八年级数学勾股定理实数复习题
- 格式:doc
- 大小:157.00 KB
- 文档页数:4
2022-2023学年第一学期八年级数学期末复习冲刺卷(03)一.选择题(共8小题,满分16分,每小题2分)1.(2分)北京2022年冬奥会会徽“冬梦”已经发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A .B .C .D . 2.(2分)下列实数3.14159,√4,π,227,√3中无理数的有( ) A .2个 B .3个 C .4个 D .5个3.(2分)已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为( )A .1cmB .8cmC .10cmD .8cm 或10cm4.(2分)已知点P (x ,y ),若x +y <﹣2,xy >1,则点P 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2分)已知一次函数y =ax +b (a ,b 是常数且a ≠0)x 与y 的部分对应值如下表:x﹣1 0 1 2 3 y 9 6 3 0 ﹣3那么方程ax +b =0的解是( )A .x =﹣1B .x =0C .x =1D .x =26.(2分)如图,点E 、F 在AC 上,AD =BC ,AD ∥BC ,要使△ADF ≌△CBE ,下列条件中不成立的是( )A .AE =CFB .∠D =∠BC .DF =BED .DF ∥BE7.(2分)满足下列条件的△ABC 中,不是直角三角形的是( )A .∠B =∠A +∠C B .∠A :∠B :∠C =5:12:13C .a 2=b 2﹣c 2D .a :b :c =5:12:138.(2分)如图,在x 轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x 轴的垂线与三条直线y =ax ,y =(a +1)x ,y =(a +2)x 相交,其中a >0.则图中阴影部分的面积是( )A .12.5B .25C .12.5aD .25a二.填空题(共10小题,满分20分,每小题2分)9.(2分)√x 3=−√y 3,则x +y = .10.(2分)一次函数y =﹣x +1的图象过点(a ,2),则a = .11.(2分)若点P (x ,y )在第二象限角平分线上,则x 与y 的关系是 .12.(2分)已知当﹣2≤x ≤3时,函数y =|2x ﹣m |(其中m 为常量)的最小值为2m ﹣54,则m = .13.(2分)如图,在数轴上点A 表示的数与−√2的和是 .14.(2分)在平面直角坐标系中,点P (﹣3,2)关于原点O 中心对称的点P '的坐标为 .15.(2分)如图,把一个长方形纸条ABCD 沿AF 折叠,点B 落在点E 处.已知∠ADB =24°,AE ∥BD ,则∠AFE 的度数是 .16.(2分)如图,某自动感应门的正上方A 处装着一个感应器,离地面的高度AB 为2.5米,一名学生站在C 处时,感应门自动打开了,此时这名学生离感应门的距离BC 为1.2米,头顶离感应器的距离AD 为1.5米,则这名学生身高CD 为 米.17.(2分)小明家、小华家、海洋公园大门位于同一笔直公路旁.中考在即,小明和小华相约去海洋公园游玩,以缓解紧张情绪,小明先从家出发,匀速步行至离海洋公园较近的小华家,小华立即与小明一起以小明之前的速度走向海洋公园.2分钟后,小华发现忘了带学生证,于是立即提速回家取,小明则以先前速度继续前行,小华取到学生证后,立即以提速后的速度追赶小明,最后两人同时到达海洋公园.小明和小华之间的距离y(米)与小明出发的时间x(分钟)之间的函数关系如图所示.小华取学生证的时间忽略不计,则小华家和海洋公园的距离为米.18.(2分)如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第3个阴影三角形的面积是,第2021个阴影三角形的面积是.三.解答题(共9小题,满分64分)19.(6分)计算:(1)√(−3)2−(√2+1)0+(﹣2)﹣2;(2)求(x+1)3﹣64=0中x的值.20.(6分)如图,点A的坐标为(4,2),点B与点A关于x轴对称,AB交x轴于点C.(1)在图中描出点B,并写出点C的坐标;(2)求△ABO的面积.21.(6分)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=10,AD=10√2.(1)求四边形ABCD的面积.(2)求对角线BD的长.22.(6分)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.23.(6分)如图,AB=AC,CD∥AB,点E是AC上一点,且∠ABE=∠CAD,延长BE交AD于点F.(1)求证:△ABE≌△CAD;(2)如果∠ABC=65°,∠ABE=25°,求∠D的度数.24.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润是500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式.(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?25.(8分)如图,直线l:y=43x+b过点A(﹣3,0),与y轴交于点B,∠OAB的平分线交y轴于点C,过点C作直线AB的垂线,交x轴于点E,垂足是点D.(1)求点B和点C的坐标;(2)求直线DE的函数关系式;(3)设点P是y轴上一动点,当PA+PD的值最小时,请直接写出点P的坐标.26.(8分)在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△PAB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.27.(10分)在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数y=|x﹣b|的性质及其运用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…﹣2﹣1012345…y…43210123…根据表格中的数据直接写出y与x的函数解析式及对应的自变量x的取值范围:.(2)描点、连线:在下面的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:.(3)已知函数y1=2x并结合两函数图象,直接写出当y1<y时,x的取值范围.答案与解析一.选择题(共8小题,满分16分,每小题2分)1.(2分)北京2022年冬奥会会徽“冬梦”已经发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A 、不是轴对称图形,故本选项不合题意;B 、是轴对称图形,故本选项符合题意;C 、不是轴对称图形,故本选项不合题意;D 、不是轴对称图形,故本选项不合题意.故选:B .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下列实数3.14159,√4,π,227,√3中无理数的有( ) A .2个 B .3个 C .4个 D .5个【分析】根据无理数的概念即可判断.【解答】解:√4=2,无理数有:π,√3,共有2个,故选:A .【点评】本题考查了无理数.解题的关键是熟练掌握无理数的概念,属于基础题型.3.(2分)已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为( )A .1cmB .8cmC .10cmD .8cm 或10cm【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为2cm 或是腰长为4cm 两种情况.【解答】解:等腰三角形的两边长分别为2cm 和4cm ,当腰长是4cm 时,则三角形的三边是2cm ,2cm ,4cm ,2cm +2cm =4cm 不满足三角形的三边关系; 当腰长是4cm 时,三角形的三边是4cm ,4cm ,2cm ,三角形的周长是10cm .故选:C .【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.(2分)已知点P(x,y),若x+y<﹣2,xy>1,则点P所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用已知得出x,y的符号进而得出答案.【解答】解:∵x+y<﹣2,xy>1,∴x,y同号,且x,y都小于0,故点P(x,y)所在的象限为第三象限.故选:C.【点评】此题主要考查了点的坐标,正确得出x,y的符号是解题关键.5.(2分)已知一次函数y=ax+b(a,b是常数且a≠0)x与y的部分对应值如下表:x﹣10123y9630﹣3那么方程ax+b=0的解是()A.x=﹣1B.x=0C.x=1D.x=2【分析】方程ax+b=0的解为y=0时函数y=ax+b的x的值,根据图表即可得出此方程的解.【解答】解:根据图表可得:当x=2时,y=0;因而方程ax+b=0的解是x=2.故选:D.【点评】本题主要考查了一次函数与一元一次方程的关系:方程ax+b=0的解是y=0时函数y=ax+b的x 的值.6.(2分)如图,点E、F在AC上,AD=BC,AD∥BC,要使△ADF≌△CBE,下列条件中不成立的是()A.AE=CF B.∠D=∠B C.DF=BE D.DF∥BE【分析】利用全等三角形判定方法依次判断,可求解.【解答】解:∵AD∥BC,∴∠A=∠C,当AE=CF,可得AF=CE,由“SAS”可证△ADF≌△CBE,故选项A不合题意;当∠D=∠B,由“ASA”可证△ADF≌△CBE,故选项B不合题意;当DF=BE,不能证明△ADF≌△CBE,故选项C符合题意;当DF∥BE,可得∠AFD=∠BEC,由“AAS”可证△ADF≌△CBE,故选项D不合题意;故选:C.【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键.7.(2分)满足下列条件的△ABC中,不是直角三角形的是()A.∠B=∠A+∠C B.∠A:∠B:∠C=5:12:13C.a2=b2﹣c2D.a:b:c=5:12:13【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【解答】解:A、∠B=∠A+∠C,又∠A+∠B+∠C=180°,则∠B=90°,是直角三角形,故此选项不符合题意;B、∠A:∠B:∠C=5:12:13,又∠A+∠B+∠C=180°,则∠C=180°×1330=78°,不是直角三角形,故此选项符合题意;C、由a2=b2﹣c2,得a2+c2=b2,符合勾股定理的逆定理,是直角三角形,故此选项不符合题意;D、设a=5k,b=12k,c=13k,由a2+b2=25k2+144k2=169k2=c2,符合勾股定理的逆定理,是直角三角形,故此选项不符合题意.故选:B.【点评】本题考查了勾股定理的逆定理,三角形内角和定理.解题的关键是掌握直角三角形的判定方法,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.(2分)如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a【分析】分别把x=1,x=2,x=3,x=4,x=5代入解析式,求出梯形或三角形的边长,根据面积公式求出即可【解答】解:把x=1分别代入y=ax,y=(a+1)x,y=(a+2)x得:AW=2,WQ=a+1﹣a=1,∴AQ=2﹣1=1,同理:BR=RK=2,CH=HP=3,DG=GL=4,EF=FT=5,2﹣1=1,3﹣2=1,4﹣3=1,5﹣4=1,∴图中阴影部分的面积是12×1×1+12×(1+2)×1+12×(2+3)×1+12×(3+4)×1+12×(4+5)×1=12.5, 故选:A .【点评】主要考查了一次函数和三角形的面积公式,要会根据点的坐标求出所需要的线段的长度,灵活运用面积公式求解.二.填空题(共10小题,满分20分,每小题2分)9.(2分)√x 3=−√y 3,则x +y = 0 .【分析】根据立方根的定义可得x =﹣y ,从而得结论.【解答】解:∵√x 3=−√y 3,∴x =﹣y ,∴x +y =0,故答案为:0.【点评】本题考查了立方根的定义,属于基础题.10.(2分)一次函数y =﹣x +1的图象过点(a ,2),则a = ﹣1 .【分析】直接把点(a ,2)代入一次函数y =﹣x +1,求出a 的值即可.【解答】解:∵一次函数y =﹣x +1的图象过点(a ,2),∴2=﹣a +1,解得a =﹣1.故答案为:﹣1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(2分)若点P (x ,y )在第二象限角平分线上,则x 与y 的关系是 x +y =0 .【分析】根据二四象限角平分线上点的特点即横纵坐标互为相反数解答.【解答】解:∵点P (x ,y )在第二象限角平分线上,∴x ,y 互为相反数,即x +y =0.【点评】解答此题的关键是熟知二四象限角平分线上点的坐标特征.12.(2分)已知当﹣2≤x ≤3时,函数y =|2x ﹣m |(其中m 为常量)的最小值为2m ﹣54,则m = 48 .