的pH 下, 酶具有最大的催化活性,通常称此pH 为最适pH。
pH影响酶活力的原因可能有以下几个方面:(1)过酸或过碱可以使酶的空间结构破坏,引起酶构象的改变,酶活性丧失。
(2)当pH改变不很剧烈时,酶虽未变性,但活力受到影响。
(3)pH影响维持酶分子空间结构的有关基团解离,从而影响了酶活性部位的构象,进而影响酶的活性3. 温度的影响一方面是温度升高,酶促反应速度加快。
另一方面,温度升高,酶的高级结构将发生变化或变性,导致酶活性降低甚至丧失。
因此大多数酶都有一个最适温度。
在最适温度条件下,反应速度最大。
4.酶浓度的影响在一个反应体系中,当[S]>>[E]反应速率随酶浓度的增加而增加(v=k[E]),这是酶活测定的基础之一。
5 抑制剂对酶活性的影响使酶的活性降低或丧失的现象,称为酶的抑制作用。
能够引起酶的抑制作用的化合物则称为抑制剂酶的抑制剂一般具备两个方面的特点:a.在化学结构上与被抑制的底物分子或底物的过渡状态相似。
能够与酶的活性中心以非共价或共价的方式形成比较稳定的复合体或结合物。
6.激活剂对酶反应的影响凡能提高酶活力的物质都称为激活剂,有的酶反应的系统需要一定的激活剂。
酶的分类与命名(1) 氧化还原酶AH2 + B = A +BH2主要包括脱氢酶(dehydrogenase)和氧化酶例,醇+NAD+=醛或酮+NADH +H+→氢供体是醇,氢受体是NAD+系统命名→醇:NAD+氧化还原酶;推荐名→采用某供体脱氢酶,如醇脱氢酶(2) 转移酶AB +C =A +BC系统命名:“供体:受体某基团转移酶”。