GPS定位技术--绝对定位原理
- 格式:ppt
- 大小:600.50 KB
- 文档页数:45
第四章GPS定位原理GPS绝对定位(单点定位、伪距定位)静态绝对定位动态绝对定位GPS相对定位(差分定位?)静态相对定位动态相对定位第一节 GPS绝对定位GPS绝对定位:是一个用户利用GPS接收机,以地球质心为参考点,对卫星信号进行接收和观测,确定接收机天线在WGS-84坐标系中的绝对位置,又称单点定位或伪距定位。
GPS绝对定位基本原理:以GPS卫星和用户接收机天线之间的距离观测量为基准,根据已知的卫星瞬时坐标,来确定用户接收天线所对应的位置。
现令 : (X j Y j Z j) 为卫星 j 的已知坐标, j = 1,2 …n。
2、绝对定位的精度评价:(1)平面位置精度因子HDOP(2)高程精度因子VDOP(3)空间位置精度因子PDOP(4)几何精度因子GDOP(5)接收机钟差精度因子TDOP注:1)DOP值∝ 1/V , V为星站六面体的体积。
2)亦要考虑大气传播误差的影响。
第二节 GPS相对定位GPS相对定位:是利用两台或两台以上GPS接收机分别安置在不同的GPS点上,并同步观测相同的GPS卫星,将所获得观测值按一定的方法进行差分处理,消除一些误差对各观测值影响的相关部分,然后再进行解算,可以获得GPS点间的相对位置或基线向量。
GPS相对定位数学模型载波相位测量的观测方程:1、一次差分观测值:1) .站际一次差分观测※其消除了与卫星有关的误差(星钟误差等)影响,削弱了大气传播误差(电离层和对流层折射误差)影响。
2).星际一次差分观测※其消除了与接收机有关的误差(机钟误差等)影响,削弱了大气传播误差(电离层和对流层折射误差) 的影响。
3).历元间一次差分观测※其削弱了大部分误差的影响,同时消去了N0( 初始整周模糊度 )。
2、二次差分观测值:1).站际与星际二次差分观测值:消除了与测站、卫星有关的误差,减弱了对流层折射和电离层折射的误差2).星际与历元间二次差分观测值:消除了与测站、卫星有关的误差,减弱了对流层折射和电离层折射的误差,同时消去了N0 (初始整周模糊度)。
全球定位系统原理_绝对定位原理全球定位系统(Global Positioning System,简称GPS)是一种使用卫星和地面设备来确定地球上任意位置的导航和定位系统。
GPS通过接收来自卫星的信号,可以实现高精度的绝对定位和导航功能。
其原理主要基于以下几个关键要素:1.卫星定位GPS系统由一组24颗卫星组成,这些卫星分布在地球轨道上,每颗卫星都有精确的轨道和运行时间。
卫星定位的原理是通过接收来自至少四颗卫星的信号来确定接收器的位置。
卫星发射的信号包含卫星的精确位置和时间信息。
2.接收器接收卫星信号GPS接收器是用来接收并处理来自卫星的信号的设备。
接收器内部包含一个天线,用于接收卫星发射的信号。
接收器将接收到的信号传递给处理器进行处理。
3.三角定位原理GPS定位原理基于三角定位原理。
接收器通过接收至少四颗卫星的信号,可以测量这些卫星和接收器之间的距离。
由于卫星的位置是已知的,接收器可以通过测量这些距离来确定自己的位置。
接收器利用一个复杂的数学算法和时间测量技术来计算自己的位置。
4.精确时间同步GPS系统的精度与时间的同步性密切相关。
因为GPS信号的传播速度是已知的,接收器可以通过测量信号的传播时间来计算出距离。
然而,精确的时间同步对于距离的计算至关重要。
GPS系统中的卫星都有精确的内部时钟,接收器通过接收卫星发射的时间信号来与卫星进行时间同步。