【分析】根据题意,利用分类讨论的方法可以求得m 的值,本题得以解决.【解答】解:∵函数y =|2x ﹣m |,∴y ={−2x +m (x ≤m 2)2x −m(x >m 2), 当﹣2≤m 2≤3时,得﹣4≤m ≤6,当x =m 2时,y 取得最小值,此时y =0≠2m ﹣54,不符合题意;当m 2<−2时,得m <﹣4,当x =﹣2时,y 取得最小值,此时y =2×(﹣2)﹣m =﹣4﹣m ,令﹣4﹣m =2m ﹣54,得m =503>−4,不符题意; 当m 2>3时,得m >6,当x =3时,y 取得最小值,此时y =﹣2×3+m =﹣6+m ,令﹣6+m =2m ﹣54,得m =48>6,符合题意;由上可得,m 的值是48,故答案为:48.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.13.(2分)如图,在数轴上点A 表示的数与−√2的和是 0 .【分析】本题首先根据已知条件利用勾股定理求得OB 的长度,OA =OB ,进而利用实数与数轴的关系解答即可求解.【解答】解:由勾股定理可知,OB =√12+12=√2,又OA =OB ,点A 在正半轴上,故A 表示的数是√2,故在数轴上点A 表示的数与−√2的和是0.故答案为:0.【点评】本题主要考查了勾股定理及实数与数轴之间的对应关系,有一定的综合性,不仅要结合图形,还需要灵活运用勾股定理.14.(2分)在平面直角坐标系中,点P (﹣3,2)关于原点O 中心对称的点P '的坐标为 (3,﹣2) .【分析】直接利用关于原点对称点的性质分析得出答案.【解答】解:点P (﹣3,2)关于原点O 中心对称的点P '的坐标为:(3,﹣2).故答案为:(3,﹣2).【点评】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.15.(2分)如图,把一个长方形纸条ABCD 沿AF 折叠,点B 落在点E 处.已知∠ADB =24°,AE ∥BD ,则∠AFE 的度数是 33° .【分析】由折叠得:∠BFA=∠AFE,∠ABC=∠E=90°,由平行线的性质,得出∠EAM=∠ADB=24°,进而求出∠EMA=66°,再根据三角形的外角的性质,得出∠AFE=12∠EMA,求出答案.【解答】解:由折叠得:∠BFA=∠AFE,∠ABC=∠E=90°,∵长方形ABCD,∴AD∥BC,∴∠BFA=∠MAF,∴∠AFE=∠MAF,∵AE∥BD,∴∠EAM=∠ADB=24°,∴∠EMA=90°﹣∠EAM=90°﹣24°=66°,∴∠AFE=∠MAF=12∠EMA=12×66°=33°.故答案为:33°.【点评】考查折叠轴对称的性质、平行线的性质、三角形的内角和定理等知识,掌握平行线的性质、三角形内角和定理是解决问题的关键.16.(2分)如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为1.6米.【分析】过点D作DE⊥AB于E,则CD=BE,DE=BC=1.2米,由勾股定理得出AE=0.9(米),则BE =AB﹣AE=1.6(米),即可得出答案.【解答】解:过点D作DE⊥AB于E,如图所示:则CD=BE,DE=BC=1.2米=65米,在R t△ADE中,AD=1.5米=32米,由勾股定理得:AE=√AD2−DE2=√(32)2−(65)2=0.9(米),∴BE=AB﹣AE=2.5﹣0.9=1.6(米),∴CD=BE=1.6米,故答案为:1.6.【点评】本题考查了勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.17.(2分)小明家、小华家、海洋公园大门位于同一笔直公路旁.中考在即,小明和小华相约去海洋公园游玩,以缓解紧张情绪,小明先从家出发,匀速步行至离海洋公园较近的小华家,小华立即与小明一起以小明之前的速度走向海洋公园.2分钟后,小华发现忘了带学生证,于是立即提速回家取,小明则以先前速度继续前行,小华取到学生证后,立即以提速后的速度追赶小明,最后两人同时到达海洋公园.小明和小华之间的距离y(米)与小明出发的时间x(分钟)之间的函数关系如图所示.小华取学生证的时间忽略不计,则小华家和海洋公园的距离为1440米.【分析】由图象可知,小明5分钟走了400米,据此可得小明的速度;小华走1.6分钟的路程与小明走2分钟的路程相等,可得小华的速度;然后根据追及问题列方程解答即可.【解答】解:小明的速度为:400÷5=80米/分;小华提速后的速度为:80×28.6−7=100米/分;设小明从小华家到海洋公园走了x分钟,根据题意得:80x=100(x﹣5.2)+80×2,解得x=18.故小华家和海洋公园的距离为:80×18=1440米.故答案为:1440.【点评】本题考查了一次函数的应用,观察函数图象,利用数量关系,求出小张、小明步行及跑步的速度是解题的关键.18.(2分)如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第3个阴影三角形的面积是32,第2021个阴影三角形的面积是2×42020.【分析】利用一次函数图象上点的坐标特征可求出点A1的坐标,结合等腰直角三角形的性质及三角形的面积可得出点B1的坐及△A1OB1的面积,同理可求出△A2B1B2和△A3B2B3的面积,设第n个阴影三角形的面积为S n(n为正整数),根据三角形面积的变化,即可找出变化规律“S n=2×4n﹣1(n为正整数)”,再代入n=2021即可求出结论.【解答】解:当x=0时,y=0+2=2,∴点A1的坐标为(0,2).∵△A1OB1为等腰直角三角形,∴OB1=OA1=2,∴点B1的坐标为(2,0),S△A1OB1=12×2×2=2;当x=2时,y=2+2=4,∴点A2的坐标为(2,4).∵△A2B1B2为等腰直角三角形,∴点B2的坐标为(6,0),S△A2B1B2=12×4×4=8;当x=6时,y=6+2=8,∴点A3的坐标为(6,8),∵△A3B2B3为等腰直角三角形,∴点B3的坐标为(14,0),S△A3B2B3=12×8×8=32.设第n个阴影三角形的面积为S n(n为正整数),则S n=2×4n﹣1,∴S 2021=2×42021﹣1=2×42020. 故答案为:32;2×42020.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形、规律型:点的坐标以及三角形的面积,根据三角形面积的变化,找出“S n =2×4n ﹣1(n 为正整数)”是解题的关键. 三.解答题(共9小题,满分64分)19.(6分)计算:(1)√(−3)2−(√2+1)0+(﹣2)﹣2; (2)求(x +1)3﹣64=0中x 的值.【分析】(1)利用二次根式的性质,零指数幂的意义和负整数指数幂的意义解答即可;(2)利用立方根的意义解答即可.【解答】解:(1)原式=|﹣3|﹣1+14=3﹣1+14=214; (2)∵(x +1)3﹣64=0,∴(x +1)3=64.∴x +1是64的立方根.∴x +1=4.∴x =3.【点评】本题主要考查了二次根式的性质,零指数幂的意义和负整数指数幂的意义,立方根的意义,正确使用上述法则进行运算是解题的关键.20.(6分)如图,点A 的坐标为(4,2),点B 与点A 关于x 轴对称,AB 交x 轴于点C .(1)在图中描出点B ,并写出点C 的坐标;(2)求△ABO 的面积.【分析】(1)过点A 作x 轴的垂线,垂足为点C ,延长AC 到点B ,使CB =AC ,根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,可得点B 点坐标,进而得出C 点坐标;(2)根据三角形的面积公式即可求解.【解答】解:(1)∵点A 的坐标为(4,2),点B 与点A 关于x 轴对称,AB 交x 轴于点C ,∴B (4,﹣2),C (4,0),如图所示:(2)△ABO 的面积=12AB •OC =12×4×4=8. 【点评】本题考查了关于x 轴对称的点的坐标,三角形的面积,坐标与图形性质,掌握关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标互为相反数,是解答本题的关键.21.(6分)如图,在四边形ABCD 中,∠ABC =90°,AB =6,BC =8,CD =10,AD =10√2.(1)求四边形ABCD 的面积.(2)求对角线BD 的长.【分析】(1)连接AC ,然后根据勾股定理可以求得AC 的长,再根据勾股定理的逆定理即可判断△ACD 的形状,从而可以求得四边形ABCD 的面积;(2)作DE ⊥BC ,然后根据三角形全等和勾股定理,可以求得对角线BD 的长.【解答】解:(1)连接AC ,∵∠ABC =90°,AB =6,BC =8,∴AC =√AB 2+BC 2=√62+82=10,∵CD =10,AD =10√2,∴CD 2+AC 2=102+102=200,AD 2=(10√2)2=200,∴CD 2+AC 2=AD 2,∴△ACD 是直角三角形,∴四边形ABCD 的面积是:AB⋅BC 2+AC⋅CD 2=6×82+10×102=24+50=74,即四边形ABCD 的面积是74;(2)作DE ⊥BC 交BC 的延长线于点E ,则∠DEC =90°,∵△ACD 是直角三角形,∠ACD =90°,∴∠DCE +∠ACB =90°,∵∠ABC =90°,∴∠CAB +∠ACB =90°,∴∠DCE =∠CAB ,在△ABC 和△CED 中,{∠ABC =∠CED∠CAB =∠DCE AC =CD,∴△ABC ≌△CED (AAS ),∴AB =CE ,BC =ED ,∵AB =6,BC =8,∴CE =6,ED =8,∴BE =BC +CE =8+6=14,∴BD =√BE 2+ED 2=√142+82=2√65.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.(6分)王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合.(1)求证:△ADC ≌△CEB ;(2)求两堵木墙之间的距离.【分析】(1)根据题意可得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明△ADC ≌△CEB 即可;(2)利用全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC在△ADC 和△CEB 中{∠ADC =∠CEB∠DAC =∠BCE AC =BC,∴△ADC ≌△CEB (AAS );(2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.23.(6分)如图,AB =AC ,CD ∥AB ,点E 是AC 上一点,且∠ABE =∠CAD ,延长BE 交AD 于点F .(1)求证:△ABE ≌△CAD ;(2)如果∠ABC =65°,∠ABE =25°,求∠D 的度数.【分析】(1)根据ASA 可证明△ABE ≌△CAD ;(2)求出∠BAC =50°,则求出∠BAD =75°,可求出答案.【解答】(1)证明:∵CD ∥AB ,∴∠BAE =∠ACD ,∵∠ABE =∠CAD ,AB =AC ,∴△ABE ≌△CAD (ASA );(2)解:∵AB =AC ,∴∠ABC =∠ACB =65°,∴∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣65°=50°,又∵∠ABE =∠CAD =25°,∴∠BAD =∠BAC +∠CAD =50°+25°=75°,∵AB ∥CD ,∴∠D =180°﹣∠BAD =180°﹣75°=105°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、平行线的性质、三角形内角和定理等知识,解题的关键是熟练掌握全等三角形的判定与性质.24.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润是500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式.(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?【分析】(1)根据题意,可以写出y与x的函数关系式;(2)根据B型电脑的进货量不超过A型电脑的2倍,可以求得A型电脑数量的取值范围,再根据(1)中的函数关系式和一次函数的性质,即可得到该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少.【解答】解:(1)由题意可得,y=400x+500(100﹣x)=﹣100x+50000,即y关于x的函数关系式是y=﹣100x+50000;(2)∵B型电脑的进货量不超过A型电脑的2倍,∴100﹣x≤2x,解得,x≥331 3,∵y=﹣100x+50000,∴k=﹣100,y随x的增大而减小,∵x为整数,x≥331 3,∴当x=34时,y取得最大值,此时y=46600,100﹣x=66,答:该商店购进A型、B型电脑34台、66台时,才能使销售总利润最大,最大利润是46600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.25.