第1章 工程材料的分类与键合方式
- 格式:ppt
- 大小:3.11 MB
- 文档页数:20
材料科学基础考研大纲解析大纲解析及重点知识(自编)【考试大纲解析】绪论部分材料科学与工程:1.材料的主要类型及其基本特性。
工程材料主要可以划分为:金属、陶瓷、聚合物、复合材料、半导体。
通常所说的三大固体材料是:金属材料(金属中大量的自由电子能在金属两端电势差的作用下定向流动,形成电流,显示金属良好的导电性。
温度升高,金属正离子振动振幅增大,电子运动受阻,电阻升高,因此金属具有正的电阻温度系数。
金属热量的传递,不仅依靠金属正离子的振动,更由于自由电子的运动,极大地增强了热量传递,所以金属具有良好的导热性。
自由电子容易吸收可见光的能量,随后又将吸收的可见光的能量辐射出来,从而使金属不透明具有光泽。
金属的两部分作相对位移时,金属正离子仍沉浸在电子云中,保持着金属键结合,因此金属能变形而不断裂,表现出延展性。
)、陶瓷材料(也叫无机非金属材料,特性:)、高分子材料(特性:质量轻、比强度高、比模量高、耐腐蚀性能好、绝缘性好。
)第1部分材料的原子结构与键合1.原子结构与原子的电子结构;原子结构、原子排列对材料性能的影响。
决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律,以及原子集合体的形貌特征等。
原子是由质子和中子组成的原子核,以及核外的电子所构成的。
原子的电子结构:电子在原子核外空间作高速旋转运动,就好像带负电荷的云雾笼罩在原子核周围,故称为电子云。
电子既具有粒子性又具有波动性,即波粒二象性。
2.材料中的结合键的类型、本质,各结合键对材料性能的影响,键-能曲线及其应用。
【解析】结合键可分为化学键和物理键两大类。
化学键包括金属键、离子键和共价键;物理键即范德瓦尔斯力。
此外还有一种氢键,性质介于化学键和范德瓦尔斯力之间。
金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。
金属键无饱和性和方向性。
离子键——正负离子依靠他们之间的静电引力结合在一起。
工程材料的分类工程材料是指用于建筑、道路、桥梁、机械制造等工程领域的材料。
根据其性质和用途的不同,工程材料可以被分为金属材料、非金属材料和复合材料三大类。
首先,金属材料是指主要由金属元素组成的材料,如铁、铜、铝、镁等。
金属材料具有良好的导电性、导热性和机械性能,因此在工程中得到广泛应用。
根据其化学性质和晶体结构的不同,金属材料又可以分为黑色金属和有色金属两大类。
黑色金属主要是指铁、钢铁和铸铁,具有较高的强度和硬度,适用于制造建筑结构、机械零件等。
而有色金属则包括铜、铝、镁等,具有良好的耐腐蚀性和导热性,适用于制造电线、散热器等。
其次,非金属材料是指不含金属元素或金属含量较少的材料,如水泥、玻璃、陶瓷、塑料等。
非金属材料具有较轻的重量、良好的绝缘性能和耐腐蚀性能,因此在建筑材料、电气材料等方面得到广泛应用。
根据其原料和制备工艺的不同,非金属材料又可以分为无机非金属材料和有机非金属材料两大类。
无机非金属材料主要包括水泥、玻璃、陶瓷等,具有较高的抗压强度和耐磨性,适用于建筑材料、陶瓷制品等。
而有机非金属材料则包括塑料、橡胶、纤维等,具有较轻的重量和良好的柔韧性,适用于制造塑料制品、橡胶制品等。
最后,复合材料是指由两种或两种以上不同性质的材料通过一定方式组合而成的材料,如玻璃钢、碳纤维复合材料等。
复合材料具有优异的综合性能,既兼有金属材料的高强度和刚性,又具有非金属材料的轻质和耐腐蚀性能,因此在航空航天、汽车制造等领域得到广泛应用。
根据其组成材料和结构形式的不同,复合材料又可以分为层合复合材料和体积复合材料两大类。
层合复合材料主要是指由不同方向排列的单层材料组合而成,具有较高的强度和刚性,适用于制造飞机机身、汽车车身等。
