陕西省西安市八年级上学期数学期末考试试卷
- 格式:doc
- 大小:260.00 KB
- 文档页数:8
陕西省西安市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟时,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A . (4,O)B . (5, 0)C . (0,5)D . (5,5)2. (2分) (2019八上·农安月考) 下列各组线段,不能组成三角形的是()A . 1,2,3B . 2,3,4C . 3,4,5D . 5,12,133. (2分)若∠α=30°,则∠α的补角是()A . 30°B . 60°C . 120°D . 150°4. (2分) (2020八下·太原月考) 不等式2x-5>3(x-3)的解集为()A . x<-4B . x>4C . x<4D . x>-45. (2分)(2020·深圳模拟) 如图,,,,则()A .B .C .D .6. (2分) (2020七下·顺义期末) 若a>b,则下列不等式成立的是()A . a﹣3<b﹣3B . ﹣2a>﹣2bC .D .7. (2分) (2019八上·庆元期末) 下列各点中在第四象限的是()A .B .C .D .8. (2分) (2017八下·荣昌期中) 一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a <0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A . 0B . 1C . 2D . 39. (2分)(2019·邯郸模拟) 对于△ABC嘉淇用尺规进行了如下操作:如图:⑴分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点D;⑵作直线AD交BC边于点E.根据嘉淇的操作方法,可知线段AE是()A . △ABC的高线B . △ABC的中线C . 边BC的垂直平分线D . △ABC的角平分线10. (2分)(2019·青海) 大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为,水位高度变量为,下列图象中最符合故事情景的大致图象是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2018八上·秀洲月考) 在△ABC中,∠A=30°,∠B=60°,则∠C=________。
陕西省西安市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·临沧期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2019·南陵模拟) 下列计算正确是()A . a•a2=a2B . (a2b)3=a2•b3C . a2•a3=a6D . (a2)2=a43. (2分)(2018·台湾) 已知a=3.1×10﹣4 ,b=5.2×10﹣8 ,判断下列关于a﹣b之值的叙述何者正确?()A . 比1大B . 介于0、1之间C . 介于﹣1、0之间D . 比﹣1小4. (2分)如图,在△ABC中,AB=20cm,AC=12 cm,点P从点B出发以每秒3 cm的速度向点A运动,点Q从点A 同时出发以每秒 2 cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当∠APQ=∠AQP 时,P,Q运动的时间为()A . 3秒B . 4秒C . 4.5秒D . 5秒5. (2分)下列分式中,无论x取何值,分式总有意义的是A .B .C .D .6. (2分)下列各式中从左到右的变形,是因式分解的是()A . (a+3)(a-3)=a2-9B . x2+x-5=x(x+1)-5C . x2+1=(x+1)(x-1)D . a2b+ab2=ab(a+b)7. (2分) (2018八上·临河期中) 工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A . SSSB . SASC . ASAD . AAS8. (2分) (2017·广州) 下列运算正确的是()A . =B . 2× =C . =aD . |a|=a(a≥0)9. (2分) (2018七下·于田期中) 下列四个图形中,不能推出与相等的是()A .B .C .D .10. (2分) (2015八下·绍兴期中) 在连接A地与B地的线段上有四个不同的点D,G,K,Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2017八下·林甸期末) 正八边形的每个外角的度数为________.12. (1分)若分式的值为零,则x的值是________.13. (1分)(2016·广元) 分解因式:25﹣a2=________14. (2分) (2016七上·县月考) 如图,已知l1∥l2 ,∠1=40°,∠2=55°,则∠3=________,∠4=________.15. (1分) (2016七下·迁安期中) 已知:A(0,4),点C在y轴上,AC=5,则点C的坐标为________.16. (1分)分式方程 =0的解是________三、解答题 (共9题;共79分)17. (10分) (2019八上·朝阳期中) 计算:a(a-2b)-(a-b)218. (10分) (2019八上·海口期中) 因式分解(1)(2)(3) a2+2ab19. (10分) (2020八上·黄石期末) 解方程(1)(2)﹣220. (5分) (2018八上·苏州期末) 已知:如图,在△ABC中,∠ACB=90°,AC=BC,D是AB的中点,点E 在AC上,点F在BC上,且AE=CF.(1)求证:DE=DF,DE⊥DF;(2)若AC=2,求四边形DECF面积.21. (5分) (2019九下·义乌期中) 先化简,再求值:,其中0≤x<3,请你选择你喜欢的整数求值.22. (15分)(2017·全椒模拟) 如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.23. (5分)(2016·成都) 化简:(x﹣)÷ .24. (15分) (2019八上·越秀期末) 如图,AC与BD相交于点E , AC=BD ,AC⊥BC ,BD⊥AD .