(8分)如图,直线l:y=43x+b过点A(﹣3,0),与y轴交于点B,∠OAB的平分线交y轴于点C,过点C作直线AB的垂线,交x轴于点E,垂足是点D.(1)求点B和点C的坐标;(2)求直线DE的函数关系式;(3)设点P是y轴上一动点,当PA+PD的值最小时,请直接写出点P的坐标.【分析】(1)把点A (﹣3,0)代入y =43x +b ,可求得B 的坐标,根据角平分线的性质得CD =CO ,设CD =CO =m ,根据勾股定理求出m 即可得点C 的坐标;(2)证明△BCD ≌△ECO (ASA ),根据全等三角形的性质得OE =BD ,可得E 的坐标,由点C 、E 的坐标利用待定系数法即可求解;(3)作点A 关于y 轴对称的点A ′,连接A ′D 交y 轴于点P ,即为所求的点P ,此时,PA +PD 的值最小,求得A ′D 的解析式,即可得点P 的坐标.【解答】解:(1)把点A (﹣3,0)代入y =43x +b ,得b =4,∴B (0,4),∴OB =4,∵A (﹣3,0),∴OA =3,在 R t △AOB 中,∠AOB =90°,∴AB =√OA 2+OB 2=5.∵AC 平分∠OAB ,CD ⊥AB ,CO ⊥OA ,∴CD =CO ,∠ACD =∠ACO ,∵AC =AC ,∴△ACD ≌△ACO (SAS ),∴AD =AO =3,BD =AB ﹣AD =2.设CD =CO =m ,则BC =4﹣m ,在R t △BDC 中,由勾股定理知,CD 2+BD 2=BC 2,∴m 2+22=(4﹣m )2,解得,m =32,∴C (0,32);(2)∵CD ⊥AB ,CO ⊥OA ,∴∠CDB =∠COE =90°,∵CD =CO ,∠BCD =∠ECO ,∴△BCD ≌△ECO (ASA ),OE =BD =2,∴E 的坐标(2,0),∵C (0,32), 设直线DE 的函数关系式为y =kx +32,∴0=2k +32,解得:k =−34,∴直线DE 的函数关系式为y =−34x +32;(3)作点A 关于y 轴对称的点A ′,连接A ′D 交y 轴于点P ,即为所求的点P ,此时,PA +PD 的值最小,过点D 作DF ⊥BC 于F ,∵CD =CO =32,OB =4,∴BC =52,∵CD ⊥AB ,BD =2,∴DF =BD⋅CD BC =65, ∵直线DE 的函数关系式为y =−34x +32,∴D (−65,125), ∵A (﹣3,0),∴A ′(3,0),设A ′D 的解析式为y =k ′x +b ′,∴{3k ′+b ′=0−65k′+b′=125,解得:{k ′=−47b′=127, ∴A ′D 的解析式为y =−47x +127,当x =0时,y =127,∴点P 的坐标为(0,127).【点评】本题属于一次函数综合题,考查了待定系数法求一次函数解析式,角平分线的性质,全等三角形的判定和性质,轴对称﹣最短路线,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用轴对称找出符合条件的点的位置.26.(8分)在平面直角坐标系中,直线y 1=kx +b 经过点P (2,2)和点Q (0,﹣2),与x 轴交于点A ,与直线y 2=mx +n 交于点P .(1)求出直线y 1=kx +b 的解析式;(2)当m <0时,直接写出y 1<y 2时自变量x 的取值范围;(3)直线y 2=mx +n 绕着点P 任意旋转,与x 轴交于点B ,当△PAB 是等腰三角形时,点B 有几种位置?请你分别求出点B 的坐标.【分析】(1)利用待定系数法确定函数解析式;(2)由函数图象可以直接得到答案;(3)对于本题中的等腰△PAB 的腰不确定,需要分类讨论:以PA 为底和PA 为腰.由两点间的距离公式和方程思想解答.【解答】解:(1)把P (2,2)和点Q (0,﹣2)分别代入y 1=kx +b ,得{2k +b =2b =−2. 解得{k =2b =−2. 则直线y 1=kx +b 的解析式为:y 1=2x ﹣2;(2)如图所示,P (2,2).所以,当x<2时,y1<y2.(3)解:过点P作PM⊥x轴,交于点M.由题意可知A(1,0),M(2,0),AP=√5,AM=1当m<0时,点B有3种位置使得△PAB为等腰三角形①当AP=AB时,AB=√5,∴B(√5+1,0)②当PA=PB时,AB=2AM=2,∴B(3,0)③当BA=BP时,设AB=x,由等面积法可得S△ABP=2x=√5x2−(√52)2解得x=2.5,∴B(3.5,0)当m>0时,点B有1种位置使得△PAB为等腰三角形.当AB=AP时,OB=√5−1,∴B(1−√5,0).综上所述,点B有4种位置使得△PAB为等腰三角形,坐标分别为(√5+1,0)、(3,0)、(3.5,0)、(1−√5,0).【点评】考查了一次函数综合题,主要运用了待定系数法确定函数解析式,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式,等腰三角形的性质,用方程的思想解决问题是解本题的关键.27.(10分)在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数y=|x﹣b|的性质及其运用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…﹣2﹣1012345…y…43210123…根据表格中的数据直接写出y与x的函数解析式及对应的自变量x的取值范围:全体实数.(2)描点、连线:在下面的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:函数图象关于直线x=2对称.(3)已知函数y1=2x并结合两函数图象,直接写出当y1<y时,x的取值范围x<23.【分析】(1)将(2,0)点代入y=|x﹣b|,求解即可;(2)将表中的数据标记到平面直角坐标系中,连线即可,根据函数图像可得函数关于x=2对称;(3)在平面直角坐标系中,画出y1=2x的图像,观察图像求解不等式即可.【解答】解:(1)将(2,0)代入y=|x﹣b|得,|2﹣b|=0解得b=2所以y与x的函数解析式为y=|x﹣2|,自变量x的取值范围为全体实数;故答案为:全体实数;(2)画出函数图象如图,观察图象可知:函数图象关于直线x =2对称;故答案为:函数图象关于直线x =2对称;(3)解{y =2x y =2−x 得{x =23y =43, ∴函数y 1=2x 的图象与函数y =|x ﹣2|的交点为(23,43), 由图象可知:当y 1<y 时,x 的取值范围是x <23;故答案为:x <23.【点评】本题考查的是一次函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.。
代数:数的开方的复习几何:勾股定理学习目标:代数:熟练求一个数或一个式子的平方根,立方根以及实数比较大小。
几何:理解及应用勾股定理二. 重点、难点重点:代数:求平方根、立方根及实数运算几何:勾股定理的应用难点:代数:求平方根、立方根及实数运算几何:勾股定理的应用三. 知识要点代数:注意实数求平方根的条件,及实数运算的一些规律。
(1)求平方根:被开方数的小数点每向左或向右移动两位,结果相应的向左或向右移动1位。
(2)求立方根:被开方数的小数点每向左或向右移动三位,结果相应的向左或向右移动1位。
(3)若若几何:勾股定理内容:勾股定理作用:(1)直角三角形,已知两边求第三边。
(2)确定边长是无理数的线段。
【典型例题】例1. 当a为何值时,下列各式有意义。
(1)(2)(3)(4)分析:只有非负数才可以开平方;任何数都有立方根。
(1)(2)可取任意数,∴a为任意数。
(3)∴a可取任何值。
(4),例2. 已知,求的值。
解:要使原式有意义,需例3. 已知实数a在数轴上的位置如图所示,请比较的大小。
(1)(2)解:(1)由图知,(2)由图知,例4. 用作图法,在数轴上找出表示的点M。
设数轴上实数1,2对应的点分别为A,B作法:(1)过点B作数轴的垂线PQ(2)在PQ上截取BC=AB(3)以A为圆心,以AC为半径画弧交数轴正方向于点M,则M所对应的实数即为。
证明:在Rt△ABC中,AB=1,BC=1,根据勾股定理,得例5. 如图所示,在△ABC中,AB=6,AC=4,BC=8,,求。
分析:求△ABC的面积,需知AD的长。
解:设在Rt△ACD中,由勾股定理,得同理,在Rt△ABD中,【模拟试题】(答题时间:25分钟)1. 若互为相反数,求的算术平方根。
2. 用作图法在数轴上找出所表示的点P。
3. 若,求的值。
4. 若等腰三角形的两边分别长3cm与7cm,求底边长及底边上中线的长。
5. 如图所示,在△ABC中,,求BC。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
最新初中数学实数知识点总复习含答案一、选择题1.下列说法中,正确的是()A.-(-3)2=9B.|-3|=-3C±3D【答案】D【解析】【分析】根据绝对值的意义,乘方、平方根、立方根的概念逐项进行计算即可得.【详解】A. -(-3)2=-9,故A选项错误;B. |-3|=3,故B选项错误;3,故C选项错误;D. 4,=-4,故D选项正确,故选D.【点睛】本题考查了绝对值的意义,乘方运算、平方根、立方根的运算,熟练掌握各运算的运算法则是解题的关键.2.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-= 故选:A. 【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.3.在-3.5,227,0,2π,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】∵-3.5是有限小数,,∴-3.5、 ∵227=22÷7=3.142857&&是循环小数, ∴227是有理数; ∵0是整数,∴0是有理数;∵2π,,0.161161116…都是无限不循环小数,∴2π,,0.161161116…都是无理数,∴无理数有3个:2π,,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.4.已知,x y 为实数且10x +=,则2012x y ⎛⎫ ⎪⎝⎭的值为( )A .0B .1C .-1D .2012【答案】B【解析】【分析】 利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1, 所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1, 故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.5.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C【解析】-22=, 3.14,3=-是有理数;,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,① 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).6.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.7.下列各数中比3大比4小的无理数是( )A .10B .17C .3.1D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】 ∵四个选项中是无理数的只有10和17,而17>4,3<10<4∴选项中比3大比4小的无理数只有10.故选A .【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 8.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB ===∴22521AC =+=∴AE 5-∵A点表示的数是1-∴E点表示的数是51【点睛】掌握勾股定理;熟悉圆弧中半径不变性.9.4的平方根是( )A.2 B.2C.±2 D.±2【答案】D【解析】【分析】先化简4,然后再根据平方根的定义求解即可.【详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.10.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A2-1 B2+1 C2D2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】22+=-1和A2.112∴点A2.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为()A.或1B.1或﹣1 C.1或1 D.或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x的分式方程求解,结合x的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.【详解】解:①当x≥﹣x,即x≥0时,∵max{x,﹣x}=x2﹣x﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.12.