而体积复合材料则是指由不同材料组成的复合材料,具有较高的抗冲击性和耐磨性,适用于制造运动器材、防弹装甲等。
综上所述,工程材料的分类主要包括金属材料、非金属材料和复合材料三大类,每类材料都具有各自独特的性能和应用领域,对于工程建设和制造业具有重要的意义。
工程材料与机械制造基础第二版答案第一章:工程材料的概述1.定义:工程材料是指用于制造各种工程产品和构件的原料,包括金属材料、非金属材料和合成材料。
2.金属材料分类:金属材料按照基本组织可分为晶体、多晶体和非晶体。
按照化学成分可分为金属元素和合金。
按照制备方式可分为熔炼和粉末冶金方法。
3.非金属材料分类:非金属材料包括陶瓷材料、高分子材料和复合材料。
陶瓷材料可分为无机非金属材料和有机非金属材料。
高分子材料是由高分子化合物制成的材料。
复合材料由两种或以上的基础材料组成。
4.合成材料分类:合成材料指人工合成的新材料,包括金属基复合材料、陶瓷基复合材料和高分子基复合材料。
第二章:金属材料的组织和性能1.金属的晶体结构:金属的晶体结构可分为体心立方结构、面心立方结构和六方最密堆积结构。
2.晶体缺陷:晶体缺陷包括点缺陷、线缺陷和面缺陷。
点缺陷包括金属原子的不可替代缺陷和可替代缺陷。
线缺陷包括位错和抱线。
3.金属的力学性能:金属的力学性能包括强度、硬度、韧性、可塑性和延展性等。
4.金属的热学性能:金属的热学性能包括热膨胀系数、热导率和比热容等。
第三章:金属材料的制备与加工1.金属的提炼和精炼:金属的提炼过程包括冶炼和精炼。
冶炼是将矿石中的金属氧化物还原为金属的过程。
精炼是去除金属中的杂质,提高金属纯度的过程。
2.金属的凝固:金属的凝固过程包括液相凝固、凝固过程中的晶体生长和固相变形。
3.金属的成形加工:金属的成形加工包括锻造、压力加工、热处理和冷加工等。
4.金属的热处理:金属的热处理包括退火、淬火、回火和时效等。
第四章:非金属材料的组织和性能1.陶瓷材料的组织和性能:陶瓷材料的组织包括晶体和非晶体结构,性能包括强度、硬度和热稳定性等。
2.高分子材料的组织和性能:高分子材料的组织包括聚合物链和结晶结构,性能包括高分子材料的强度、弹性和耐热性等。
3.复合材料的组织和性能:复合材料的组织包括增强相和基体相,性能包括强度、刚度和耐热性等。
工程材料的分类
工程材料是指具有一定性能,在特定条件下能够承担某种功能、被用来制造零件和工具的材料.工程材料种类繁多,有如下常见分类方法。
按成分分类:金属材料、非金属材料、复合材料。
金属是工业中应用广泛的材料,其中钢铁的用量最大。
一般金属具的优良的工艺性能和力学性能;
非金属材料中,合成高分子材料、特别是塑料的使用广泛;而陶瓷具有高硬度、耐高温、耐腐蚀、绝缘的特点,主要用于化工设备、电器绝缘件、机械加工刀具、发动机耐热元件等;
复合材料是指由两种或两种以上物理和化学性能不同的物质,复合材料一般综合了各组分材料的优良性能,在生活用品、机器制造等各个领域已得到广泛应用。
按用途分类:结构材料(如机械零件、工程构件)、工具材料(如量具、刃具、模具)、功能材料(如磁性材料、超导材料等)
按领域分类:机械工程材料、建筑工程材料、能源工程材料、信息工程材料、生物工程材料
工程材料的使用:材料种类繁多、性能各异,能符合设计者要求主要性能的材料是最合适的材料。
钢材具有较高的强度、较好的塑性,常用于制造受力的普通机器零件;
而制造飞机的结构件,那就不合适,这时选用质轻的铝合金或钛合金、复合材料更合适;
在高温下使用最好选用高熔点的陶瓷材料;
塑料具有良好的耐腐蚀性,可用在需要抗大气腐蚀的地方,但大多数塑料暴露在阳光下会严重老化,所以在室外长期使用时,选用塑料就不太合适。
工程材料第一章1.1 工程材料的概念工程材料是指在工程建设中用作建筑构件和工程设备制造所需材料的统称。
它们的种类、性能、用途大不相同,主要包括金属材料、非金属材料和复合材料等。
1.2 工程材料的分类1.2.1 金属材料金属材料是指具有金属特性的材料。
