IGBT门极驱动设计规范要求
- 格式:pdf
- 大小:1.60 MB
- 文档页数:31
IGBT 的驱动与保护技术1.IGBT的驱动条件驱动条件与IGBT的特性密切相关。
设计栅极驱动电路时,应特别注意开通特性、负载短路能力和 dUds/dt引起的误触发等问题。
正偏置电压Uge增加,通态电压下降,开通能耗Eon也下降,分别如图2-62 a 和b所示。
由图中还可看出,若十Uge固定不变时,导通电压将随漏极电流增大而增高,开通损耗将随结温升高而升高。
负偏电压一Uge直接影响IGBT的可靠运行,负偏电压增高时漏极浪涌电流明显下降,对关断能耗无显著影响,-Uge与集电极浪涌电流和关断能耗Eoff 的关系分别如图 2-63 a 和 b所示。
门极电阻Rg 增加,将使IGBT的开通与关断时间增加;因而使开通与关断能耗均增加。
而门极电阻减少,则又使di/dt增大,可能引发IGBT误导通,同时Rg上的损耗也有所增加。
具体关系如图2-64。
由上述不难得知:IGBT的特性随门板驱动条件的变化而变化,就象双极型晶体管的开关特性和安全工作区随基极驱动而变化一样。
但是IGBT所有特性不能同时最佳化。
双极型晶体管的开关特性随基极驱动条件(Ib1,Ib2)而变化。
然而,对于 IGBT来说,正如图 2-63和图 2-64所示,门极驱动条件仅对其关断特性略有影响。
因此,我们应将更多的注意力放在IGBT 的开通、短路负载容量上。
对驱动电路的要求可归纳如下:l) IGBT与 MOSFET都是电压驱动,都具有一个 2. 5~5V 的阈值电压,有一个容性输入阻抗,因此IGBT对栅极电荷非常敏感故驱动电路必须很可靠,要保证有一条低阻抗值的放电回路,即驱动电路与IGBT的连线要尽量短。
2)用内阻小的驱动源对栅极电容充放电,以保证栅极控制电压Uge,有足够陡的前后沿,使IGBT的开关损耗尽量小。
另外,IGBT开通后,栅极驱动源应能提供足够的功率,使IGBT不退出饱和而损坏。
3)驱动电路要能传递几十 kHz的脉冲信号。
4)驱动电平十Uge也必须综合考虑。
IGBT 系统设计全攻略【详细】----摘自中华电源网详解IGBT系统[图文]IGBT,中文名字为绝缘栅双极型晶体管,它是由MOSFET(输入级)和PNP晶体管(输出级)复合而成的一种器件,既有MOSFET器件驱动功率小和开关速度快的特点(控制和响应),又有双极型器件饱和压降低而容量大的特点(功率级较为耐用),频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内。
理想等效电路与实际等效电路如图所示:IGBT 的静态特性一般用不到,暂时不用考虑,重点考虑动态特性(开关特性)。
动态特性的简易过程可从下面的表格和图形中获取:IGBT的开通过程IGBT 在开通过程中,分为几段时间1.与MOSFET类似的开通过程,也是分为三段的充电时间2.只是在漏源DS电压下降过程后期,PNP晶体管由放大区至饱和过程中增加了一段延迟时间。
在上面的表格中,定义了了:开通时间Ton,上升时间Tr和Tr.i除了这两个时间以外,还有一个时间为开通延迟时间td.on:td.on=Ton-Tr.iIGBT在关断过程IGBT在关断过程中,漏极电流的波形变为两段。
功率器件在绿色节能设计中的应用【IGBT、MOSFET】功率器件是功率电子技术的核心器件,特别是IGBT模块和MOSFET器件被广泛应用于工业设备、汽车电子、家电等领域,为这些领域的节能提供了帮助。
在世界都需要节能的情况下,功率器件的重要性将日益提高,发展前景将更加光明。
本专题为你呈现功率器件的最新资讯及其主要应用领域中的节能设计方案。
关于IGBT保护电路设计必知问题摘要:全面论述了IGBT的过流保护、过压保护与过热保护的有关问题,并从实际应用中总结出各种保护方法,这些方法实用性强,保护效果好。
1 引言IGBT(绝缘栅双极性晶体管)是一种用MOS来控制晶体管的新型电力电子器件,具有电压高、电流大、频率高、导通电阻小等特点,因而广泛应用在变频器的逆变电路中。
IGBT驱动电路设计与保护IGBT(Insulated Gate Bipolar Transistor)是一种高性能和高压能力的功率开关器件,用于大功率电力电子应用中。
IGBT驱动电路的设计和保护是确保IGBT正常工作和延长其寿命的重要环节。
1.电源设计:稳定和干净的电源是驱动电路的基础。
通常使用稳压电源或者电容滤波器来给驱动电路和IGBT供电,以避免干扰和噪声的影响。
2.信号隔离:为了保护驱动电路和IGBT,通常需要使用光耦隔离器或者磁隔离器来实现输入和输出电路的电气隔离。
