雷达气象学
- 格式:doc
- 大小:537.50 KB
- 文档页数:2
雷达气象学总结一、绪论雷达气象学:利用气象雷达,进行大气探测和研究雷达波与大气相互作用的学科,它是大气物理学、大气探测和天气学共同研究的一个分支。
雷达气象学在突发性、灾害性天气的监测、预报和警报中具有极为重要的作用。
雷达机的主要构成:RDA -雷达数据采集子系统RPG -雷达产品生成子系统PUP -主用户处理器子系统其次包括:通讯子系统、附属安装设备RDA的扫描方式:雷达在一次体积扫描中使用多少角度和时间。
RDA的天气模式:1.晴空模式:VCP11或VCP21 2.降水模式:VCP31或VCP32 新一代雷达:降水模式VCP:雷达天线体扫模式雷达的显示方式 :PPI(平面位置显示Plain Position Indicator) :固定仰角,天线做0-360°顺时针扫描,显示回波分布;实际上显示的是圆锥面上的回波分布。
按测距公式,R越大,回波高度越高。
RHI (Range Height Indicator距离高度显示):固定方位角,天线做俯仰扫描,探测某方位上回波垂直结构。
坐标:R-最低仰角的斜距; H-按测高公式计算(标准大气折射)。
Note:纵坐标尺度放大,使回波形态变型;VCS: vertical cross sectionCAPPI (等高平面位置显示):雷达以多个仰角(仰角逐渐抬高)做0-360 °扫描,得到三维空间回波资料(体扫描),利用内插技术获得某高度的平面分布一些雷达参数的定义:如PRF,波长、雷达天线增益、脉冲宽度等二、散射散射:当电磁波束在大气中传播,遇到空气介质或云滴、雨滴等悬浮粒子时,入射电磁波会从这些介质或粒子上向四面八方传播开来,这种现象称为散射现象。
主要物质:大气介质、云滴、水滴,气溶胶等。
其它散射现象:光波、声波等散射的类型:瑞利散射:d<<λ;米(Mie)散射: d≈λ瑞利散射散射函数或方向函数:后向散射能量:雷达天线接收到的只是粒子散射中返回雷达方向(θ=π)的那一部分能量,这部分能量称为后向散射能量。
雷达气象复习1 多普勒天气雷达可获取的基数据有反射率因子、平均径向速度和速度谱宽。
2天气雷达一般分为X 波段、 C 波段、 S 波段,波长分别是3厘米、5厘米、10厘米3目前我国 CINRAD-SA降水模式中使用的体扫模式为VCP11、VCP21、VCP31。
其中VCP11通常在强对流风暴出现的情况下使用,而VCP21在没有强对流单体有显著降水的情况下使用,晴空情况下使用VCP314目前我国 CINRAD-SA使用两种工作模式,即降水模式和晴空模式5我国新一代天气雷达的降水估测只使用最低的4个仰角:0.5°,1.5°,2.4°,3.4°,分别使用在50km以外,35-50km,20-35km和0-20km的距离范围内。
6我国新一代天气雷达系统主要由雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)、通讯线路。
7当波源和观测者做相对运动时,观测者接受到的频率和波源的频率不同,其频率变化量和相对运动速度大小有关,这种现象就叫做多普勒效应。
8天气雷达的局限性:波束中心的高度随距离增加而增加、波束宽度随距离的增加而展宽、静锥区的存在。
9获取雷达接收到的降水回波信号是降水粒子对雷达所发射电磁波的散射产生的,因此电磁波在降水粒子上的散射是天气雷达探测降水的基础。
10当雷达波长λ确定后,球形粒子的散射情况主要取决于粒子直径d 。
对于d<<λ的小球形粒子的散射,称为瑞利散射;d≈λ的大球形质点的散射称为米散射。
11反射率因子在瑞利散射条件下的定义:单位体积中降水粒子直径6次方的总和称为反射率因子,用Z表示,其常用单位为mm6/m3,即∑=单位体积6 iDZ12后向散射截面的定义:设有一理想的散射体,其截面为σ,它能全部接收射到其上的电磁波能量,并全部均匀地向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,则该理想散射体的截面σ就称为实际散射体的后向散射截面。