垂足分别是C、D .(1)若AD=6,求BC的长;(2)求证:△ADE≌△BCE.25. (4分) (2018七上·抚州期末) 如图,线段 AB上的点数与线段的总数有如下关系:如果线段上有3个点时,线段共有3条;如果线段上有4个点时,线段共有6条;如果线段上有5个点时,线段共有10条;(1)当线段上有6个点时,线段共有________条?(2)当线段上有n个点时,线段共有多少条?(用n的代数式表示)(3)当n=100时,线段共有多少条?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共79分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、。
2019-2020学年西安市八年级(上)期末数学试卷一、选择题1.下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.2.的算术平方根是()A.3 B.C.±3 D.±3.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°4.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°5.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.D.36.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.7.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是千米/小时9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5 D.3510.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1二、填空题11.计算﹣+= .12.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.13.如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,则平移后直线的解析式为.14.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.15.设直线nx+(n+1)y=(n为自然数)与两坐标轴围成的三角形面积为Sn ,则S1+S2+…+S2016的值为.16.已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是.三、解答题17.已知a=,b=,求a3+b3﹣4的值.18.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).19.已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.20.今年“五一”小长假期间,某市外与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外旅游比外出旅游的人数多20万人.求该市今年外和外出旅游的人数.21.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)在(2)的条件下,若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.22.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.23.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=x与直线l2:y=﹣x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)如点M在直线l2上,且使得△OAM的面积是△OAC面积的,求点M的坐标.24.(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,请直接写出线段AM长的最大值及此时点P的坐标.25.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y (千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?26.利用二元一次方程组解应用题:甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行,小时后相遇,相遇后,拖拉机已其原速继续前进,汽车在相遇处停留1小时后掉转头以其原速返回,在汽车再次出发半小时追上拖拉机,这时,汽车、拖拉机各自走了多少路程?2019-2020学年陕西省西安市中学八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.【考点】命题与定理.【分析】根据命题的定义解答,命题是对事情做出正确或不正确的判断的句子叫做命题,分别判断得出答案即可.【解答】解:根据命题的定义:只有答案D、两直线平行,内错角相等.对事情做出正确或不正确的判断,故此选项正确;故选:D.2.的算术平方根是()A.3 B.C.±3 D.±【考点】算术平方根.【分析】首先根据算术平方根的定义求出,然后再求出它的算术平方根即可解决问题.【解答】解:∵=3,而3的算术平方根即,∴的算术平方根是.故选B.3.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°【考点】平行线的性质;直角三角形的性质.【分析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选:A.4.