这样可以防止高压和高电流反馈到驱动电路中,从而保护驱动电路的安全。
3.输入信号处理:驱动电路通常需要接收和处理外部的控制信号,例如PWM信号和开关信号。
可以使用电平转换电路、滤波器和放大器等电路来进行信号处理,以确保信号的正确控制和稳定性。
4.输出信号驱动:驱动电路需要能够提供足够的电流和电压来驱动IGBT控制端的输入电容,以确保IGBT在开关过程中快速和稳定地工作。
这通常需要使用功率放大器和驱动电流放大器来提供所需的输出能力。
5.过温保护:IGBT在高功率运行时会产生热量,超过一定温度会导致器件变性或烧毁。
因此,驱动电路中需要设计过温保护电路,用于监测和控制IGBT的温度。
当温度过高时,过温保护电路会触发警报或者切断电源,以保护IGBT的安全。
6.过电流保护:IGBT在工作过程中可能会遭受过电流冲击,例如短路故障。
为了保护IGBT不受损坏,驱动电路需要设计过电流保护电路,可以监测和控制IGBT的电流。
当电流超过设定值时,过电流保护电路会触发警报或者切断电源,以保护IGBT的安全。
7.过压保护:在一些情况下,如电源故障、反馈开关失效等,IGBT 可能会受到过高的电压冲击。
为了保护IGBT不受损坏,驱动电路需要设计过压保护电路,可以监测和控制IGBT的电压。
当电压超过设定值时,过压保护电路会触发警报或者切断电源,以保护IGBT的安全。
IGBT门极驱动设计规范IGBT门极驱动设计规范是针对IGBT(绝缘栅双极型晶体管)门极驱动电路设计的一系列准则和规范。
IGBT门极驱动电路的设计对于系统的稳定性、可靠性和性能表现起着至关重要的作用。
本文将介绍IGBT门极驱动设计的一些基本规范。
首先,IGBT门极驱动设计应遵循电气安全规范。
设计师应根据相关标准和市场要求,确保IGBT门极驱动电路的安全性,包括采用合适的绝缘方式、阻隔和耐压设计等。
其次,IGBT门极驱动设计应遵循电磁兼容规范。
设计中应考虑电磁干扰和抗干扰性能,采用合适的滤波和屏蔽措施,以防止电磁辐射和电磁感应对其他电子设备造成干扰。
接下来,IGBT门极驱动设计应考虑系统的温度特性。
设计师应合理选择IGBT门极驱动电路的散热方案,并根据实际应用环境和工作条件,确定合适的工作温度范围和温度保护机制。
此外,IGBT门极驱动设计应考虑系统的响应速度和稳定性。
设计师应根据IGBT的特性,选取合适的驱动电路和元件,以确保系统的响应速度和稳定性都能满足要求。
此外,还应考虑到IGBT的过渡特性,以便在切换过程中防止开关损耗和电磁噪声。
此外,IGBT门极驱动设计应充分考虑系统的可靠性。
设计师应遵循可靠性设计原则,包括采用适当的元件和材料、合理布局和连接、考虑温度和湿度等因素,并进行必要的寿命和可靠性验证测试。
最后,IGBT门极驱动设计应兼顾成本和性能。
设计师应在满足性能要求的前提下,合理选择元件和材料,并进行成本效益分析,确保设计的经济性和可行性。
总之,IGBT门极驱动设计规范是根据电气安全、电磁兼容、温度特性、响应速度、稳定性、可靠性等方面的要求,对IGBT门极驱动电路的设计进行规范化的准则。
遵循这些规范,可以确保IGBT门极驱动电路的可靠性、稳定性和性能表现,提高系统的工作效率和寿命。
IGBT门极驱动的要求及电路设计IGBT门极驱动的要求及电路设计绝缘栅双极晶体管IGBT是第三代电力电子器件,安全工作,它集功率晶体管GTR和功率场效应管MOSFET的优点于一身,具有易于驱动、峰值电流容量大、自关断、开关频率高(10-40 kHz)的特点,是目前发展最为迅速的新一代电力电子器件。
广泛应用于小体积、高效率的变频电源、电机调速、UPS及逆变焊机当中。
IGBT的驱动和保护是其应用中的关键技术。
在此根据长期使用IGBT的经验并参考有关文献对IGBT的门极驱动问题做了一些总结,希望对广大IGBT应用人员有一定的帮助。
1 IGBT门极驱动要求1.1 栅极驱动电压因IGBT栅极-发射极阻抗大,故可使用MOSFET驱动技术进行驱动,但IGBT的输入电容较MOSFET大,所以IGBT的驱动偏压应比MOSFET驱动所需偏压强。
图1是一个典型的例子。
在+20℃情况下,实测60 A,1200 V以下的IGBT开通电压阀值为5~6 V,在实际使用时,为获得最小导通压降,应选取Ugc≥(1.5~3)Uge(th),当Uge 增加时,导通时集射电压Uce将减小,开通损耗随之减小,但在负载短路过程中Uge增加,集电极电流Ic也将随之增加,使得IGBT能承受短路损坏的脉宽变窄,因此Ugc的选择不应太大,这足以使IGBT完全饱和,同时也限制了短路电流及其所带来的应力(在具有短路工作过程的设备中,如在电机中使用IGBT时,+Uge在满足要求的情况下尽量选取最小值,以提高其耐短路能力)。
