应用Excel进行时间序列分析课件
- 格式:pptx
- 大小:446.41 KB
- 文档页数:31
利用Excel进行时间序列的谱分析-Read利用Excel 进行时间序列的谱分析(I )在频域分析中,功率谱是揭示时间序列周期特性的最为有力的工具之一。
下面列举几个例子,分别从不同的角度识别时间序列的周期。
1 时间序列的周期图【例1】某水文观测站测得一条河流从1979年6月到1980年5月共计12月份的断面平均流量。
试判断该河流的径流量变化是否具有周期性,周期长度大约为多少?分析:假定将时间序列x t 展开为Fourier 级数,则可表示为∑=++=ki t i i i i t t f b t f a x 1)2sin 2cos (εππ (1)式中f i 为频率,t 为时间序号,k 为周期分量的个数即主周期(基波)及其谐波的个数,εt 为标准误差(白噪声序列)。
当频率f i 给定时,式(1)可以视为多元线性回归模型,可以证明,待定系数a i 、b i 的最小二乘估计为∑∑====Nt i t i Nt i t i tf x N b t f x N a112sin 2?2cos 2?ππ (2)这里N 为观测值的个数。
定义时间序列的周期图为)(2)(22i i i b a N f I +=,k i ,,2,1 = (3) 式中I (f i )为频率f i 处的强度。
以f i 为横轴,以I (f i )为纵轴,绘制时间序列的周期图,可以在最大值处找到时间序列的周期。
对于本例,N =12,t =1,2,…,N ,f i =i /N ,下面借助Excel ,利用上述公式,计算有关参数并分析时间序列的周期特性。
第一步,录入数据,并将数据标准化或中心化(图1)。
图1 录入的数据及其中心化结果中心化与标准化的区别在于,只需将原始数据减去均值,而不必再除以标准差。
不难想到,中心化的数据均值为0,但方差与原始数据相同(未必为1)。
第二步,计算三角函数值为了借助式(1)计算参数a i 、b i ,首先需要计算正弦值和余弦值。