主要包括铁、钢、铜、铝、锌、镁、钛、铅、锡、金、银等常用的金属材料。
金属材料的特点是具有良好的导电、导热、塑性、韧性等性能,可用于制造各种类型的构件和零部件。
1.2.2 非金属材料非金属材料是指除金属以外的所有材料。
主要包括玻璃、陶瓷、塑料、橡胶、木材、纤维等。
不同种类的非金属材料具有不同的特性,如硬度、韧性、透明度、阻燃性等。
它们被广泛地应用于建筑、交通、电子、化工等领域。
1.2.3 复合材料复合材料是指两种或两种以上不同材料通过各种方法结合而成的材料。
复合材料通常具有很高的强度和刚度,同时可以降低材料的密度。
它们被广泛地应用于航空、汽车、体育器材等领域。
1.3 工程材料的应用工程材料的应用非常广泛,从建筑到交通,从电子到化工等等。
以下是其中一些应用范围的简介:1.3.1 建筑工程材料在建筑中的应用范围非常广泛。
例如,钢材、水泥、玻璃、木材等等都是建筑中常用的材料,它们被用来制造房屋的结构、墙体、窗户等等。
1.3.2 交通工程材料在交通领域也有广泛的应用,例如,汽车、火车、飞机等交通工具的制造都离不开各种金属、塑料等工程材料。
此外,道路、桥梁、隧道等交通建筑也需要大量的工程材料来建造。
1.3.3 电子在电子领域中,工程材料被用于制造电路板、元器件、电池等设备。
例如,半导体材料、导体材料、绝缘材料等等都是电子领域中重要的工程材料。
1.3.4 化工化工领域是工程材料的重要应用领域之一,例如,工程塑料、橡胶材料、高分子材料等等都被广泛地应用于化工生产中的制造设备、管道、容器等等。
1.4 工程材料的发展趋势随着科学技术的不断进步,工程材料的种类越来越多,性能越来越优越。
第1章工程材料的基本知识第1章工程材料的基本知识主要内容:1.1金属材料1.2非金属材料的力学性能一、工程材料的种类:工程材料:金属材料、非金属材料和复合材料;1、金属材料:黑色金属、有色金属2、非金属材料:高分子材料、陶瓷材料3、复合材料:金属基复合材料、非金属基复合材料1、使用性能:力学性能、物理性能、化学性能;2、工艺性能:铸成性能、切削性能、冲压性能、焊接加工性能、热处理性能;二、工程材料的主要性能:1.1金属材料金属材料的力学性能也表示机械性能,指金属材料出外载荷1.1.1金属材料的力学性能促进作用下,其抵抗变形和毁坏的能力;特别注意:材料在相同的外部条件和载荷促进作用下,可以呈现相同的特性;例如:常温状态下和低、低温状态下金属材料的力学性能就不一样;静载荷和动载荷促进作用下金属材料的力学性能也不一样;常见的金属材料的力学性能有:强度、塑性、硬度、韧性、疲劳强度等;1、强度和塑性(1)强度强度就是指金属材料出外(静)载荷促进作用下抵抗塑性变形和脱落的能力。
强度指标通常用单位面积所忍受的载荷(即力)则表示,符号为σ,单位为mpa。
工程中常用的强度指标存有屈服强度和抗拉强度。
屈服强度就是指金属材料在外力作用下,产生屈服现象时的形变,或已经开始发生塑性变形时的最高形变值,用σs则表示。
抗拉强度就是指金属材料在拉力的促进作用下,被折断前所能够忍受的最小形变值,用σb则表示。
对于大多数机械零件(例如压力容器),工作时不容许产生塑性变形,所以屈服强度就是零件强度设计的依据;对于因脱落而失灵的零件(例如螺栓),而用抗拉强度做为其强度设计的依据。
(2)塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。
工程中常用的塑性指标有伸长率和断面收缩率。
伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。
断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用表示。
伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。