1.2 对电源的要求对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于IGBT是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使IGBT迅速关断,应尽量减小电源的内阻,并且为防止IGBT关断时产生的du/dt误使IGBT导通,应加上一个-5 V的关栅电压,以确保其完全可靠的关断(过大的反向电压会造成IGBT栅射反向击穿,一般为-2~10 V之间)。
IGBT驱动电路原理及设计方法本文着重介绍三个IGBT驱动电路。
驱动电路的作用是将单片机输出的脉冲进行功率放大,以驱动IGBT,保证IGBT的可靠工作,驱动电路起着至关重要的作用,对IGBT驱动电路的基本要求如下:(1)提供适当的正向和反向输出电压,使IGBT可靠的开通和关断。
(2)提供足够大的瞬态功率或瞬时电流,使IGBT能迅速建立栅控电场而导通。
(3)尽可能小的输入输出延迟时间,以提高工作效率。
(4)足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘。
(5)具有灵敏的过流保护能力驱动电路EXB841/840EXB841工作原理如图1,当EXB841的14脚和15脚有10mA 的电流流过1us以后IGBT正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD截止,不影响V4和V5正常工作。
■- ■ ―- ■ —«■www.d i angon. com当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT栅一射间承受5V左右的负偏压,IGBT可靠关断, 同时VCE的迅速上升使引脚6 “悬空”。
C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低,完成慢关断,实现对IGBT的保护。
由EXB841 实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE有关,还和二极管VD2的导通电压Vd 有关。
典型接线方法如图2,使用时注意如下几点:a、I GBT栅-射极驱动回路往返接线不能太长(一般应该小于1m),并且应该采用双绞线接法,防止干扰。
IGBT驱动条件2011.7.21由于IGBT的主要特性是随V GE和R G变化的。
门极电路的正偏压V GE、负偏压-V GE和门极电阻R G的大小,对IGBT的通态压降、开关时间、开关损耗、承受短路能力以及d V/dt电流等参数有不同程度的影响。
下表主要是IGBT的驱动条件和主要特性的关系。
1.1 门极正偏压电压:+V GE(导通期间)门极正偏压电压+V GE的推荐值为+15V,下面说明+V GE设计时应注意的事项。
(1) 请将+V GE设计在G-E 间最大额定电压V GES=±20V max. 的范围内。
(2) 电源电压的变动推荐在±10% 范围内。
(3) 导通期间的C-E 间饱和电压(V CE (sat))随+V GE变化,+V GE越高饱和电压越低。
(4) +V GE越高,开通交换时的时间和损耗越小。
(5) +V GE越高,开通时(FWD 反向恢复时)对支路越容易产生浪涌电压。
(6) 即使是在IGBT断开的时间段内,由于FWD 的反向恢复时的dv/dt 会发生误动作,形成脉冲状的集电极电流,从而产生不必要的发热。
这种现象被称为dv/dt 误触发,+V GE越高越容易发生。
(7) +V GE越高,短路电流值越高。
(8) +V GE越高,短路最大耐受量越小。
1.2门极反偏压电压:-V GE(阻断期间)门极反偏压电压-V GE的推荐值为-5V到-15V。
下面说明-V GE设计时应注意的事项。
(1) 请将V GE设计在G-E 间最大额定电压V GES=±20V max. 的范围内。
(2) 电源电压的变动推荐在±10% 范围内。
(3) IGB的关断特性依存于-V GE,特别是集电极电流开始关断部分的特性在很大程度上依存于–V GE。
因此,-V GE越大,关断交换时的时间和损耗越小。
(4) dv/dt 误触发在-V GE小的情况下也有发生,所以至少要设定在-5V 以上。
IGBT的驱动技术1. IGBT 的驱动条件驱动条件与 IGBT 的特性密切相关。
设计栅极驱动电路时,应特别注意开通特性、负载短路能力和du/dt 引起的误触发等问题。