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.5.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.D.3【考点】方差;算术平均数.【分析】根据平均数的计算公式先求出a的值,再根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],代数计算即可.【解答】解:∵6、4、a、3、2的平均数是5,∴(6+4+a+3+2)÷5=5,解得:a=10,则这组数据的方差S2= [(6﹣5)2+(4﹣5)2+(10﹣5)2+(3﹣5)2+(2﹣5)2]=8;故选:A.6.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意得,.故选:D.7.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.【解答】解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选:A.8.图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是千米/小时【考点】函数的图象.【分析】根据观察函数图象的纵坐标,判断A、C,根据观察函数图象的横坐标,可判断B,根据观察纵坐标、横坐标,可得路程与时间,根据路程除以时间,可得答案.【解答】解:A、由纵坐标看出体育场离张强家2.5千米,故A正确,不合题意;B、由横坐标看出锻炼时间为30﹣15=15分钟,故B正确,不合题意;C、2.5﹣1.5=1千米,体育场离早餐店1千米,故C错误,符合题意;D、由纵坐标看出早餐店距家1.5千米,由横坐标看出回家时间是100﹣65=35分钟=小时,回家速度是1.5÷=(千米/小时),故D正确,不合题意;故选:C.9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5 D.35【考点】平面展开﹣最短路径问题.【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选B.10.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出,代入代数式求值.【解答】解:已知,①×2﹣②得,7y﹣21z=0,∴y=3z,代入①得,x=8z﹣6z=2z,∴x:y:z=2z:3z:z=2:3:1.故选C.二、填空题11.计算﹣+= .【考点】二次根式的加减法.【分析】根据二次根式的性质,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:原式=2﹣+=,故答案为:.12.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).【考点】两条直线相交或平行问题.【分析】依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.【解答】解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).13.如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,则平移后直线的解析式为y=2x .【考点】一次函数图象与几何变换.【分析】设点A沿射线OC方向平移个单位后到达点M,点B沿射线OC方向平移个单位后到达点N,过点M作ME⊥y轴于点M,过点N作NF⊥x轴于点F,则△AEM和△BFN 为等腰直角三角形,根据直线AB的解析式利用一次函数图象上点的坐标特征即可得出点A、B的坐标,根据等腰直角三角形的性质结合AM=BN=即可得出点M、N的坐标,再利用待定系数法即可求出平移后直线的解析式.【解答】解:设点A沿射线OC方向平移个单位后到达点M,点B沿射线OC方向平移个单位后到达点N,过点M作ME⊥y轴于点M,过点N作NF⊥x轴于点F,如图所示.∵直线OC的解析式为y=x,∴∠COF=∠COA=45°.∵AM∥OC、BN∥OC,∴∠NBF=∠COF=45°,∠MAE=∠COA=45°,∴△AEM和△BFN为等腰直角三角形,且AM=BN=,∴BF=NF=AE=EM=1.当x=0时,y=2x+1=1,∴点A的坐标为(0,1);当y=2x+1=0时,x=﹣,∴点B的坐标为(﹣,0).∴点M的坐标为(1,2),点N的坐标为(,1).设直线MN的解析式为y=kx+b,将M(1,2)、N(,1)代入y=kx+b,,解得:,∴直线MN的解析式为y=2x.故答案为:y=2x.14.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是50°.【考点】翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.【分析】利用全等三角形的判定以及垂直平分线的性质得出∠OBC=40°,以及∠OBC=∠OCB=40°,再利用翻折变换的性质得出EO=EC,∠CEF=∠FEO,进而求出即可.【解答】解:连接BO,∵∠BAC=50°,∠BAC 的平分线与AB 的中垂线交于点O , ∴∠OAB=∠ABO=25°,∵等腰△ABC 中,AB=AC ,∠BAC=50°, ∴∠ABC=∠ACB=65°, ∴∠OBC=65°﹣25°=40°, ∵,∴△ABO ≌△ACO , ∴BO=CO ,∴∠OBC=∠OCB=40°,∵点C 沿EF 折叠后与点O 重合, ∴EO=EC ,∠CEF=∠FEO , ∴∠CEF=∠FEO==50°,故答案为:50°.15.设直线nx+(n+1)y=(n 为自然数)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2016的值为.【考点】一次函数图象上点的坐标特征.【分析】先利用坐标轴上点的坐标特征求出直线与x 轴和y 轴的坐标,则利用三角形面积公式得到S n =,再分别计算出S 1,S 2,S 3,S 2015,然后利用=﹣求它们的和.