下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身【答案】D【解析】A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选D.13.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【解析】【分析】== 1.414222≈,即可解答.【详解】== 1.414222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.14.( )A.3 B.3-C.3±D.4.5【答案】A【解析】分析:本题只需要根据算术平方根的定义,求9的算术平方根即可..故选A.点睛:本题考查了算术平方根的运算,比较简单.15.1的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.16.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 2=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.18.下列说法正确的是( )A .a 的平方根是B .aC.0.01的平方根是0.1D.2-=-(3)3【答案】B【解析】试题解析:A、当a≥0时,a的平方根为±a,故A错误;B、a的立方根为3a,本B正确;C、0.01=0.1,0.1的平方根为±0.1,故C错误;D、()23-=|-3|=3,故D错误,故选B.19.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系204的算术平方根为()A.2±B2C.2±D.2【答案】B【解析】4的值,再继续求所求数的算术平方根即可.4=2,而22,42,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.。
2021中考数学考点归类复习——专题七十三:勾股定理1.有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,试求这块空白地的面积.2.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.3.如图的图形取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,试求(a+b)2的值.4.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图2)方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM 和BM.(即AM+BM)(如图3)从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,当快艇Q在CD中间,DQ为多少时?△ABQ为等腰三角形?5.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?6.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.7.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?8.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,小辉同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.9.如图是一副秋千架,图1是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计),图2是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,顶端距离地面的高度AC为2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面的高度A′D为2米,求小巷的宽度.11.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.12.利用如图的4×4方格,作出面积为8平方单位的正方形,然后在数轴上表示出实数和﹣.13.如图,已知某学校A与直线公路BD相距3000米,且与该公路上一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯多少米?15.已知,如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2,求证:AB=BC.16.如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA'=0.4米),则梯脚B将外移(即BB'的长)多少米?17.如图1,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.2021中考数学考点归类复习——专题七十三:勾股定理参考答案1.有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,试求这块空白地的面积.【答案】解:连接AC,在Rt△ACD中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10米,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S空白=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).答:这块空白地的面积是96米2.2.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.【答案】解:(1)设AP=a,OA=b,由题意,解得,∴AP=13cm,OA=5cm.(2)当OA⊥OP时,在Rt△PAO中,OP===12,∴OP=12cm.3.如图的图形取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,试求(a+b)2的值.【答案】解:∵大正方形的面积是13,小正方形的面积是1,∴直角三角形的斜边的平方为13,∵直角三角形较短的直角边为a,较长的直角边为b,∴a2+b2=13,∵大正方形的面积减去小正方形的面积等于四个直角三角形的面积,∴4×ab=13﹣1,即2ab=12,∴(a+b)2=a2+2ab+b2=13+12=25.4.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图2)方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM 和BM.(即AM+BM)(如图3)从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,当快艇Q在CD中间,DQ为多少时?△ABQ为等腰三角形?【答案】解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B==,∵6<,∴方案1更合适;(2)如图,①AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4==2,∴QG=2+2(舍去)或2﹣2(舍去);②AB=BQ2=5或AB=BQ5=5时,DQ==3,∴QG=3+2=5或3﹣2=1(舍去),③G为CD中点时,当AQ3=BQ3时,(GQ3+2)2+12=(2﹣GQ3)2+42,解得:GQ3=,DQ=.故当DQ=3或时,△ABQ为等腰三角形.5.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.6.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.【答案】解:不会受影响,假设途中会遇到台风,且最初遇到的时间为th,此时轮船位于C处,台风中心移到E处,连接CE,则AC=20t,AE=AB﹣BE=100﹣40t,AC2+AE2=EC2.(20t)2+(100﹣40t)2=202,整理得:5t2﹣20t+24=0∵△=(﹣20)2﹣4×5×24<0∴方程无实数根,∴不会受影响.7.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?【答案】解:在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC==2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5﹣0.7=0.8m答:梯足向外移动了0.8m.8.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,小辉同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.【答案】解:(1)S△ABC=3×3﹣×3×1﹣×2×3﹣×1×2=;(2)如图,∵AB==a,BC==2a,AC==a,∴△ABC即为所求作三角形,则S△ABC=2a•4a﹣×a×2a﹣×2a×2a﹣×a×4a=3a2.故答案为:(1).9.如图是一副秋千架,图1是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计),图2是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.【答案】解:设AD=xm,则由题意可得AB=(x﹣0.5)m,AE=(x﹣1)m,在Rt△ABE中,AE2+BE2=AB2,即(x﹣1)2+1.52=(x﹣0.5)2,解得x=3.即秋千支柱AD的高为3m.10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,顶端距离地面的高度AC为2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面的高度A′D为2米,求小巷的宽度.【答案】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25.∵BD>0,∴BD=1.5米.∴CD=BC+BD=0.7+1.5=2.2米.答:小巷的宽度CD为2.2米.11.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【答案】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD==15,∴BC=BD+CD=6+15=21,∴S△ABC=BC•AD=×21×8=84.因此△ABC的面积为84.故答案为84.12.利用如图的4×4方格,作出面积为8平方单位的正方形,然后在数轴上表示出实数和﹣.【答案】解:如图,13.如图,已知某学校A与直线公路BD相距3000米,且与该公路上一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?【答案】解:根据题意得:AC=CD,∠ABD=90°.在直角三角形ABD中,∵AB=3000,AD=5000,∴BD==4000(m),设CD=AC=x米,BC=4000﹣x(米),在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000﹣x)2解得:x=3125,答:该超市与车站D的距离是3125米.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯多少米?【答案】解:在直角三角形AOB中,根据勾股定理,得:OB==6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,∴在Rt△A′OB′中,根据勾股定理,得:OA′==6(m).则AA′=8﹣6=2(m).答:梯顶离路灯2米.15.已知,如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2,求证:AB=BC.【答案】证明:∵∠ABC=90°,∴AB2+BC2=AC2,∵CD⊥AD,∴∠ADC=90°,∴AD2+CD2=AC2,∵AD2+CD2=2AB2,∴AC2=2AB2,∴AB2+BC2=2AB2,∴AB2=BC2,∴AB=BC.16.如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA'=0.4米),则梯脚B将外移(即BB'的长)多少米?【答案】解:(1)在△ABC中,∠ACB=90°,AB=2.5,BC=0.7.根据勾股定理可知答:梯子上端A到建筑物的底端C的距离为2.4米.(2)在△A'B'C'中,∠ACB=90°,A'B'=AB=2.5,A'C=AC﹣AA'=2.4﹣0.4=2 根据勾股定理可知B'C=,B'B=B'C﹣BC=1.5﹣0.7=0.8.答:梯脚B将外移0.8米.17.如图1,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.【答案】解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,∵AE=AE,∴△ACE≌△ADE(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(2)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则•AB•CH=•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.。