正偏置电压 Uge 增加,通态电压下降,开通能耗 Eon 也下降,分别如图 2-62 a 和 b 所示。
由图中还可看出,若+Uge 固定不变时,导通电压将随漏极电流增大而增高,开通损耗将随结温升高而升高。
负偏电压-Uge 直接影响 IGBT 的可靠运行,负偏电压增高时漏极浪涌电流明显下降,对关断能耗无显著影响,-Uge 与集电极浪涌电流和关断能耗Eoff的关系分别如图2-63 a 和b所示。
门极电阻Rg 增加,将使 IGBT 的开通与关断时间增加;因而使开通与关断能耗均增加。
而门极电阻减少,则又使 di/dt 增大,可能引发 IGBT 误导通,同时 Rg 上的损耗也有所增加。
具体关系如图 2-64 。
由上述不难得知: IGBT 的特性随门极驱动条件的变化而变化 , 就象双极型晶体管的开关特性和安全工作区随基极驱动而变化一样。
但是IGBT所有特性不能同时最佳化。
双极型晶体管的开关特性随基极驱动条件(Ib1,Ib2)而变化。
然而,对于IGBT来说,正如图 2-63 和图2-64 所示,门极驱动条件仅对其关断特性略有影响。
因此,我们应将更多的注意力放在 IGBT 的开通、短路负载容量上。
对驱动电路的要求可归纳如下:l ) IGBT 与 MOSFET 都是电压驱动,都具有一个 2.5 ~ 5V 的阈值电压,有一个容性输入阻抗,因此 IGBT 对栅极电荷非常敏感故驱动电路必须很可靠,要保证有一条低阻抗值的放电回路,即驱动电路与 IGBT 的连线要尽量短。
2 )用内阻小的驱动源对栅极电容充放电,以保证栅极控制电压 Uge, 有足够陡的前后沿,使 IGBT 的开关损耗尽量小。
另外, IGBT 开通后,栅极驱动源应能提供足够的功率,使IGBT不退出饱和而损坏。
IGBT驱动原理目录一、简介二、工作原理三、技术现状四、测试方法五、选取方法简介:绝缘栅双极晶体管 IGBT 是第三代电力电子器件,安全工作,它集功率晶体管 GTR 和功率场效应管MOSFET 的优点于一身,具有易于驱动、峰值电流容量大、自关断、开关频率高(10-40 kHz) 的特点,是目前发展最为迅速的新一代电力电子器件。
广泛应用于小体积、高效率的变频电源、电机调速、 UPS 及逆变焊机当中。
IGBT 的驱动和保护是其应用中的关键技术。
1 IGBT 门极驱动要求1.1 栅极驱动电压因 IGBT 栅极 - 发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较 MOSFET 大,所以 IGBT 的驱动偏压应比 MOSFET 驱动所需偏压强。
图 1 是一个典型的例子。
在+20 ℃情况下,实测 60 A , 1200 V 以下的 IGBT 开通电压阀值为 5 ~6 V ,在实际使用时,为获得最小导通压降,应选取Ugc ≥ (1.5 ~ 3)Uge(th) ,当 Uge 增加时,导通时集射电压 Uce 将减小,开通损耗随之减小,但在负载短路过程中 Uge 增加,集电极电流 Ic 也将随之增加,使得 IGBT 能承受短路损坏的脉宽变窄,因此 Ugc 的选择不应太大,这足以使 IGBT 完全饱和,同时也限制了短路电流及其所带来的应力 ( 在具有短路工作过程的设备中,如在电机中使用 IGBT 时, +Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力 ) 。
1.2 对电源的要求对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于 IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使 IGBT 迅速关断,应尽量减小电源的内阻,并且为防止 IGBT 关断时产生的 du/dt 误使 IGBT 导通,应加上一个 -5 V 的关栅电压,以确保其完全可靠的关断( 过大的反向电压会造成 IGBT 栅射反向击穿,一般为 -2 ~ 10 V 之间 ) 。
IGBT门极驱动设计规范要求IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关器件,广泛应用于工业控制、电力电子和交通运输等领域。
IGBT门极驱动设计规范要求如下:1.输出电流能力:IGBT门极驱动器应具备足够的输出电流能力,以确保驱动IGBT的门极电流达到所需水平。
一般来说,IGBT驱动器的输出电流应远大于所驱动的IGBT的最小门极电流。
2.高电压隔离:由于IGBT控制端与功率电源之间存在高电压差,因此门极驱动器具备高电压隔离功能是必要的。
这可以通过选用具有高电压隔离能力的光耦合器或变压器来实现。