《雷达气象学》知识点----大探专业第一章前言1、天气雷达回波的形成有两种机制。
2、天气雷达系统的组成和主要参数(λ,PRF,τ)。
3、天气雷达基本工作原理4、天气雷达重要组成部分以及关键参数的介绍5、我国新一代天气雷达网的业务情况介绍脉冲重复频率(脉冲重复周期),脉冲宽度(脉冲长度),脉冲发射功率(平均功率),天线转换开关,天线方向图,波束宽度,天线增益,灵敏度。
天气雷达的主要功能天气雷达系统的主要组成天气雷达的波段和波长等主要参数第二章气象目标物对雷达电磁波的散射1、散射现象及特性;2、Rayleigh散射和Mie散射的定义、区别与联系(散射能量分布特征);3、若干基本物理量(散射函数,散射截面,雷达截面,雷达反射率,雷达反射率因子,等效反射率因子)的概念、物理意义以及他们之间的联系。
4、dBZ的计算。
5、球形粒子标准化后向散射截面σb与无量纲尺度参量α的关系。
6、正在融化的球形粒子的散射。
7、介质小椭球体的散射1.Rayleigh散射和Mie散射的定义、分类及性质2.散射截面、雷达截面、雷达反射率、雷达反射率因子的推导、概念以及物理意义以及它们之间的联系3.等效反射率因子的定义及意义4.不同降水粒子的散射特性分析无量纲尺度参数α,Rayliegh散射,Mie散射,散射函数(方向函数),Rayleigh散射的方向函数和几何图象,Rayleigh散射的散射能流密度,Rayleigh散射的散射截面,Rayleigh散射和Mie散射的区别,雷达截面及物理意义,球形水滴和冰粒的雷达截面,外包水膜融化冰球的雷达截面,介质小椭球体散射的一些性质,雪和非球形冰晶的散射,退偏振比,雷达反射率,雷达反射率因子,等效反射率因子,湍流大气产生的晴空回波。
散射的物理本质小球粒子的含义Rayleigh散射的条件散射截面、吸收截面、衰减截面、雷达反射率、雷达反射率因子的定义及Rayleigh散射下的特点Mie散射、等效反射率因子第三章大气、云、降水粒子对雷达波的衰减1、雷达发射的电磁波在大气传输过程中的衰减规律。
1、天气雷达工作原理天气雷达工作原理:定向地向空中发射电磁波列(探测脉冲),然后接收被气象目标散射回来的电磁波列(回波信号),并在荧光屏上显示出来,从而确定气象目标物的位置和特性雷达的测距原理:雷达根据从开始发射无线电波到接收到目标物回波的时间间隔,来测定目标与雷达之间的距离3、雷达主要组成:RDA:雷达数据采集系统、RPG:雷达产品生成子系统、PUP:主用户处理系统①定时器:定时器是雷达的“指挥中心”它实际上是一个频率稳定的脉冲信号发生器。
定时器每隔一定的时间间隔发出一个脉冲信号,它触发发射机,使发射机定时地产生强大的高频振荡脉冲并使阴极射线管同时开始作时间扫描②发射机:在定时器的控制下,发射机每隔一定的时间产生一个很强的高频脉冲,通过天线发射出去③天线传动装置: 天线传动装置主要包括两个部分,一部分是天线的转动系统,一部分是同步系统。
天线转动系统的作用是:(1)使天线绕垂直轴转动,以便探测平面上的降水分布,或漏斗面上降水、云的分布;(2)使天线在某一方位上作上下俯仰,以便探测云和降水的垂直结构和演变。
天线同步系统(也叫伺服系统)的作用是:使阴极射线管上不同时刻时间扫描基线的方位、仰角和相应时间天线所指的方位、仰角一致(即同步),从而使雷达荧光屏上出现的目标标志(用亮点或垂直偏移表示)的方位、仰角就是目标相对于雷达的实际方位、仰角④天线转换开关: 因为雷达发射和接受的都是持续时间极短(微秒量级)、间歇时间很长(千微秒量级)的高频脉冲波,这就有可能使发射和接收共用一根天线。
天线转换开关的作用是:在发射机工作时,天线只和发射机接通,使发射机产生的巨大能量不能直接进入接收机,从而避免损坏接收机;当发射机停止工作时,天线立即和接收机接通,微弱的回波信号只进入接收机⑤接收机:雷达接收机的作用是将天线接收回来的微弱回波信号放大并变换成足够强的视频信号送往显示器产生回波标志⑥雷达天线:雷达天线的作用是定向地辐射高频脉冲波和接收来自该方向的回波。