一、选择题1.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)2.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,245.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .8.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差9.(0分)[ID :10186]如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A.20B.16C.12D.810.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√313 11.(0分)[ID:10175]函数y=x√x+3的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.213.(0分)[ID:10172]如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-214.(0分)[ID:10170]如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD15.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10321]如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.18.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____.19.(0分)[ID :10311]若2(3)x -=3-x ,则x 的取值范围是__________.20.(0分)[ID :10299]已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.21.(0分)[ID :10286]一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.22.(0分)[ID :10268]在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=,则CFH ∠=________.23.(0分)[ID :10256]已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.24.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______25.(0分)[ID :10247]已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.三、解答题26.(0分)[ID :10408]如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.27.(0分)[ID :10383]已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG ,①求证:∠ODG =∠OCE ;②当 AB =1 时,求 HC 的长.28.(0分)[ID:10342]已知:如图,在▱ABCD中,设BA=a,BC=b.(1)填空:CA=(用a、b的式子表示)(2)在图中求作a+b.(不要求写出作法,只需写出结论即可)29.(0分)[ID:10339]如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.∆中,D是BC边上一点,E是AD的中点,过30.(0分)[ID:10335]如图所示,ABC=,连接BF.点A作BC的平行线交CE的延长线于F,且AF BD(1)求证:D是BC的中点;=,试判断四边形AFBD的形状,并证明你的结论.(2)若AB AC【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.A4.A5.B6.B7.B8.D9.D10.D11.B12.B13.D14.D15.C二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD得出∠BAD =180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解18.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及19.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤320.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键21.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方22.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直23.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一24.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题25.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质. 2.D解析:D【解析】【分析】 63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7.【详解】 63n 273n ⨯7n 7n∴7n 7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.A解析:A【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.5.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.7.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
八年级上册数学复习提纲整理八年级上册数学复习提纲第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。
满足的三个正整数称为勾股数。
第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。
(2)性质:①当≥0时,≥0;当0时,无意义;②=;③。
2.立方根的概念及其性质:(1)概念:若,那么是的立方根,记作:;(2)性质:①;②;③=3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5.算术平方根的运算律:(≥0,≥0);(≥0,0)。
第三章图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
北师大版八年级数学上册复习纲要第一章 勾股定理a 2b 2c 2 。
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法) 。
3.勾股定理逆定理:假如三角形的三边长a ,b ,c 知足 a 2 b 2 c 2 ,那么这个三角形是直角 三角形。
知足 a 2b 2c 2 的三个正整数称为勾股数。
第二章 实数1.平方根和算术平方根的观点及其性质:( 1)观点:假如 x 2a ,那么 x 是 a 的平方根,记作:a ;此中 a 叫做 a 的算术平方根。
( 2)性质:①当 a ≥ 0 时, a ≥0;当 a <0时,a 无心义;②a2a 。
=a;③ a 22.立方根的观点及其性质:( 1)观点:若 x 3a ,那么 x 是 a 的立方根,记作:3a ;( 2)性质:① 3 a 3 a ;② 3a ;③ 3 a =3a3 a3.实数的观点及其分类:( 1)观点:实数是有理数和无理数的统称;( 2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无穷不循环小数;小数可分为有限小数、无穷循环小数和无穷不循环小数;此中有限小数和无穷循环 小数称为分数。
4.与实数有关的观点: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完整一致;在实数范围内,有理数的运算法例和运算律相同建立。
每一个实数都能够用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
所以,数轴正好能够被实数填满。
5.算术平方根的运算律:a ba b ( a ≥ 0, b ≥ 0);aa( a ≥ 0, b >0)。
第三章 图形的平移与旋转b b 1.平移:在平面内,将一个图形沿某个方向挪动必定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的地点;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
第十六章 分式一、分式的概念:1、下列式子是分式的有(1)21+x 、(2)12-x x 、(3)112+-x x 、(4)2-πx、(5)23+x、(6)21-x 、 (7)x 322、下列式子是分式的有(1)21--x x 、(2)、x 21(3)32-x 、(4)121-x 、(6)、242--x x (7)12-x二、分式有无意义的条件:1、当x 时,分式12-+x x 有意义;当x 时,分式12-+x x 无意义。
2、当a 为任何实数时,下列分式中一定有意义的是( )A 、21aa +B 、11+aC 、112-+a aD 、112++a a3、如果代数式1-x x有意义,那么x 的取值范围是( ) A 、x ≥0 B 、x ≠0 C 、x>0 D 、x ≥0且x ≠14、当x 时,分式12+-x x 有意义;当x 时,分式12-+x x 无意义。
5、当a 为任何实数时,下列分式中一定有意义的是( )A 、1122--a aB 、22aa -C 、112++a aD 、212++a a6、如果代数式22-+x x 有意义,那么x 的取值范围是( ) A 、x ≥-2 B 、x ≠2 C 、x ≥-2且x ≠2 D 、x>-2 7、如果代数式22+-x x 有意义,那么x 的取值范围是( )A 、x ≥-2B 、x ≠2C 、x ≥-2且x ≠2D 、x>-2三、分式的值为0的条件: 1、分式22--x x 的值为0,则x 的值为( )A 、 0B 、2C 、-2D 、2或-22、若分式32122---x x x 的值为0,则x 的值为 。
3、分式33+-x x 的值为0,则x 的值为( )A 、 0B 、-3C 、3D 、3或-34、若分式43422---x x x 的值为0,则x 的值为 。
四、分式的值为正、为负的条件:1、若分式21+a 的值为正,则a ;若分式21+a 的值为负,则a 。