3.低电压开关和闭合时间:IGBT门极驱动器应具备较短的开关和闭合时间,以确保IGBT在导通和截止之间能快速切换,减少开关过渡过程中的功耗和损耗。
同时,快速开关和闭合时间还能降低电磁干扰和提高系统的响应速度。
4.强大的抗干扰能力:IGBT门极驱动器应具备强大的抗干扰能力,能够抵御电磁干扰、温度变化、电源波动等外部环境因素的影响。
这可以通过电源滤波、屏蔽和抗干扰电路的设计来实现。
5.安全保护措施:IGBT门极驱动器应具备多重安全保护措施,以确保系统的安全运行。
常见的安全保护功能包括过温保护、短路保护、过流保护和过压保护等。
这些保护功能可以通过无源或有源电路来实现。
6.可靠性和稳定性:IGBT门极驱动器应具备良好的可靠性和稳定性,能够在长期运行和恶劣环境条件下保持正常工作。
为了提高可靠性和稳定性,应选用高质量的器件和元器件,并进行充分的测试和验证。
7.低功耗和高效率:IGBT门极驱动器应具备低功耗和高效率的特点,以节省能源和提高系统的工作效率。
这可以通过优化电路设计、降低开关损耗和改进功率传输效率来实现。
8.应用灵活性:IGBT门极驱动器应具备较高的应用灵活性,能够适应不同的IGBT型号、功率级别和工作条件。
这可以通过提供丰富的接口和调节选项来实现。
9.低噪声和电磁兼容性:IGBT门极驱动器应具备低噪声和良好的电磁兼容性,能够减少电磁干扰和对其他电子设备的影响。
IGBT栅极驱动的参数要求和驱动条件1.驱动电路的基本性能IGBT器件的发射极和栅极之间是绝缘的二氧化硅结构,直流电不能通过,因而低频的静态驱动功率接近于零。
但是栅极和发射极之间构成了一个栅极电容CGs,因而在高频率的交替导通和关断时需要一定的动态驱动功率。
小功率IGBT的CGs一般在10~l00pF之内,对于大功率的绝缘栅功率器件,由于栅极电容CGs较大,在1~l00pF,甚至更大,因而需要较大的动态驱动功率。
IGBT栅极电压可由不同的驱动电路产生,栅极驱动电路设计的优劣直接关系到由IGBT构成的系统长期运行可靠性。
正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。
IGBT正栅压VGE越大,导通电阻越低,损耗越小。
但是,如果VGE过大,一旦IGBT过流,会造成内部寄生晶闸管的静态擎柱效应,造成IGBT失效。
相反如果VGE过小,可能会使IGBT的工作点落人线性放大区,最终导致器件的过热损坏。
在任何情况下,开通时的栅极驱动电压,应该在12~20V之间。
当栅极电压为零时,IGBT处于断态。
由于IGBT的关断过程可能会承受很大的dv/dt,伴随关断浪涌电流,干扰栅极关断电压,可能造成器件的误开通。
为了保证IGBT在集电极-发射极电压上出现dv/dt噪声时仍保持关断,必须在栅极上施加一个反向关断偏压,采用反向偏压还可减少关断损耗。
反向偏压应该在—5~—15V之间。
理想的心鄒驱动再路应具有以下基本性能:1)要求驱动电路为IGBT提供一定幅值的正反向栅极电压VGE。
理论上VGE≥VGE(th),IGBT即可导通;当VGE太大时,可能引起栅极电压振荡,损坏栅极。
正向VGE越高,IGBT器件的VGES越低,越有利于降低器件的通态损耗。
但也会使IGBT 承受短路电流的时间变短,并使续流二极管反向恢复过电压增大。
因此正偏压要适当,一般不允许VGE超过+20V。
1.IGBT驱动电路的要求驱动电路的作用是将单片机输出的脉冲进行功率放大,以驱动IGBT,保证IGBT的可靠工作,驱动电路起着至关重要的作用,图1为典型的PWM信号控制图腾柱电路以驱动IGBT开通与关断。
对IGBT驱动电路的基本要求如下:图1 IGBT典型驱动电路○1触发脉冲要有足够快的上升速度和下降速度,即脉冲沿前后要陡峭;○2栅极串联电阻Rg要恰当,Rg过小,关断时间过短,关断时产生的集电极尖峰电压过高,Rg过大,器件开关速度降低,开关损耗增大。
)要恰当,增大删射正偏压对减小开通损耗与导通损耗○3栅极-射极电压(VGE有利,但也会使IGBT承受短路时间变短,续流二极管反向恢复电压增大。
因此正偏压要适当,通常为+15V。
为了保证在C-E间遇到噪声时可靠关断,关断时必须在栅极施加负偏压,以防止受到干扰时误开通和加快关断速度,减小关断损耗,幅值一般为-(5~10)V。
○4当IGBT处于负载短路或过流状态时,能在IGBT允许的时间内通过逐渐降低栅极电压自动抑制故障电流,实现IGBT的软关断。
驱动电路的软关断过程不应随输入信号的消失而受到影响。
下面从以上四个方面分析三种驱动模块电路(驱动电路EXB841/840、SD315A集成驱动模块、M57959L/M57962L厚膜驱动电路)的特性。