雷达气象学第一讲:概论术语:雷达RADAR(Ra dio D etection A nd R anging)发展史:二战期间发明军用雷达, 发现降水回波的干扰.•上世纪50年代,美国的WSR-57S雷达投入应用。
•60年代导出雷达达气象方程,开始了定量化测量。
•60年代提出多普勒气象雷达测风的方法,70年代开始大规模试验。
•70年代,提出双线偏振气象雷达的应用理论。
•80年代,美国定型WSR-88D多普勒天气雷达。
•80年代末,研制双线偏振气象雷达。
•90年代开始研制地基和空基云测量雷达。
•本世纪初,研制相控阵天气雷达。
我国气象雷达发展史•1972年,研制成功并推广X波段(3.21厘米)天气雷达(无锡无线电二厂)。
•1977年左右,研制成功C波段天气雷达(桂林长海机器厂)。
•1984年研制成功S波段天气雷达(成都784厂)•1988年左右,成功升级改造了一台C波段双线偏振天气雷达(兰州高原大气物理所)。
•1989年左右,升级改造了一台C波段多普勒天气雷达(成都784厂,河北张家口雷达)。
•1994年左右,研制成功S波段多普勒天气雷达(成都784厂)。
1994年8月,开吃筹建中美合资北京敏视达公司(中国气象局、洛克希德马汀公司)。
•1995年左右,开始研制C波段双线偏振多普勒天气雷达(38所、北京市气象局)。
•1999年,试制成功X波段双线偏振多普勒天气雷达(南京14所、南京气象学院)。
•1999年,利用美国WSR-88D技术的中国新一代S波段天气雷达正式启用,安装在安徽省气象局(敏视达公司)。
•2005年,性能优秀的X波段双线偏振多普勒天气雷达推出(成都784厂)。
•2006年左右,试制成功磁控管式Ka波段云雷达(38所)。
•2009年左右,试制成功行波管式Ka波段云雷达(38所,航天部23所)。
目前正在研制:X波段机载相控阵气象雷达(14所),S波段地基相控阵天气雷达(14所),W波段机载云雷达(38所)、新型C波段相控阵天气雷达(38所气象雷达的功能雷达的主要参数:波段,波长,频率:C f l = ( C=3.0e10 cm/s, f: 1/s)Radar bands and corresponding frequency bands (Rinehart, 2001).Radar BandsFrequency Wavelength HF3-30 Mhz 100-10 m VHF30-300 MHz 10-1 m UHF300-1000 MHz 1-0.3 m L1-2 GHz 30-15 cm S2-4 GHz 15-8 cm C4-8 GHz 8-4 cm X8-12 GHz 4-2.5 cm Ku 12-18 GHz 2.5-1.7 cmK18-27 GHz 1.7-1.2 cm Ka27-40 GHz 1.2-0.75 cm W or mm40-300 GHz7.5-1 mm 不同波段雷达的主要探测目标气象雷达的分类:(1)根据工作原理划分常规天气雷达,多普勒天气雷达,偏振气象雷达(2)根据雷达的工作波段划分X, C, S, L, Ka, W(3)根据安装平台划分固定式,车载移动式,船载式,机载式,星载式(TRMM)多普勒天气雷达获取的数据信息(一次产品):雷达反射率因子Radar Reflectivity Factor径向速度Radial Velocity速度谱宽Velocity Spectrum Width二次产品:降雨强度,降雨量Rainfall intensity, Rainfall amount,降雨的分布情况Rainfall distribution,风(水平风)Wind (Horizontal, vertical),回波顶高(18dBZ)Echo top,垂直累积含水量Vertical Integrated liquid water content...