高中数学 1.1.1 数列的概念教案 北师大版必修5
- 格式:doc
- 大小:138.00 KB
- 文档页数:4
1.1.1 数列的概念教学目标1、知识与技能:了解数列的概念和几种简单的表示方法(列表、图象、通项公式);了解数列是一种特殊的函数;2、过程与方法:通过三角形数与正方形数引入数列的概念;通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);3、情态与价值:体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
教学重点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);难点:了解数列是一种特殊的函数;发现数列规律找出可能的通项公式。
教学方法:讲授法为主教学过程:一.揭示课题:今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.二.讲解新课:要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:①自然数排成一列数:②3个1排成一列:③无数个1排成一列:④的不足近似值,分别近似到排列起来:⑤正整数的倒数排成一列数:⑥函数当依次取时得到一列数:⑦函数当依次取时得到一列数:⑧请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.数列的定义:按一定次序排成的一列数叫做数列.为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.首项-------其中数列的第一项也称首项.通项-------数列的第n项叫数列的通项.以上述八个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.2.数列与函数的关系数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集,或是正整数集的有限子集.于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.3.数列的表示法数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用表示第一项,……,用表示第项,依次写出成为(1)列举法:.简记为.一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.(2)图示法:启发学生仿照函数图象的画法画数列的图形.具体方法是以项数为横坐标,相应的项为纵坐标,即以为坐标在平面直角坐标系中做出点(以前面提到的数列为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式.(3)通项公式法:如数列的通项公式为;的通项公式为;的通项公式为;数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列的通项公式,则.值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.(4)递推公式法:如前面所举的钢管的例子,第层钢管数与第层钢管数的关系是,再给定,便可依次求出各项.再如数列中,,这个数列就是.像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式.递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.可由学生举例,以检验学生是否理解.三.小结: 1.数列的概念2.数列的四种表示四.作业习题1---1 P9 A组第4题;B组第1题。
数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。
举例说明数列的组成,如自然数数列、等差数列等。
1.2 数列的项解释数列中的每一个数称为数列的项。
强调数列项的顺序和重复性质。
1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。
举例讲解如何写出简单数列的通项公式。
第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。
练习写出几个给定数列的列举表示。
2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。
举例说明如何用公式法表示等差数列和等比数列。
2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。
引导学生通过观察图形来理解数列的特点。
第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。
举例说明如何确定一个数列的项数。
3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。
举例说明如何判断一个数列的单调性。
3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。
举例说明如何判断一个数列的周期性。
第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。
推导等差数列的通项公式。
4.2 等比数列的通项公式讲解等比数列的定义和性质。
推导等比数列的通项公式。
4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。
举例讲解如何求解其他类型数列的通项公式。
第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。
推导等差数列的前n项和的公式。
5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。
推导等比数列的前n项和的公式。
5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。
举例讲解如何求解其他类型数列的前n项和。
第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。
《数列的概念与简单表示法》教案第一章:数列的定义1.1 学习目标:理解数列的定义,能够识别数列的基本特征。
1.2 教学内容:1.2.1 数列的定义:按照一定的顺序排列的一列数。
1.2.2 数列的项:数列中的每一个数称为项。
1.2.3 数列的顺序:数列中项的排列顺序称为数列的顺序。
1.3 教学活动:1.3.1 引入数列的概念,让学生通过观察实际例子来理解数列的定义。
1.3.2 引导学生分析数列的基本特征,如顺序、项等。
1.3.3 进行数列的实例练习,让学生能够识别和描述不同的数列。
第二章:数列的表示法2.1 学习目标:掌握数列的常见表示法,能够正确写出数列的前几项。
2.2 教学内容:2.2.1 列举法:将数列的每一项按顺序写出来。
2.2.2 描述法:用数学公式或文字描述数列的规律。
2.2.3 数列的通项公式:用公式表示数列中任意一项的值。
2.3 教学活动:2.3.1 介绍列举法和描述法,让学生通过实际例子学会用不同的方式表示数列。