2.驱动电路EXB841/8402.1.EXB841驱动芯片的内部特性及其原理EXB841驱动芯片是可作为600V400A或者1200V300A以下的IGBT驱动电路,具有单电源、正负偏压、过流检测及保护、软关断等特性。
驱动模块导通与关断时间都在1.5µs以内。
最大允许的开关频率为40KHz。
EXB 系列驱动器的各引脚功能如下:脚 1 :连接用于反向偏置电源的滤波电容器;脚 2 :电源(+ 20V );脚 3 :驱动输出;脚 4 :用于连接外部电容器,以防止过流保护电路误动作(大多数场合不需要该电容器);脚 5 :过流保护输出;脚 6 :集电极电压监视;脚 7 、 8 :不接;脚 9 :电源地;脚 10 、 11 :不接;脚 14 、 15 :驱动信号输入(一,+);图2驱动电路EXB841/840EXB841 由放大部分、过流保护部分和 5V 电压基准部分组成。
IGBT驱动原理目录一、简介二、工作原理三、技术现状四、测试方法五、选取方法简介:绝缘栅双极晶体管 IGBT 是第三代电力电子器件,安全工作,它集功率晶体管 GTR 和功率场效应管MOSFET 的优点于一身,具有易于驱动、峰值电流容量大、自关断、开关频率高(10-40 kHz) 的特点,是目前发展最为迅速的新一代电力电子器件。
广泛应用于小体积、高效率的变频电源、电机调速、 UPS 及逆变焊机当中。
IGBT 的驱动和保护是其应用中的关键技术。
1 IGBT 门极驱动要求1.1 栅极驱动电压因 IGBT 栅极 - 发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较 MOSFET 大,所以 IGBT 的驱动偏压应比 MOSFET 驱动所需偏压强。
图 1 是一个典型的例子。
在+20 ℃情况下,实测 60 A , 1200 V 以下的 IGBT 开通电压阀值为 5 ~6 V ,在实际使用时,为获得最小导通压降,应选取Ugc ≥ (1.5 ~ 3)Uge(th) ,当 Uge 增加时,导通时集射电压 Uce 将减小,开通损耗随之减小,但在负载短路过程中 Uge 增加,集电极电流 Ic 也将随之增加,使得 IGBT 能承受短路损坏的脉宽变窄,因此 Ugc 的选择不应太大,这足以使 IGBT 完全饱和,同时也限制了短路电流及其所带来的应力 ( 在具有短路工作过程的设备中,如在电机中使用 IGBT 时, +Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力 ) 。
1.2 对电源的要求对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于 IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使 IGBT 迅速关断,应尽量减小电源的内阻,并且为防止 IGBT 关断时产生的 du/dt 误使 IGBT 导通,应加上一个 -5 V 的关栅电压,以确保其完全可靠的关断( 过大的反向电压会造成 IGBT 栅射反向击穿,一般为 -2 ~ 10 V 之间 ) 。
(国内标准)IGBT驱动保护及典型应用IGBT驱动保护及典型应用Sy摘要IGBT(绝缘栅双极晶体管)是壹种复合了功率场效应管和电力晶体管的优点而产生的壹种新型复合器件,它同时具有MOSFET的高速开关及电压驱动特性和双极晶体管的低饱和电压特性,易实现较大电流的能力,既具有输入阻抗高、工作速度快、热稳定性好和驱动电路简单的优点,又具有通态电压低、耐压高和承受电流大的优点。
近年来IGBT成为电力电子领域中尤为瞩目的电力电子器件,且得到越来越广泛的应用。
本文主要介绍了IGBT的基本结构、工作原理、驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,最后对IGBT的实际典型应用进行了分析介绍,通过对IGBT 的学习,来探讨IGBT于当代电力电子领域的广泛应用和发展前景。
关键词:IGBT;绝缘栅双极晶体管;驱动电路;保护电路;变频器;电力电子器件目录引言11、IGBT的基本结构12、IGBT的工作原理32.1 IGBT的工作特性33、IGBT的驱动53.1驱动电路设计要求53.2 几种常用IGBT的驱动电路64、IGBT驱动保护74.1 驱动保护电路的原则74.2 IGBT栅极的保护84.3 IGBT的过电流保护94.3.1 驱动过流保护电路的驱动过流保护原则94.3.2 IGBT过流保护电路设计94.3.3具有过流保护功能的IGBT驱动电路的研究114.5 IGBT的过热保护154.6 IGBT驱动保护设计总结155.IGBT专用集成驱动模块M57962AL介绍16结论20参考文献21引言随着国民经济各领域和国防工业对于电能变换和处理的要求不断提高,以及要满足节能和新能源开发的需求,作为电能变换装置核心部件的功率半导体器件也起着越来越重要的作用。