…最大监测距离Maximum Range for monitoring:460Km (Cinrad/SA/SB)200Km(C-band),100Km(X-band)20 Km (Ka-band)气象雷达系统的组成分系统:发射机系统Transmitter接收机系统Receiver天线伺服系统Antenna信号处理和显示系统Singal Processor and display国内不少人也采用美国WSR-88D雷达的系统划分情况,将系统划分为数据采集系统RDA,产品生成系统RPG和用户处理系统PUPRDA: Radar Data AcquisitionRPG: Radar Product GeneratorPUP: Principal User ProcessorRDA: Antenna, Transmitter, Receiver, Controller RPG: Computer + AlgorithmPUP:Computer + Interface天气雷达系统的外观雷达系统的核心模块重要的雷达参数P t峰值功率Peak power(450kw)τ 脉冲宽度Pulse Width(1 μs)PRF 脉冲重复频率Pulse Repeating Frequency (1000 Hz)λ 波长Wave lengthΘ,Φ波瓣宽度Beam width of the antennaΦ, θ≈73λ/D (度)λ: 波长D: 天线直径G 天线增益Gain of the antenna(40dB)G≈30000/(Φ*θ) (Φ和θ用度表示)WSR-88D 雷达的天线直径是8.5米,Φ, θ大约1度,增益约45dB气象雷达的波瓣、主瓣、旁瓣在描述雷达的所有参数中,波长λ是最重要的,脉冲重复频率PRF是第二重要的参数。
《雷达气象学》教学大纲教学目的雷达气象学是利用天气雷达,进行大气探测和研究雷达波与大气相互作用的学科,它是大气物理学、大气探测学和天气学等共同研究的一个分支,是大气科学各专业本科生的专业基础课。
雷达气象学的主要内容包括雷达探测基础理论、雷达回波信息应用和雷达探测技术三部分。
雷达探测基础理论包括云和降水粒子对雷达波的散射;微波经过大气、云和降水粒子时的衰减;气象条件对雷达波传播的影响,如大气折射、大气不均匀结构的散射等。
雷达回波信息应用方面包括雷达定量测量降水量和云中的含水量;雷达回波在云和降水物理探测以及天气分析预报上的应用;多普勒雷达和各种新型雷达在三维流场、降水粒子谱、晴空回波、大气湍流等探测研究中的应用。
雷达探测技术方面包括各种气象雷达资料的处理和传输等。
基于气象目标物(如云、雾、雨、雪、雹等)对电磁波的散射和吸收,天气雷达能够获得各种天气现象的物理状态及其演变的资料,目前已成为大气科学研究和日常气象业务中广泛应用的一种重要探测工具,特别是在研究降水的形成,分析中小尺度天气系统,警戒风害和冰雹相伴随的灾害性强对流天气等方面具有非常重要的意义。
近些年来天气雷达技术发展非常迅速,雷达气象学的研究领域也得到很大的拓广。
天气雷达在经历了常规天气雷达、数字化天气雷达后,已进入多普勒天气雷达时代。
国内新一代天气雷达系统布网投入气象业务使用,标志了我国天气雷达技术进入一个新的阶段,同时也大大促进了国内雷达气象学的研究。
多普勒天气雷达在雷达探测理论的研究由偏重于降水质点后向散射的研究拓宽到散射的多普勒特性研究、偏振散射的研究、多波长特性研究及侧向散射特性的研究。
另外新的雷达探测技术不断地发展,双偏振雷达技术,多基地探测技术,快速扫描技术等进一步的研究也逐渐纳入气象业务,这必将会给带来更多的信息。
《雷达气象学》的教学使学生能够熟悉天气雷达的硬件组成和探测基础理论;掌握雷达定量测量降水的原理和方法,掌握雷达回波强度和速度等资料在冰雹云、暴雨、飑线、台风和锋面等不同天气系统探测中的应用。
一、填空(30分,T14=2分)
1使用雷达的PPI资料时,不同R处回波处于不同高度上
2根据衰减理论,波长越短,衰减愈大;雷达波在大气中传播时受到衰减的原因是:(1)电磁波投射到气体分子或液态、固态的云和降水粒子上时一部分能量被粒子吸收,变成热能或其他形式的能量。
(2)另一部分能量将被粒子散射,使原来入射方向的电磁波能量受到削弱。