鲁教版七年级数学上册期末总复习第三四单元勾股定理和实数复习测试题(含答案)一.选择题(共14小题)1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°(1题图)(3题图)(6题图)(7题图)2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8D.2,3,43.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=()A.25B.31C.32D.404.知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或255.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6B.4.5C.2.4D.86.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺7.如图,圆柱形纸杯高8cm,底面周长为l2cm,在纸杯内壁离杯底2Cem的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()A.2B.6C.10D.以上答案都不对8.在实数0、π、、、﹣中,无理数的个数有()A.1个B.2个C.3个D.4个9.的算术平方根是()A.2B.±2C.D.±10.的平方根是()A.±9B.9C.3D.±311.下列运算中,正确的是()A.(﹣2)0=1B.=﹣3C.=±2D.2﹣1=﹣212.若一个数的平方根与它的立方根完全相同,则这个数是()A.0B.1C.﹣1D.±1,013.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c14.下列四个数中的负数是()A.﹣22B.C.(﹣2)2D.|﹣2|二.填空题(共8小题)15.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.(15题图)(16题图)(17题图)16.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…,则OA10的长度为.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=.18.一个零件的形状如图,工人师傅量得这个零件的各边尺寸(单位:dm)如下:AB=3,AD=4,BC=12,CD=13,且∠DAB=90°,求这个零件的面积.(18题图)(19题图)19.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=.20.若实数m,n满足(m﹣1)2+=0,则(m+n)5=.21.已知a是﹣1的整数部分,则a=.22.计算:|﹣2|+(π﹣0)0×(﹣1)2015﹣+()﹣3=.三.解答题(共8小题)23.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.24.如图,已知AC=4,BC=3,BD=12,AD=13,∠ACB=90°,试求阴影部分的面积.25.如图,在四边形地块ABCD中,∠B=90°,AB=30m,BC=40m,CD=130m,AD=120m,求这块地的面积.26.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?27.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.28.求下列x的值.(1)3x3=﹣81;(2)x2﹣=0.29.在数轴上表示与它的相反数.30.探索与应用.先填写下表,通过观察后再回答问题:a…0.00010.01110010000……0.01x1y100…(1)表格中x=;y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=1.8,若=180,则a=;(3)拓展:已知,若,则z=.鲁教版七年级数学上册期末总复习第三四单元勾股定理和实数复习测试题参考答案一.选择题(共14小题)1.B;2.B;3.B;4.D;5.D;6.D;7.C;8.B;9.C;10.D;11.A;12.A;13.D;14.A;二.填空题(共8小题)15.76;16.32;17.24;18.36;19.6;20.-1;21.3;22.7;三.解答题(共8小题)23.解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.则S四边形ABCD故四边形ABCD的面积是36.(23题图)(24题图)(25题图)24.解:连接AB,∵∠ACB=90°,∴AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,阴影部分的面积=AB×BD﹣AC×BC=30﹣6=24.答:阴影部分的面积是24.25.解:连接AC,如下图所示:∵∠B=90°,AB=30,BC=40,∴AC==50,在△ACD中,AC2+AD2=2500+14400=16900=CD2,∴△ACD是直角三角形,=S△ABC+S△ACD=AB•BC+AC•AD=×30×40+×50×120=600+3000∴S四边形ABC D=3600(m2).26.解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC=m=2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5m﹣0.7m=0.8m答:梯足向外移动了0.8m.27.解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.28.解:(1)系数化为1得:x3=﹣27,∴x=﹣3;(2)移项得:∴,.29.解:如图所示:30.解:(1)x=0.1,y=10,故答案为:0.1,10;(2)①=31.62,a=32400,故答案为:31.62,32400;(4)z=0.012,故答案为:0.012.。
专题2.4 实数(提高篇)专项练习2一、单选题1.在下列实数中,属于无理数的是()A.53B.4C.3.14D.82.若Rt ABC的两边长a,b满足()2430a b-+-=,则第三边的长是()A.5B.7C.5或7D.5或73.3729的算术平方根等于()A.9B.9±C.3D.3±4.若9﹣13的整数部分为a,小数部分为b,则2a+b等于()A.12﹣13B.13﹣13C.14﹣13D.15﹣135.对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a;当a>b时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{30,a}=a,min{30,b}=30,且a和b 为两个连续正整数,则2a﹣b的值为()A.1B.2C.3D.46.如图,在数轴上A,B,C,D四个点中,点C最可能表示的实数是().A.2B.3C.6D.107.对于1162-这样的根式,我们可以利用“配方法”进行化简:116292182-=-+()29232=-=-.运用同样的方法化简236104322-+-的结果是()A.33-B.32-C.53D.528.如图,某计算器中有√,1x⁄,x2三个按键,以下是这三个按键的功能.①√:将荧幕显示的数变成它的算术平方根;①1x⁄:将荧幕显示的数变成它的倒数;①x2:将荧幕显示的数变成它的平方.小明输入一个数据后,依次按照从第一步到第三步循环按键.如果一开始输入的数据为10,那么第2018次按键后,显示的结果是()输入x→x2→1x⁄→√x第一步第二步第三步A.√1010B.100C.0.01D.0.19.若15a=,则实数a在数轴上对应的点的大致位置是()A.B.C.D.10.按如图所示的程序计算,若开始输入的值为25,则最后输出的y值是()A.5B.5±C.5D.5±二、填空题11.在﹣1、0、0.101001…、π、5.1、7的6个数中,随机抽取一个数,抽到无理数的概率是_____.12.将1,2,3,6按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是___.13.5-的相反数是__;13的倒数是__;2的平方根是__;9的算术平方根是__;实数8的立方根是__.14.规定用符合[x]表示一个实数的整数部分,例如[3.69]=3,[3]1=,按此规定,[191]-=______ 15.比较大小:27____4216.计算:(6+5)2015·(6-5)2016=________.17.若最简根式25b +和34a b -是同类二次根式,则a •b 的值是_____.18.已知2(4)5y x x =--+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.19.若0xy >,则二次根式2y x x -化简的结果为________. 20.化简322+=___________.21.若22a 3a 1b 2b 10-++++=,则221a b a+-=_____. 22.将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是__;(5,2)与(20,17)表示的两数之积是__.三、解答题23.计算下列各题:(1)(48+20)-(12-5); (2)20+5 (2+5); (3) 48÷3-215×30+(22+3)2; (4)(2-3)2017(2+3)2018-|-3|-(-2)0.24.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.25.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中x=2+3,y=2﹣3.26.已知3232x -=+,3232y +=-,求22x y y x +的值.27.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如()232212+=+,善于思考的小明进行了以下探索:设()222a b m n +=+(其中a 、b 、m 、n 均为正整数),则有222222a b m mn n +=++, ①a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分2a b +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若()266a b m n +=+,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若()2433a m n +=+,且a 、m 、n 均为正整数,求a 的值;(3)化简:72180-+.28.如图,五边形ABCDE 中,,,90AB a BC b B ︒==∠=.且2226464368a a b a -+-=++. (1)求-a b 的平方根;(2)请在CD 的延长线上找一点G ,使得四边形ABCG 的面积与五边形ABCDE 的面积相等;(说明找到G 点的方法)(3)已知点F 在AC 上,//FH AB 交BC 于H ,若6FH =,则BH = .参考答案1.D 【分析】 无限不循环小数是无理数,根据定义解答. 【详解】解:①4=2, ① 53、2、3.14是有理数, 属于无理数的是8,故选:D .【点拨】此题考查无理数的定义,熟记定义是解题的关键.2.D【分析】先求出a 和b 的值,再设第三边为x ,讨论斜边情况,利用勾股定理建立方程求解即可.【详解】解:①()240,30,a b -≥-≥又①()2430a b -+-=,①40,30,a b -=-=①4,3,a b ==设第三边长为x ,由,a b >则共有以下两种情况:①当222a b x +=时,5,x =①当222b x a +=时,由0,x >所以7x =,①第三边长是5或7;故选:D .【点拨】本题考查了平方和算术平方根的非负性特点、利用平方根解方程以及勾股定理的应用,解题关键是牢记它们的“非负性”,理解并能运用勾股定理求直角三角形的边等,该题属于中等难度题目,易错点是学生容易误选A ,该题蕴含了分类讨论的思想方法等. 3.C【分析】根据立方根、算术平方根的定义求解即可.【详解】解:因为39729=,所以3729=9,因此3729的算术平方根就是9的算术平方根,又因为9的算术平方根为3,即93=,所以3729的算术平方根是3,答案:C.【点拨】本题考查了立方根、算术平方根的定义,理解立方根、算术平方根的意义是得出答案的关键.4.C【分析】先估算13的大小,再估算9﹣13的大小,进而确定a、b的值,最后代入计算即可.【详解】解:①3<13<4,①﹣4<﹣13<﹣3,①5<9﹣13<6,又①9﹣13的整数部分为a,小数部分为b,①a=5,b=9﹣13﹣5=4﹣13,①2a+b=10+(4﹣13)=14﹣13,故选:C.【点拨】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.5.D【分析】根据新定义求出a ,b 的范围,进而求得a 、b 值,然后再代入求出2a ﹣b 的值即可. 【详解】解:①min {30,a }=a ,min {30,b }=30.①a <30,b >30.①a ,b 是两个连续的正整数.①a =5,b =6.①2a ﹣b =2×5﹣6=4.故选:D .【点拨】本题考查新定义下的实数运算、代数式求值、无理数的估算,理解新定义,正确求出a 、b 是解答的关键.6.C【分析】先观察数轴上得到点C 的大体范围为2-3之间,再对下方无理数进行估算,选择范围在2-3之间的数字即可.【详解】解:观察数轴可知C 2<<3,A :①124<<,①122<<,A 错误;B :①134<<,①132<<,B 错误;C :①469<<,①263<<,C 正确;D :①91016<<,①103<<4,D 错误.故选:C .【点拨】本题主要考查的是估算无理数的大小,求得的无理数的大致范围并结合数轴进行对应是解题的关键.7.B【分析】322-可以化为()221-,642+可以化为()222+,1162-可以化为()232-,开方即可求解.【详解】解:236104322-+-=()223610421-+-=()23610421-+-=236642-+=()223622-+=()23622-+=1162-=()232-=32-.故选B.【点拨】本题考查了二次根式的性质和化简,能够把被开方数配成完全平方的形式是解决本题的关键.8.C【解析】【分析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.