IGBT(InsulatedGateBipolarTransistor,绝缘栅双极型晶体管)自1982年由GE公司和RCA公司宣布以来,引起世界许多半导体厂家和研究者的重视,伴随而来的是IGBT的技术高速发展,其应用领域不断扩展它不仅于工业应用中取代了MOSFET和GTR(GiantTransistor,巨型晶体管),甚至已扩展到SCR(Silicon ControlledRectifier,可控硅整流器)和GTO(GateTurn-OffThyristor,门控晶闸管)占优势的大功率应用领域,仍于消费类电子应用中取代了BJT和MOSFET 功率器件的许多应用领域IGBT额定电压和额定电流所覆盖的输出容量已达到6MVA,商品化IGBT模块的最大额定电流已达到3.6kA,最高阻断电压为6.5kV,且已成功应用于许多中、高压电力电子系统中。
科学咨询/科技管理2019年第33期(总第652期)塞尔认为,学校午餐计划实施以来在儿童健康和农产品分配方面取得了巨大成效,任何人都不应该拒绝给学校的贫困儿童提供免费午餐。
在法案酝酿的过程中,参议员罗伯特·塔夫脱(Robert Taft)对各州之间不成比例的资金分配表示怀疑,试图通过修正案将午餐计划的支出从1亿美元减少到5750万美元,后来经过拉塞尔和其他参议员的热情捍卫,使塔夫脱的两次修正案都被否决,为《全国学校午餐法》的通过扫清了障碍。
[6]拉塞尔将美国儿童的健康与国家繁荣和实力联系起来,精心设计了“全国学校午餐计划”这一20世纪最持久、最受欢迎的联邦福利计划之一。
1946年5月24日,参议院批准通过了《全国学校午餐法》,6月4日由杜鲁门总统签署正式成为法律。
法案主要在法定拨款、各州分摊情况、营养要求等方面作了具体规定。
根据法案规定,财政部在每个财政年应拨出必要的款项,以便于农业部长落实本法案的内容;各州学校与教育部门签署协议,每顿午餐的平均费用为10.5美分;贫困家庭需要提交“家庭审查表”来进行供地方教育机构核查审批是否有资格获得免费午餐;最低营养标准应基于学校午餐每周的平均营养成分,学校午餐必须符合美国人适用膳食指南的要求,饮食中必须包括蛋白质、维生素A、维生素C、铁、钙和热量。
[7]《全国学校午餐法》作为一项国家儿童福利法,通过法律的形式来规定各州在学校午餐计划中的职责和义务。
联邦政府通过供应食物、设施和服务人员等来保证学校午餐计划的正常实施。
全国学校午餐计划的确立和实施在稳定社会秩序、提供就业和促进经济发展等方面起到了不可忽视的作用。
四、结束语自《全国学校午餐法》通过的第二年开始,拉塞尔一直尽心尽力地监督着法案的积极实施。
经过拉塞尔的不断努力,联邦拨款在1961年增加到9370万美元,儿童参与人数上升到1350万。
[6]在全国范围内,成千上万的公办学校和非营利性的私立学校中超过2500万儿童在上学日可以通过学校早午餐、特殊牛奶计划和夏季食品服务计划来获得健康食品。
IGBT驱动原理目录一、简介二、工作原理三、技术现状四、测试方法五、选取方法简介:绝缘栅双极晶体管IGBT 是第三代电力电子器件,安全工作,它集功率晶体管GTR 和功率场效应管MOSFET 的优点于一身,具有易于驱动、峰值电流容量大、自关断、开关频率高(10-40 kHz) 的特点,是目前发展最为迅速的新一代电力电子器件。
广泛应用于小体积、高效率的变频电源、电机调速、UPS 及逆变焊机当中。
IGBT 的驱动和保护是其应用中的关键技术。
1 IGBT 门极驱动要求1.1 栅极驱动电压因IGBT 栅极- 发射极阻抗大,故可使用MOSFET 驱动技术进行驱动,但IGBT 的输入电容较MOSFET 大,所以IGBT 的驱动偏压应比MOSFET 驱动所需偏压强。
图1 是一个典型的例子。
在+20 ℃情况下,实测60 A ,1200 V 以下的IGBT 开通电压阀值为5 ~6 V ,在实际使用时,为获得最小导通压降,应选取Ugc ≥ (1.5 ~3)Uge(th) ,当Uge 增加时,导通时集射电压Uce 将减小,开通损耗随之减小,但在负载短路过程中Uge 增加,集电极电流Ic 也将随之增加,使得IGBT 能承受短路损坏的脉宽变窄,因此Ugc 的选择不应太大,这足以使IGBT 完全饱和,同时也限制了短路电流及其所带来的应力( 在具有短路工作过程的设备中,如在电机中使用IGBT 时,+Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力) 。