2.3.2 引导学生理解数列的通项公式,并能够根据规律写出数列的前几项。
2.3.3 进行数列表示法的练习,让学生能够灵活运用不同的表示法。
第三章:数列的性质3.1 学习目标:理解数列的性质,能够运用数列的性质进行问题的解决。
3.2 教学内容:3.2.1 数列的项数:数列中项的个数称为数列的项数。
3.2.2 数列的项的公共性质:数列中所有项都具有的性质称为数列的项的公共性质。
3.2.3 数列的性质:数列的项的公共性质称为数列的性质。
3.3 教学活动:3.3.1 引导学生通过观察和分析数列的实例,发现数列的性质。
3.3.2 让学生通过实际的例题,学会运用数列的性质进行问题的解决。
3.3.3 进行数列性质的练习,让学生能够熟练运用数列的性质。
第四章:数列的分类4.1 学习目标:了解数列的分类,能够识别不同类型的数列。
4.2 教学内容:4.2.1 数列的分类:按照数列的性质和规律,将数列分为不同的类型。
高中数学必修5数列教案
教学内容:数列
教学目标:
1. 了解数列的概念和性质;
2. 能够求解数列的通项公式和前n项和;
3. 能够应用数列的知识解决实际问题。
教学重点:
1. 数列的定义和常见性质;
2. 求解数列的通项公式和前n项和;
3. 应用数列解决实际问题。
教学难点:
1. 应用数列的知识解决实际问题;
2. 思维拓展,提高问题解决能力。
教学方法:讲述、举例、练习
教学过程:
一、引入:
通过一道生活中的问题引入数列的概念,让学生了解数列在实际生活中的应用。
二、概念讲解:
1. 数列的定义:数列是按照一定规律排列成的一组数字的集合。
2. 数列的常见性质:等差数列、等比数列等。
三、求解数列的通项公式和前n项和:
1. 求解等差数列的通项公式和前n项和;
2. 求解等比数列的通项公式和前n项和。
四、应用实例:
通过一些实际问题,让学生应用数列的知识解决问题,培养他们的思维能力和解决问题的能力。
五、课堂练习:
让学生进行相关题目的练习,巩固所学知识。
六、作业布置:
布置相关的作业,让学生在家里进行巩固和复习。
七、小结:
总结本节课的内容,强调数列在数学中的重要性和应用价值。
教学反思:
本节课主要介绍了数列的概念和性质,以及如何求解数列的通项公式和前n项和。
通过实际例题的讲解和练习,帮助学生掌握数列的相关知识,并能够应用到实际问题中去解决。
同时也需要引导学生在学习数列的过程中,培养他们的思维能力和解决问题的能力。
《数列的概念及简单表示法》教学设计最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类函数.重点: 由数列的前几项求数列的通项; 利用S n 与a n 的关系求通项;由递推关系求通项.难点: 由递推关系求通项.一、知 识 梳 理1.数列的定义2.数列的分类3.数列的表示法4.数列的通项公式5.已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N +,都有a n =S n -S n -1.( )2.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( )A .2n -1B .2n -1+1C .2n -1D .2(n -1)让学生回答做法,板书解题过程,总结推广到一般3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .644.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 注:数列{a n }是一个一以3为周期的周期数列,有些数列具备周期性。
5.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.考点突破考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)23,415,635,863,1099,…; (3)12,2,92,8,252,…;(4)5,55,555,5 555,….观察归纳规律方法:抓住以下几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【训练1】 (1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________. (2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________. 考点二 利用S n 与a n 的关系求通项【例2】 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N +.(1) 求a 1的值;(2)求数列{a n }的通项公式.板书(2)的解题过程,指出易错点规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练2】 (1)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1 D.12n -1(2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 考点三 由递推关系求通项【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项a n =________;(2)若a 1=1,S n =n +23a n ,则通项a n =________.提示: 本题中a n +1-a n =n +1与a n +1a n=n +1n 中的n +1与n +1n 不是同一常数,由此想到推导等差、等比数列通项的方法:累加法与累乘法.规律方法 已知递推关系式求通项,一般用代数的变形技巧整理变形,然后采用累加法、累乘法、构造法转化为基本数列(等差数列或等比数列)等方法求得通项公式.【训练3】 (1)在数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________.(2)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n 或 (-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎨⎧S 1 (n =1),S n -S n -1(n ≥2). 3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加或累乘法或构造新数列(等比数列)求数列的通项公式.[易错防范]1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的.2.数列的通项公式不一定唯一.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.《数列的概念及简单表示法》效果分析 本讲分两节课完成,这是第二课时。
教学设计一、教材分析《数列的概念与简单表示法》是高中数学必修5第二章第一节的内容,起着承前启后的作用。
一方面,数列与前面学习的函数有着密切的联系。
数列是刻画离散现象的函数,是一种重要的数学模型;另一方面,数列概念的学习又为进一步学习等差数列、等比数列等内容作了准备。
作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。