【详解】根据题意得,102=100,1100=0.01,√0.01=0.1,0.12=0.01,10.01=100,√100=10,…,因此每6步循环一次.①2018=6×336+2,①第2018次按键后,荧幕显示的数是0.01.故选C.【点拨】此题考查了计算器—数的平方,弄清按键顺序是解本题的关键. 9.B【分析】根据无理数的估算,估算出a的取值范围即可得答案.【详解】①9<15<16,①3<15<4,①3<a<4,故选B.【点拨】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,估算出15的取值范围是解题关键.10.B【分析】根据已知进行计算,并判断每一步输出结果即可得到答案.【详解】解:①25的算术平方根是5,5不是无理数,①再取5的平方根,而5的平方根为5±,是无理数,①输出值y=5±,故选:B.【点拨】本题考查实数分类及计算,判断每步计算结果是否为无理数是解题的关键.11.1 3【分析】根据概率的求法,找准两点:①全部情况的总数;①符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:①在-1、0、0.101001、π、5.1、7的6个数中,-1、0、7是整数,有理数;5.1是有限小数,有理数;无理数有0.101001…、π共2个,①随机抽取一个数,抽到无理数的概率是21 63 =,故答案为:13.【点拨】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12.1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)2020 1234202020412102+⨯++++⋯⋯+==,(2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点拨】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.13.5;3;±2;3;2.【分析】根据只有符号不同的两个数互为相反数,乘积是1的两个数互为倒数,平方根的定义,算术平方根的定义,立方根的定义解答.【详解】解:﹣5的相反数是5;①3×13=1,①13的倒数是3;2的平方根是±2;①32=9,①9的算术平方根是3;①23=8,①实数8的立方根是2. 故答案为:5,3,±2,3,2. 【点拨】本题考查了实数的性质,主要涉及到相反数的定义,倒数的定义,平方根、算术平方根以及立方根的定义,是基础题,熟练掌握概念是解题的关键.14.3【详解】试题解析:①4<19<5,①3<19-1<4,①[19-1]=3.故答案为3.15.<【分析】首先把括号外的数移到括号内,再比较被开方数的大小可得答案.【详解】27=28,42=32,①28<32,①28<32,①27<42.故答案为<.【点拨】此题主要考查了实数的比较大小,根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.16.6-5【详解】原式=()()()2015201565656565+--=-. 故答案为65-.17.18【分析】由同类二次根式的被开方数相同即可解题. 【详解】解:①最简根式2b 5+和a 3b 4-是同类二次根式,①a=2,2b+5=3b -4,解得:a=2,b=9,①ab=18.【点拨】本题考查了同类根式的应用,属于简单题,熟悉同类根式的概念是解题关键. 18.2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】2(4)545y x x x x =--+=--+当4x <时,4592y x x x =--+=-当4x ≥时,451y x x =--+=则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点拨】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.19.-y -【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:①0xy >,且2y x -有意义, ①00x y <,<,①2·y y x x y x x--==---.故答案为y --. 【点拨】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即2(0)(0)a a a a a a ≥⎧==⎨-<⎩,a a b b = (a ≥0,b >0). 20.2+1【分析】先将322+用完全平方式表示,再根据()()()20000a a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为()2223221222122212+=++=++=+, 所以()2322121212+=+=+=+,故答案为: 21+.【点拨】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.21.6【解析】试题分析:①()2222a 3a 1b 2b 10a 3a 1b 10-++++=⇒-+++=, ①222221111a 30a 3a 29a 7a 3a 10{{{{{a a a a b 10b 1b 1b 1b 1-+=+=++=+=-+=⇒⇒⇒⇒+==-=-=-=-. ①221a b 71716a +-=--=-=. 22.6; 32.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m ﹣1排有(m ﹣1)个数,从第一排到(m ﹣1)排共有:1+2+3+4+…+(m ﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3)所表示的数是6;由图可知,(5,2)所表示的数是6;①第19排最后一个数的序号是:1+2+3+4+…+19=190,则(20,17)表示的是第190+17=207个数,207÷4=51…3,①(20,17)表示的数是3,①(5,2)与(20,17)表示的两数之积是:6332⨯=.故答案为632;.【点拨】本题考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.23.(1) 23+35;(2) 45+5;(3) 15+26;(4)1.【解析】试题分析:这是一组二次根式的混合运算题,按照二次根式的相关运算法则计算即可.试题解析:(1)原式=43252352335+-+=+;(2)原式=25255455++=+;(3)原式=42684631526-+++=+;(4)原式=2017-+⨯+--=+--=.[(23)(23)](23)312331124.(1)a=5,b=2,c=3 ;(2)±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值.(2)将a、b、c的值代数式求出值后,进一步求得平方根即可.【详解】(1)①5a+2的立方根是3,3a+b-1的算术平方根是4,①5a+2=27,3a+b-1=16,①a=5,b=2,①c 是13的整数部分, ①c=3, (2)①a=5,b=2,c=3,①3a -b+c=16,3a -b+c 的平方根是±4.【点拨】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.25.3xy,3【分析】根据平方差公式、单项式乘多项式和完全平方公式进行展开,然后进行合并化简,最后再将x 、y 的值代入化简后的式子即可解答本题.【详解】(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2=x 2﹣y 2+xy+2y 2﹣x 2+2xy ﹣y 2=3xy ,当x=2+3,y=2﹣3时,原式=3×(2+3)×(2﹣3)=3.【点拨】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算顺序以及乘法公式是解答本题的关键.26.970【分析】首先把x 和y 进行分母有理化,然后将其化简后的结果代入计算即可.【详解】解:①32(32)(32)52632(32)(32)x ---===-++-,32(32)(32)52632(32)(32)y +++===+--+, ①原式22526526(526)(526)-+=++-5265264920649206-+=++-(526)(49206)(526)(49206)(49206)(49206)(49206)(49206)--++=++--+24510069862402451006986240=--+++++970=.【点拨】本题主要考查二次根式的化简求值,解答本题的关键是对x 和y 进行分母有理化及掌握二次根式的运算法则.27.(1)m 2+6n 2,2mn ;(2)a =13或7;(3)5﹣1.【分析】(1)利用完全平方公式展开得到()2226266m nm mn n +=++,再利用对应值相等即可用m 、n 表示出a 、b ;(2)直接利用完全平方公式,变形后得到对应值相等,即可求出答案;(3)直接利用完全平方公式,变形化简即可.【详解】解:(1)①()22266266a b m nm mn n +=+=++, ①a =m 2+6n 2,b =2mn .故答案为:m 2+6n 2,2mn ;(2)①()222433233a m nm mn n +=+=++, ①a =m 2+3n 2,mn =2,①m 、n 均为正整数,①m =1、n =2或m =2,n =1,①a =13或7;(3)①()2218020451251251+=++=+=+,则()()27218072516255151-+=-+=-=-=-.【点拨】本题考查了二次根式性质和完全平方式的内容,考生须先弄清材料中解题的方法,同时熟练掌握和灵活运用二次根式的相关运算法则以及二次根式的化简公式是解题的关键. 28.(1)-a b 的平方根为2±;(2)见解析;(3)32BH =【分析】(1)根据已知条件即可求a−b 的平方根;(2)连接AD ,过点E 作//EG AD 交CD 延长线于G 点,即为所求;(3)根据等面积法即可求线段BH 的长. 【详解】()1由题知:22640640a a ⎧-≥⎨-≥⎩ 226464a a ⎧≥∴⎨≤⎩264a ∴=8a ∴=±80a +≠8a ∴≠-8a ∴=236b ∴=6b ∴=±0b BC =>6b ∴=①a -b=2①a -b 的平方根是2±;()2如图①连接AD①过点E 作//EG AD 交CD 延长线于G 点 理由: 连接AG 交ED 于点O//AD EGAED AGD S S ∆∆∴=AOE GOD S S ∆∆∴=ABCDE AOE ABCDO GOD ABCDO S S S S S ∆∆∴=+=+ABCG S =①所以四边形ABCG 的面积与五边形ABCDE 的面积相等;(3)连接FB ,FH①AB过点F 作FQ①AB 于点Q ,则四边形FQBH 是矩形,①FQ =BH ,ABC ABF FBC S S S ∆∆∆=+ 111222AB BC AB h BC FH ∴=+ 86866h ∴⨯=⨯+⨯32h ∴= 32BH h ∴== 故答案为:32.【点拨】本题考查了作图−应用与设计作图,综合运用平方根、二次根式有意义的条件、平行线的性质、三角形的面积等知识解决问题,解题关键是利用等面积法.。
勾股定理及⼆次根式综合复习(含答案)勾股定理及⼆次根式复习⼀、知识梳理:(⼀)勾股定理:1、勾股定理定义:如果直⾓三⾓形的两直⾓边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅勾:直⾓三⾓形较短的直⾓边股:直⾓三⾓形较长的直⾓边弦:斜边勾股定理的逆定理:如果三⾓形的三边长a ,b ,c 有下⾯关系:a 2+b 2=c 2,那么这个三⾓形是直⾓三⾓形。
2. 勾股数:满⾜a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15;5,12,13 3. 判断直⾓三⾓形:如果三⾓形的三边长a 、b 、c 满⾜a 2+b 2=c 2 ,那么这个三⾓形是直⾓三⾓形。
(经典直⾓三⾓形:勾三、股四、弦五)其他⽅法:(1)有⼀个⾓为90°的三⾓形是直⾓三⾓形;(2)有两个⾓互余的三⾓形是直⾓三⾓形。
⽤它判断三⾓形是否为直⾓三⾓形的⼀般步骤是:(1)确定最⼤边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直⾓的三⾓形;若a 2+b 2<c 2,则此三⾓形为钝⾓三⾓形(其中c 为最⼤边);若a 2+b 2>c 2,则此三⾓形为锐⾓三⾓形(其中c 为最⼤边)4.注意:(1)直⾓三⾓形斜边上的中线等于斜边的⼀半(2)在直⾓三⾓形中,如果⼀个锐⾓等于30°,那么它所对的直⾓边等于斜边的⼀半。
(3)在直⾓三⾓形中,如果⼀条直⾓边等于斜边的⼀半,那么这条直⾓边所对的⾓等于30°。