或者:大气对电磁波的吸收和衰减作用的总和(P33)
?3圆形的中气旋流场,在多普勒速度图上表示为零径向速度线穿过涡旋中心,一对左负右正,对称的正负速度中心,正负闭合等值线圈沿雷达距离圈排列(P289、407)
4大冰雹的后向散射截面比同体积的大水滴的后向散射截面大
5通常,超折射回波的本质是地物回波(ppt,P300)
6“V”型缺口通常表示冰雹云的回波(P381,ppt)
7 Z的物理意义是单位体积中降水离子直径6次方的总和,它与粒子大小有关(ppt)
8 以不同的仰角探测超级单体风暴云的回波特征,可能出现:钩状回波,
空洞回波(无回波穹窿),指状回波回波(ppt)
9层状云降水的雷达强度回波图上,经过加衰减后,其回波图上经常会出现零度层亮带,此现象在雷暴消散期也常常出现。
(P306、309)
10 非降水回波包括云的回波,闪电的回波,雾的回波,晴空大气回波等回波(P345)
?11 同一块雨云由远至近地性质不变地逼近雷达站,在强度回波图上显示的回波范围越来越大,强度越来越强,这是由于距离衰减的影响
12 波束宽度指的是在天线方向图上两个半功率点方向的夹角(单位:°),它决定雷达的切向分辨率。
(课堂笔记)
13 在雷达的速度回波图上若零速度带通过测站并呈一直线状,则表示测量范围内各高度层的风向不变(P278)
14 如果雷达发射功率很大,接收灵敏度也很高,那么天气雷达的探测能力的大小主要取决于:雷达电磁波束能否有效地照射到降水区中和反射率因子的大小(ppt习题)
15 多普勒天气雷达速度回波图中零速度带的意义是:实际风速为零或很小、实际风向与雷达探测波束相垂直(ppt)
16 层状云零度层亮带的成因主要是由于:融化作用,碰并聚合效应,速度效应,粒子形状的作用,(P308)二计算题
分别画出并计算图一、图二中1,2的真实风向
(画出!&计算!四个地方)
三、简答题(30分)
1用雷达资料判别冰雹云回波可以从哪些方面着手?(P380-385)
(1)冰雹云的雷达回波强度特别强
(2)
回波顶高度高 (3)
上升气流(下沉气流)特别强。
强度图上:阵风锋(外流边界),在速度图上的特征:一组方向相反的密集等风速线。
(4) PPI 上冰雹云的形态特征:
1)“V ”形缺口。
2)钩状回波
3)辉斑回波
(5)RHI 上冰雹云的回波特征:
1)超级单体风暴中的穹窿(弱回波区,BWER )、回波墙和悬挂回波
2)“强回波高度”
3)旁瓣回波
4)辉斑回波
2试述速度模糊的概念,在多普勒天气雷达速度图中如何判断是否有速度模糊?
某一PRF 的采样频率,最多只能准确测量由 计算出的Vrmax(或-Vrmax)。
若VrT>Vrmax 或VrT<-Vrmax, 则多普勒雷达将给出错误的速度信息,称为速度模糊。
由零速度区(带)逐渐向邻近区域(径向)扩展,按风速连续性原则,除如小尺度的龙卷风等特强风切变情况外,径向速度Vr 一般逐渐增加(减少),当增加(减少)到超过Vrmax(-Vrmax)范围时,径向速度由正(负)的最大值突变为负(正)的最大值。
这种突变的边界就是速度模糊区的边界。
这种突变即是速度模糊。
3什么是下击暴流?微下击暴流是如何定义的?微下击暴流因为速度和尺度都很小,所以不会对飞机造成毁灭性的危害的说法是否正确?为什么?
下击暴流的定义:地面上或地面附近形成灾害性风(风速达17.9m/s 或以上)的向外暴发的强下沉气流称为下击暴流。
它是一股很强的从雷暴云或对流云下方向下冲出,到近地面处基本呈直线型的向外辐散的气流。
(ppt )
或:能够产生近地面破坏性水平辐散出流的风暴下部强下沉气流。
(P402)
下击暴流的特征:辐散、尺度小、持续时间较短。
水平辐散尺度小于4KM ,持续时间2-10分钟的称微下击暴流(Microburst).(ppt )
不正确,微下击暴流的的水平出流速度峰值可高达75m/s ,大于宏下击暴流的60m/s 。
而且由于微下击暴流水平尺度小,低层可出现相当大的水平风切变,这类下击暴流对飞行安全危害极大。
(P402)
PRF V r ⨯=λ4
1max。