【解答】解:当x=0时,y=,则直线与y 轴的交点坐标为(0,),当y=0时,x=,则直线与x 轴的交点坐标为(,0),所以S n =••=,当n=1时,S 1=, 当n=2时,S 2=, 当n=3时,S 3=,…当n=2016时,S 2016=,所以S 1+S 2+S 3+…+S 2015=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.16.已知方程|x|=ax+1有一个负根但没有正根,则a 的取值范围是 a >﹣1 . 【考点】含绝对值符号的一元一次方程.【分析】根据绝对值的性质,有理数的乘法,可得不等式,根据解不等式,可得答案. 【解答】解:由题意,得 ﹣x=ax+1, (a+1)x=﹣1, a+1>0, 解得a >﹣1, 故答案为:a >﹣1.三、解答题17.已知a=,b=,求a 3+b 3﹣4的值.【考点】二次根式的化简求值.【分析】首先对a 和b 的值分母有理化,把所求的式子利用立方差公式变形,再代入求解即可.【解答】解:a====2﹣,b====2+;则a3+b3﹣4=(a+b)(a2﹣ab+b2)﹣4=4×(14﹣1)﹣4=48.18.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【考点】作图—基本作图;平行线的判定.【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.19.已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.【考点】两条直线相交或平行问题.【分析】(1)根据L1⊥L2,则k1•k2=﹣1,可得出k的值即可;(2)根据直线互相垂直,则k1•k2=﹣1,可得出过点A直线的k等于3,得出所求的解析式即可.【解答】解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.20.今年“五一”小长假期间,某市外与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外旅游比外出旅游的人数多20万人.求该市今年外和外出旅游的人数.【考点】二元一次方程组的应用.【分析】设该市去年外人数为x万人,外出旅游的人数为y万人,根据总人数为226万人,去年同期外旅游比外出旅游的人数多20万人,列方程组求解.【解答】解:设该市去年外人数为x万人,外出旅游的人数为y万人,由题意得,,解得:,则今年外人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外人数为130万人,外出旅游的人数为96万人.21.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)在(2)的条件下,若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.【考点】一次函数的应用.【分析】(1)设出AB所在直线的函数解析式,由解析式可以算出甲乙两地之间的距离.(2)设出两车的速度,由图象列出关系式.(3)根据(2)中快车与慢车速度,求出C,D,E坐标,进而作出图象即可.【解答】解:(1)设直线AB的解析式为y=kx+b.∵直线AB经过点(1.5,70),(2,0),∴,解得.∴直线AB的解析式为y=﹣140x+280(x≥0).∵当x=0时,y=280.∴甲乙两地之间的距离为280千米.(2)设快车的速度为m千米/时,慢车的速度为n千米/时.由题意可得,解得.∴快车的速度为80千米/时.∴快车从甲地到达乙地所需时间为t==小时;(3)∵快车的速度为80千米/时.慢车的速度为60千米/时.∴当快车到达乙地,所用时间为: =3.5小时,∵快车与慢车相遇时的时间为2小时,∴y=(3.5﹣2)×(80+60)=210,∴C点坐标为:(3.5,210),此时慢车还没有到达甲地,若要到达甲地,这个过程慢车所用时间为: =小时,当慢车到达甲地,此时快车已经驶往甲地时间为:﹣3.5=小时,∴此时距甲地:280﹣×80=千米,∴D点坐标为:(,),再一直行驶到甲地用时3.5×2=7小时.∴E点坐标为:(7,0),故图象如图所示:22.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.【考点】一次函数综合题.【分析】(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x 的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t ﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.23.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=x与直线l2:y=﹣x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)如点M在直线l2上,且使得△OAM的面积是△OAC面积的,求点M的坐标.【考点】两条直线相交或平行问题.【分析】(1)先根据直线解析式,求得C (0,6),再根据方程组的解,得出A (4,2),进而得到△OAC 的面积;(2)分两种情况进行讨论:①点M 1在射线AC 上,②点M 2在射线AB 上,分别根据点M 的横坐标,求得其纵坐标即可.【解答】解:(1)在y=﹣x+6中,令x=0,解得y=6, ∴C (0,6),即CO=6,解方程组,可得,∴A (4,2), ∴S △OAC =×6×4=12;(2)分两种情况:①如图所示,当点M 1在射线AC 上时,过M 1作M 1D ⊥CO 于D ,则△CDM 1是等腰直角三角形, ∵A (4,2),C (0,6),∴AC==4,∵△OAM 的面积是△OAC 面积的,∴AM 1=AC=3,∴CM 1=,∴DM 1=,即点M 1的横坐标为,在直线y=﹣x+6中,当x=时,y=6﹣,∴M 1(,6﹣);②如图所示,当点M 2在射线AB 上时,过M 2作M 2E ⊥CO 于E ,则△CEM 2是等腰直角三角形, 由题可得,AM 2=AM 1=3,∴CM 2=7,∴EM 2=,即点M 2的横坐标为,在直线y=﹣x+6中,当x=时,y=6﹣,∴M 2(,6﹣).