1.2 对电源的要求对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使IGBT 迅速关断,应尽量减小电源的内阻,并且为防止IGBT 关断时产生的du/dt 误使IGBT 导通,应加上一个-5 V 的关栅电压,以确保其完全可靠的关断( 过大的反向电压会造成IGBT 栅射反向击穿,一般为-2 ~10 V 之间) 。
igbt驱动•IGBT驱动是用来驱动绝缘栅双极晶体管(IGBT)的驱动电路,IGBT的驱动和保护是其应用中的关键技术。
目录•igbt驱动的要求•igbt驱动的应用举例•igbt驱动的注意事项igbt驱动的要求•根据IGBT 的特性, 其对驱动电路的要求如下:(1) 提供适当的正反向电压, 使IGBT 能可靠地开通和关断。
当正偏压增大时IGBT 通态压降和开通损耗均下降, 但若U GE过大, 则负载短路时其IC 随U GE增大而增大, 对其安全不利, 使用中选U GEn 15V 为好。
负偏电压可防止由于关断时浪涌电流过大而使IGBT误导通, 一般选U GE= - 5V 为宜。
(2) IGBT 的开关时间应综合考虑。
快速开通和关断有利于提高工作频率, 减小开关损耗。
但在大电感负载下, IGBT 的开频率不宜过大, 因为高速开断和关断会产生很高的尖峰电压, 及有可能造成IGBT 自身或其他元件击穿。
(3) IGBT 开通后, 驱动电路应提供足够的电压、电流幅值, 使IGBT 在正常工作及过载情况下不致退出饱和而损坏。
(4) IGBT 驱动电路中的电阻R G 对工作性能有较大的影响, R G 较大, 有利于抑制IGBT 的电流上升率及电压上升率, 但会增加IGBT 的开关时间和开关损耗; R G 较小, 会引起电流上升率增大, 使IGBT 误导通或损坏。
R G 的具体数据和驱动电路的结构及IGBT 的量有关, 一般在几欧~几十欧, 小容量的IGBT 其R G 值较大。
(5) 驱动电路应具有较强的抗干扰能力及对IG2BT 的保护作用。
IGBT 的控制、驱动及保护电路等应和其高速开关特性相匹配, 另外, 在未采取适当的防静电措施情况下, G―E 断不能开路。
igbt驱动的应用举例•1 直接驱动法如图所示, 为了使IGBT 稳定工作, 一般要求双电源供电方式, 即驱动电路要求采用正、负偏压的两电源方式, 输入信号经整形器整形后进入放大级, 放大级采用有源负载方式以提供足够的门极电流。
全桥逆变电路IGBT模块的实用驱动设计一、本文概述《全桥逆变电路IGBT模块的实用驱动设计》一文旨在深入探讨全桥逆变电路中IGBT(Insulated Gate Bipolar Transistor)模块的高效、可靠驱动技术。
该文以工程实践为导向,结合理论基础与现代电力电子技术的发展趋势,系统地阐述了IGBT模块驱动设计的关键要素、设计原则、常见挑战以及应对策略,旨在为相关领域的工程师和研究人员提供一套全面且实用的驱动设计方案参考。
文章将对全桥逆变电路的工作原理及IGBT模块在其中的核心作用进行简要回顾,强调其作为功率开关器件在电能转换过程中的高效性和可控性。
在此基础上,详述IGBT模块的结构特性、电气性能参数及其对驱动电路的具体要求,包括但不限于阈值电压、开关速度、安全工作区、栅极电荷等关键指标,为后续驱动设计的合理选择与优化奠定理论基础。
本文将聚焦于实用驱动设计的各个环节,从驱动电路拓扑的选择与设计开始,剖析隔离技术、驱动电源、缓冲电路、保护机制等关键组件的设计原则与实现细节。
将特别讨论驱动信号的形成与传输、栅极电阻的计算与选取、dvdt与didt抑制措施、过流与短路保护、过热与欠压保护等关键技术点,旨在确保IGBT模块在各种工况下能够稳定、快速、无损地开关,并有效延长其使用寿命。
进一步地,文中将结合实际应用案例,探讨驱动设计在不同应用场景下的适应性与优化策略,如工业变频器、新能源汽车、不间断电源(UPS)等领域的特定需求与挑战。
通过实例分析,读者将了解到如何根据具体应用条件,如负载特性、工作频率、环境温度、系统效率要求等,灵活调整和优化驱动方案,以实现最佳的系统性能与可靠性。
本文还将探讨驱动技术的最新进展与未来发展趋势,包括智能驱动、集成化驱动解决方案、基于新型半导体材料的驱动技术等前沿研究方向,以启发读者关注并跟进领域内的技术创新,不断提升全桥逆变电路中IGBT模块驱动设计的先进性与竞争力。