5. 勾股定理的作⽤:(1)已知直⾓三⾓形的两边求第三边;(2)已知直⾓三⾓形的⼀边,求另两边的关系;(3)⽤于证明线段平⽅关系的问题;(4)利⽤勾股定理,作出长为n 的线段. (⼆)⼆次根式:1.⼆次根式的概念:形如a (a≥0)的式⼦叫做⼆次根式(⼆次根式中,被开⽅数⼀定是⾮负数,否则就没有意义,并且根式a ≥0)2.最简⼆次根式:同时满⾜:①被开⽅数的因数是整数,因式是整式(分母中不含根号);②被开⽅数中不含能开得尽⽅的因数或因式.这样的⼆次根式叫做最简⼆次根式. 3. 同类⼆次根式:⼏个⼆次根式化成最简⼆次根式后,如果被开⽅数相同,这⼏个⼆次根式就叫同类⼆次根式. 4.⼆次根式的性质:①a a ≥≥00()②()a a a 20=≥()③a aa aaa a200==>=-<||()()()④ab a b a b=?≥≥(,)00⑤babaa b=>≥(,)005.分母有理化及有理化因式:把分母中的根号化去,叫做分母有理化;两个含有⼆次根式的代数式相乘,?若它们的积不含⼆次根式,则称这两个代数式互为有理化因式.6.⼆次根式的运算(1)因式的外移和内移:如果被开⽅数中有的因式能够开得尽⽅,那么,就可以⽤它的算术根代替⽽移到根号外⾯;如果被开⽅数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外⾯,反之也可以将根号外⾯的正因式平⽅后移到根号⾥⾯.(2)⼆次根式的加减法:先把⼆次根式化成最简⼆次根式再合并同类⼆次根式.(3)⼆次根式的乘除法:⼆次根式相乘(除),将被开⽅数相乘(除),所得的积(商)仍作积(商)的被开⽅数并将运算结果化为最简⼆次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适⽤于⼆次根式的运算.7.使分母不带根号(分母有理化)常⽤⽅法:①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
第16章二次根式1.计算的结果为()A.B.C.2 D.2.下列计算正确的是()A.4﹣3=1 B.+=C.+=3D.3+2=53.下列各式①;②;③;④;⑤,其中二次根式的个数有()A.1个B.2个C.3个D.4个4.在二次根式,,,,,中,最简二次根式的个数是()A.1 B.2 C.3 D.45.函数y=++2,则x y的值为()A.0 B.2 C.4 D.86.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A、3B、4C、5D、67.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③8.下列说法正确的是()A .的倒数B .C .的相反数是D .是分数9.把(2﹣x )的根号外的(2﹣x )移入根号内得( )A .B .C .﹣D .﹣10.已知方程+3=,则此方程的正整数解的组数是( )A .1B .2C .3D .411.化简﹣= .12.下列各式①,②,③,④,⑤,⑥,⑦(其中a <0)中,其中二次根式有________个.13.已知1<x <2,,则的值是 .14.若最简二次根式与的被开方数相同,则a 的值为 .15.计算:+-1+(2+1)(3-)=__________.16.若3)3(-•=-m m m m ,则m 的取值范围是 。
17.已知y=+﹣4,计算x﹣y2的值.18.若x,y都是实数,且y=+1,求+3y的值.19.已知实数x,y满足x2+y2﹣4x﹣2y+5=0,求的值.20.阅读材料,请回答下列问题.材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积,用现代式子表示即为:S=①(其中a,b,c为三角形的三边长,S为面积),而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S=……②(其中p=)材料二:对于平方差公式:a2﹣b2=(a+b)(a﹣b)公式逆用可得:(a+b)(a﹣b)=a2﹣b2,例:a2﹣(b+c)2=(a+b+c)(a﹣b﹣c):(1)若已知三角形的三边长分别为4,5,7,请分别运用公式①和公式②,计算该三角形的面积;(2)你能否由公式①推导出公式②?请试试,写出推导过程.21.已知x=(+),y=(﹣),求下列各式的值.(1)x2﹣xy+y2;(2)+.22.已知二次根式.(1)当x =3时,求的值.(2)若x 是正数,是整数,求x 的最小值.23.已知长方形的长为a ,宽为b ,且a =,b =.(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.24.已知:的值。
(易错题精选)初中数学实数知识点总复习含答案解析(1)一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q 即2的整数部分.3.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.5.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( )A .②④B .②③C .①④D .①③【答案】D【解析】【分析】 先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.6.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE =5 ∵A 点表示的数是1- ∴E 点表示的数是51-【点睛】掌握勾股定理;熟悉圆弧中半径不变性.7.4的算术平方根为( )A .2±B .2C .2±D .2【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.8.16的算术平方根是( )A .±4B .-4C .4D .±8【答案】C【解析】【分析】根据算术平方根的定义求解即可求得答案.【详解】 24=16Q ,16∴的算术平方根是4.所以C 选项是正确的.【点睛】此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.10.如图所示,数轴上表示3、13的对应点分别为C 、B ,点C 是AB 的中点,则点A 表示的数是 ( )A .13B .13C .13D 13 【答案】C【解析】点C 是AB 的中点,设A 表示的数是c 1333c =-,解得:13C . 点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.14.1的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;a<是不可能事件;③若a为实数,则0④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是164±=±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.下列说法:①36的平方根是6; ②±9的平方根是3; 164±; ④ 0.01是0.1的平方根; ⑤24的平方根是4; ⑥ 81的算术平方根是±9.其中正确的说法是( )A .0B .1C .3D .5 【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;16=4164±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.17.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .2或12B .1或﹣1C .12或1D .2或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.18.实数)A3<<B.3<C3<<<<D3【答案】D【解析】【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.在实数范围内,下列判断正确的是()A.若2t ,则m=n B.若22a b>,则a>bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.。
八年级数学《勾股定理》《实数》复习题
一、填空题:
1、已知直角三角形的三边长为6、8、x ,则以x 为边的正方形的面积为_____。
2、如右图:以直角三角形斜边为边的正方形面积是 ;
3、9的算术平方根是 , 0)5(-的立方根是
4、在棱长为5的正方体木箱中,想放入一根细长的铁丝,则这根铁丝的最大长度可能是 ;
5、2
10-的算术平方根是 ,16的平方根是 ;
6、计算:_________,
1125
61
3
=- 7、若a 、b 互为相反数,c 、d 互为负倒数,则______3=++cd b a ; 8、37-的相反数是 ;绝对值等于3的数是 ; 9、把下列各数分别填入相应的集合里:
2
,3.0,10,1010010001.0,125,722,0,122
3π---∙-
有理数集合:{ };无理数集合:{ };
负实数集合:{ }; 10、已知5-a +3+b =0,那么a —b= ;
11、有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到
另一棵树的树梢,至少飞了 米.
12、如图,把直角三角形ABC 的斜边AB 放在定直线L 上,按顺时针方向在L 上转动两次,使它转到△A
”B ”C ”的位置.设BC =1,
AC =3,则顶点A 运动到点A ”的位置时,点A 经过的路线长是 (计算结果不取近似值). 13、已知:如图(1),在Rt △ABC 中,∠B=90°,D 、E 分别是边AB 、AC 的中点,DE=4,AC=10,则AB=_____________.
14、一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那
F
第14
题图
C
么它所行的最短路线的长是_____________。
15、把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能按要求把三角形做好。
二.选择题:
1、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
7
24
25
207
15
2024
25
7
25
20
24
257
202415
(A)
(B)
(C)
(D)
2、在△ABC 中,AB=15,AC=13,高AD=12,则三角形的周长是( )
(A )42 (B)32 (C)42或32 (D)37或33.
3、已知一直角三角形的木版,三边的平方和为1800cm 2
,则斜边长为( ).
(A )80cm (B)30cm (C)90cm (D120cm.
4、下列六种说法正确的个数是 ( ) (A) 1 ( B) 2 (C) 3 (D) 4 ○
1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○
4无理数与无理数的和一定还是无理数 ○5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数 5、下列语句中正确的是 ( ) (A) 9-的平方根是3- (B) 9的平方根是3 (C) 9的算术平方根是3± (D) 9的算术平方根是3
6、下列运算中,错误的是 ( ) ①1251144251
=,②4)4(2±=-,③22222-=-=-,④20
9
5141251161=
+=+ (A) 1个 ( B) 2个 (C) 3个 (D) 4个
7、若9,42
2==b a ,且0<ab ,则b a -的值为 ( )
(A) 2- (B) 5± (C) 5 (D) 5-
8、实数13 ,2
4 ,6
π中,分数的个数有( )
A 、0
B 、1
C 、2
D 、3
三.计算: 1、24
612⨯ 2、)32)(32(-+
3、2)5
25(-
4、2224145-
5、 )81()64(-⨯-
6、
3
12
27-
7、348- 8、 ()
32
22143-⎪⎭
⎫
⎝⎛-⨯+
.
9、求x
(1)8)1(22=-x (2) 8)12(3-=-x
四.解答题:
1、一个长方形的长与宽的比是5:3,它的对角线长为68,求这个长方形的长与宽(结果保留两个有效数字)
2、已知a a a =-+-20052004,求2
2004-a 的值;
4、自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.92
t .有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落, 刚好另有一学生站在与下落的玻璃杯同一直线的地面上, 在玻璃杯下落的同时楼上的学生惊叫一声. 问这时楼下的学生能躲开吗? (声音的速度为340米/秒)
5、如图, 一等边三角形的边长为10, 求它的面积.
7、如图, E 是长方形ABCD 边AD 的中点, AD=2AB=2,
求ΔBCE 的面积和周长
8、如图,有一块塑料矩形模板ABCD ,长为10cm ,宽为5cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :
①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.
9、一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?
B
E
C
A A ′ A ′
O
第24题图。