综上所述,点M 的坐标为(,6﹣)或(,6﹣).24.(1)问题如图1,点A 为线段BC 外一动点,且BC=a ,AB=b .填空:当点A 位于 CB 的延长线上 时,线段AC 的长取得最大值,且最大值为 a+b (用含a ,b 的式子表示) (2)应用点A 为线段BC 外一动点,且BC=3,AB=1,如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA=2,PM=PB ,∠BPM=90,请直接写出线段AM 长的最大值及此时点P 的坐标.【考点】三角形综合题;全等三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).25.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y (千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?【考点】一次函数的应用.【分析】(1)设直线AB所对应的函数关系式为y=kx+b,把(0,320)和(2,120)代入y=kx+b即可得到结论;(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n 得得到直线CD所对应的函数关系式为y=﹣80x+320,当y=0时,x=4,于是得到结论.【解答】解:(1)设直线AB所对应的函数关系式为y=kx+b,把(0,320)和(2,120)代入y=kx+b得:,解得:,∴直线AB所对应的函数关系式为:y=﹣100x+320;(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:,解得:,∴直线CD所对应的函数关系式为y=﹣80x+320,当y=0时,x=4,∴小颖一家当天12点到达姥姥家.26.利用二元一次方程组解应用题:甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行,小时后相遇,相遇后,拖拉机已其原速继续前进,汽车在相遇处停留1小时后掉转头以其原速返回,在汽车再次出发半小时追上拖拉机,这时,汽车、拖拉机各自走了多少路程?【考点】二元一次方程组的应用.【分析】设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据甲乙两地相距160千米,1小时后相遇和拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,列出方程,求出x,y的值,再根据路程=速度×时间即可得出答案.【解答】解:设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).答:汽车行驶165千米,拖拉机形式85千米.2019-20204月16日。
陕西省西安市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·金乡模拟) 下列图案既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2019七下·黄石期中) 点B(m2+1,-1)一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2017八上·卫辉期中) 在-0.8088,,,,,0,,0.6010010001……中,无理数的个数有()A . 1个B . 2个C . 3个D . 4个4. (2分)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有()A . 1组B . 2组C . 3组5. (2分)(2016·文昌模拟) 一次函数y=x+2的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分) (2017八下·江津期末) 如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC 于S,现有①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP四个结论.则对四个结论判断正确的是()A . 仅①和②正确B . 仅②③正确C . 仅①和③正确D . 全部都正确7. (2分) (2018八下·灵石期中) 给出下面两个定理:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点在这条线段的垂直平分线上.应用上述定理进行如下推理:如图,直线l是线段MN的垂直平分线.∵点A在直线l上,∴AM=AN.()∵BM=BN,∴点B在直线l上.()∵CM≠CN,∴点C不在直线l上.这是∵如果点C在直线l上,那么CM=CN, ()这与条件CM≠CN矛盾.以上推理中各括号内应注明的理由依次是()B . ②①②C . ①②②D . ①②①8. (2分) (2015八上·黄冈期末) 一个等腰三角形的两边长分别是3和7,则它的周长为()A . 17B . 15C . 13D . 13或17二、填空题 (共10题;共11分)9. (1分) (2019八下·天河期末) 若式子x+ 在实数范围内有意义,则x的取值范围是________.10. (2分)(2016·滨湖模拟) 已知△ABC中,AC=BC,∠A=80°,则∠B=________°.11. (1分) (2019八上·灌云月考) 在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点A′的坐标(________),顶点B的坐标(________),顶点C关于原点对称的点C′的坐标(________).