二、教学目标1.理解数列的概念,认识数列是反映自然规律的基本数学模型;2.了解数列的分类,并会根据数列的前几项抽象归纳出数列的通项公式;3.体会数列是一种特殊的函数;了解数列的三种表示法。
三、教学重难点教学重点:理解数列的概念;教学难点:根据数列的前几项抽象归纳出数列的通项公式;将数列作为一种特殊函数去认识,了解数列和函数之间的关系。
四、教法与学法启发式教学——引导学生去思考,鼓励学生去探索,培养学生的创造性思维。
探究式学习——组织学生小组讨论,合作交流,共同解决问题。
五、教学过程(一)“国际象棋”小故事讲述“国际象棋”小故事,提问学生“国王有没有能力满足老人的要求?”,激发学生的学习兴趣。
然后,和学生一起探究,得到一组数:2363……通过对1,2,2,2,,2数的分析,让学生真正理解国王是没有能力满足老人的要求的。
从而最终,引入这节课的学习内容:《数列的概念与简单表示法》(二)创设情境,引入概念1.自然界中,花瓣的个数:2、3、5、8、132.古语:一尺之棰,日取其半,万世不竭。
3.古希腊毕达哥拉斯学派的基本观点:数是万物的本源。
他们曾经在沙滩上画点或用小石子来表示数,得到三角形数、正方形数。
以上事例涉及5组数,让学生观察并归纳其共同特点,引入数列及其有关概念。
活动:典例1你会判断吗?1.由无穷多个3所组成的一列数是数列吗?3,3,3,3,3, …2.以下两个数列是同一数列吗?54, 60, 55, 58, 64, 55, 58, 60, 57, 54.54, 60, 55, 58, 55, 64, 58, 60, 57, 54.3.由2,3,a,5,b,6,这几个元素能构成数列吗?讨论:结合这三个题目,讨论数列与集合的区别。
北师大版高中数学必修5第一章《数列》全部教案第一课时一.一.一数列的概念一、教学目标一、知识与技能:(一)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。
2、过程与方法:(一)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。
3、情感态度与价值观:(一).通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.二、教学重点:数列及其有关概念,通项公式及其应用.教学难点根据一些数列的前几项抽象、归纳数列的通项公式.三、教学方法:探究、交流、实验、观察、分析四、教学过程(一)、揭示课题:今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有一00根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第一层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.(二)、推进新课[合作探究]折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生一般折5、6次就不能折下去了,厚度太高了.师你知道这是为什么吗?我们设纸原来的厚度为一长度单位,面积为一面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,一6,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 一[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数.[教师精讲]一.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(一)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复 出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第一项(或首项),第2项,…,第n 项,….同学们能举例说明吗?生 例如,上述例子均是数列,其中①中,“2”是这个数列的第一项(或首项),“一6”是这个数列中的第4项.为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.首项-------其中数列的第一项也称首项.通项-------数列的第n 项叫数列的通项.以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.3.数列的分类:一)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列一,2,3,4,5,6是有穷数列. 无穷数列:项数无限的数列.例如数列一,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(一)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)一.递增数列,2.递减数列.4、通项公式法:如数列的通项公式为 ;的通项公式为 ;的通项公式为 ;数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.[知识拓展]师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项? 生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[例题剖析]例一.根据下面数列{a n }的通项公式,写出前5项:(一)a n =1n n ;(2)a n =(-一)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取一,2,3,4,5,即可得到数列的前5项.生 解:(一)n =一,2,3,4,5.a 一=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =一,2,3,4,5.a 一=-一;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.例2.根据下面数列的前几项的值,写出数列的一个通项公式:(一)3,5,7,9,一一,…;(2)32,154,356,638,9910,…; (3)0,一,0,一,0,一,…;(4)一,3,3,5,5,7,7,9,9,…;(5)2,-6,一2,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(一)a n =2n +一;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n-+; (4)将数列变形为一+0,2+一,3+0,4+一,5+0,6+一,7+0,8+一,…, ∴a n=n +2)1(1n-+;(5)将数列变形为一×2,-2×3,3×4,-4×5,5×6,…, ∴a n =(-一)n +一n (n +一).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.(三)、学生课堂练习:课本本节练习一、2、3、4补充题:已知数列{a n }的通项公式是a n =2n 2-n ,那么( ) A .30是数列{a n }的一项B .44是数列{a n }的一项 C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决. 答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A . (四)、课堂小结:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式。