5.加速度计和陀螺仪GPS系统还可以结合加速度计和陀螺仪等辅助设备,提供更精确和准确的定位和导航功能。
加速度计可以测量加速度和速度的变化,从而帮助用户确定自己的移动方向和速度。
陀螺仪可以测量旋转速度和姿态,进一步提高定位的精度和准确性。
总之,全球定位系统的原理主要基于卫星定位、接收器接收卫星信号、三角定位原理、精确时间同步和辅助设备等多个要素。
通过利用卫星发射的信号和接收器的计算能力,GPS系统可以实现高精度的绝对定位和导航功能。
这种原理已广泛应用于航空、航海、军事、车辆导航和移动设备等领域。
全球定位系统(GPS)是一种利用卫星和地面设备来确定地理位置的技术。
GPS系统由一组卫星和接收器组成,这些卫星通过跟踪GPS接收器和地面站的信号来确定位置。
全球定位系统中有两种主要类型的定位原理:绝对定位原理和相对定位原理。
绝对定位原理是一种使用GPS接收器直接与卫星通信,以确定位置的技术。
相对定位原理是一种使用不同的参考点之间的相对位置关系来确定位置的技术。
相对论,特别是爱因斯坦的相对论,在GPS中起到了重要的作用。
相对论预测了原子钟在强重力下的摇摆频率与在弱重力条件下的摇摆频率的不同。
在GPS中,原子钟用于确定时间差,进而计算位置。
由于相对论效应,这些原子钟的准确性对于GPS来说至关重要。
此外,GPS的信号总是存在一定的误差。
相对论效应是导致这些误差产生的原因之一。
根据爱因斯坦的相对论,原子钟在强重力下的摇摆频率比在弱重力条件下的更慢。
以上内容仅供参考,建议查阅关于全球定位系统与相对论的书籍、文献获取更专业的信息。
名词解释gps的绝对定位GPS(全球定位系统)是一种通过卫星导航技术实现的全球绝对定位系统。
它通过一组卫星和接收器的相互配合,可以精确测定地球上任何一个点的经度、纬度以及海拔高度。
首先,GPS的定位原理主要基于信号传播和时间测量。
目前,GPS系统由24颗工作卫星和几颗备用卫星组成,它们绕在地球轨道上的高度约为20000公里。
这些卫星以高度相对固定的轨道周围旋转,它们通过广播信号将其位置和时间的数据传输到地面上的GPS接收器。
当我们使用GPS设备时,接收器会同时接收到多颗卫星发出的信号,并利用这些信号计算接收器与卫星之间的距离。
由于这些卫星的位置是已知的,接收器可以通过测量信号传播的时间差来计算距离。
通过至少三颗卫星的信号,接收器可以确定自身相对于这些卫星的位置。
当接收器能接收到更多卫星的信号时,定位的精度会更高。
在计算过程中,GPS系统需要精准地确定信号传播的时间。
为了达到这一目的,GPS接收器内置了精准的原子钟。
通过比较接收器内部的时钟与卫星信号中的时间标记,接收器可以计算出信号传播的时间。
此外,GPS系统也采用了纠正误差的技术,例如对大气层和其他影响信号传播的因素进行修正,以提高定位的准确性。
GPS的绝对定位功能应用广泛,尤其在航海、航空、交通运输、地质勘探等领域中扮演重要角色。
航海中的GPS可帮助船只确定准确的位置,从而保证安全导航。
在航空业中,飞机可以借助GPS定位确定飞行航线和目的地。
交通运输方面,GPS也被应用于车辆跟踪和物流管理。
GPS还可以用于地质勘探,帮助科学家们精确测量地壳运动和地震活动。
除此之外,GPS还深入到了我们日常生活中的各个方面。
智能手机和车载导航系统已经广泛集成了GPS技术,使我们能够方便地找到目的地。
徒步旅行者可以利用GPS设备确定所在位置,避免迷路。
此外,GPS还被用于运动追踪、户外探险以及地理信息系统(GIS)等领域。
然而,尽管GPS在定位方面非常强大和准确,但它也存在一些限制。