北师大版高中数学必修5第一章《数列》全部教案第一课时 1.1.1
数列的概念
一、教学目标
1、知识与技能:(1)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。
2、过程与方法:(1)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。
3、情感态度与价值观:(1).通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣
二、教学重点:数列及其有关概念,通项公式及其应用
教学难点根据一些数列的前几项抽象、归纳数列的通项公式.
三、教学方法:探究、交流、实验、观察、分析
四、教学过程
(一)、揭示课题:今天开始我们研究一个新课题.
先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数
象这样排好队的数就是我们的研究对象——数列.
(二)、推进新课
[合作探究]
折纸问题
师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓
生一般折5、6次就不能折下去了,厚度太高了
师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次
折的次数,它的厚度和每层纸的面积依次怎样?
生 随着对折数厚度依次为:2,4,8,16,…,256,…;
随着对折数面积依次为21,41 ,81 ,161 ,…,256
1
生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了
师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?
生 均是一列数
生 还有一定次序
师 它们的共同特点:都是有一定次序的一列数
[教师精讲]
1.数列的定义:按一定顺序排列着的一列数叫做数列
注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不
同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现
2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首
项),第2项,…,第n 项,….同学们能举例说明吗?
生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项
为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.
首项-------其中数列的第一项也称首项.通项-------数列的第n 项叫数列的通项.
以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.
3.数列的分类:1)根据数列项数的多少分:
有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列
无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列
2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数
列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列
请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?
生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列
4、通项公式法:如数列
的通项公式为 ;
的通项公式为 ;
的通项公式为 ;
数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.
例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一. [知识拓展]
师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项? 生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n [例题剖析]
例1.根据下面数列{a n }的通项公式,写出前5项:
(1)a n =1 n n ;(2)a n =(-1)n ·n
师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项
生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65 (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-
师 好!就这样解
例2.根据下面数列的前几项的值,写出数列的一个通项公式:
(1)3,5,7,9,11,…;(2)32,154,356,638,99
10,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;
(5)2,-6,12,-20,30,-42,
师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间
生老师,我写好了!
解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2
)1(1n
-+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,
a n =n +2)1(1n -+;(5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,a
n =(-1)n +1n (n +
师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式
(三)、学生课堂练习:课本本节练习1、2、3、4
补充题:已知数列{a
n }的通项公式是a n =2n 2-n ,那么(
A
.30是数列{a n }的一项
B .44是数列{a n }的一项
C.66是数列{a n }的一项 D .90是数列{a n }的一项
分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决答案:
点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A (四)、课堂小结:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意
一项,并会根据数列的前n 项求一些简单数列的通项公式。
(五)、布置作业课本习题1-1A 组1、2、3、4。
五、教后反思:。