(2)△ABC的面积为________.12. (1分)(2020·天津) 将直线向上平移1个单位长度,平移后直线的解析式为________.13. (1分) (2018八上·番禺期末) 2013年,我国上海和安徽首先发现“H7N9”新型禽流感病毒,此病毒颗粒呈多边形,其中球形病毒的最大直径为米,这一直径用科学记数法表示为________ 米.14. (1分)已知△ABC≌△DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67°,BC=15cm,则∠F=________,FE=________cm.15. (1分)如图,△ABC中∠C=90°,AB的垂直平分线DE交BC于点E,D为垂足,且EC=DE,则∠B的度数为________.16. (1分) (2017八下·南通期中) 如图,直线:与直线:相交于点P(m,4),则方程组的解是________.17. (1分) (2019八下·淅川期末) 如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,则不等式的解集为________.18. (1分) (2011七下·广东竞赛) 点P(-5,1)沿x轴正方向平移2个单位,再沿y轴负方向平移4个单位所得的点的坐标为________三、解答题 (共9题;共79分)19. (10分) (2019八上·驿城期中) 已知某一实数的平方根是和,求的值.20. (10分)(2017·西乡塘模拟) 计算:cos30° +|1﹣ |﹣()﹣1 .21. (5分) (2019八上·镇平月考) 如图,在△ABC中,已知点D在线段AB的反向延长线上,AE是∠DAC的平分线,且AE∥BC.求证:△ABC是等腰三角形.22. (1分) (2020七下·焦作期末) 如图,网格中的与为轴对称图形,且顶点都在格点上.(1)利用网格,作出与的对称轴l;(2)结合图形,在对称轴l上画出一点,使得最小;(3)如果每个小正方形的边长为1,请直接写出的面积.23. (6分) (2019八上·郑州期中) 如图,小明的爸爸在池边开了一块四边形土地种蔬菜,爸爸让小明计算一下土地的面积,以便计算产量.小明找了米尺和测角仪,测得AB=3米,BC=4米,CD=12米,DA=13米,∠B=90°.(1)若连接AC,试证明:△ACD是直角三角形;(2)请你帮小明计算这块土地的面积为________.24. (10分) (2016八上·鞍山期末) 已知:如图.在平面直角坐标系中,直线AB分别与,轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥ 轴于点E,,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求△BOD的面积.25. (11分)某校一名老师将在假期带领学生去北京旅游,有两种购票方式:甲旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价240元.设学生有x人,甲旅行社的收费为y1元,乙旅行社的收费为y2元.(1)分别表示两家旅行社的收费y1,y2与x的关系式;(2)就学生人数讨论哪家旅行社更优惠.26. (6分)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1 ,∠A1BC的平分线与∠A1CD的平分线交于点A2 ,…,∠An﹣1BC的平分线与∠An﹣1CD的平分线交于点An .设∠A=θ.则:(1)求∠A1的度数;(2)∠An的度数.27. (20分) (2020九下·吉林月考) 一个蓄水池有甲、乙两个注水管和一个排水管丙,三个水管均已关闭,已知乙注水管的注水速度为10升/分.先打开乙注水管4分钟,再打开甲注水管,甲、乙两个水管均注水20分钟.设甲注水管的工作时间为x(分),甲注水管的注水量y(升)与时间x(分)的函数图象为线段,乙注水管的注水量y(升)与时间x(分)的函数图象为线段,如图所示.(1)求甲注水管的总注水量;(2)求线段所对应的函数关系式,并写出自变量的取值范围;(3)乙注水管打开的16分钟后,打开丙出水管.已知出水管丙的排水速度为20升/分,求丙出水管打开多长时间能将蓄水池的水排空.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共10题;共11分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、答案:11-2、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共9题;共79分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、答案:27-3、考点:解析:。
陕西省西安市八年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)(2019·北京模拟) 甲骨文是我国古代的一种文字,是汉字的早期形式,反映了我国悠久的历史文化,体现了我国古代劳动人民的智慧,下列甲骨文中,不是轴对称图形的是()
A .
B .
C .
D .
2. (2分)下列各式计算正确的是()
A . a2•a3=a6
B . (﹣a3)2=a6
C . (2ab)4=8a4b4
D . 2a2﹣3a2=1
3. (2分) (2017八上·孝义期末) 若一粒米的质量约是0.000021kg,将数据0.000021用科学记数法表示为()
A . 21×10﹣4
B . 2.1×10﹣6
C . 2.1×10﹣5
D . 2.1×10﹣4
4. (2分) (2018八上·徐州期末) 下列说法正确的是()
A . 全等三角形是指形状相同的三角形
B . 全等三角形是指面积相等的三角形
C . 全等三角形的周长和面积都相等
D . 所有的等边三角形都全等
5. (2分)下列分式中,是最简分式的是()。
A .
B .
C .
D .
6. (2分) (2016八上·中堂期中) 下列说法正确的是()
A . 三角形的外角大于任何一个内角
B . 三角形的内角和小于它的外角和
C . 三角形的外角和小于四边形的外角和
D . 三角形的一个外角等于两个内角的和
7. (2分)图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()
A . (m+n)2-(m-n)2=4mn
B . (m+n)2-(m2+n2)=2mn
C . (m-n)2+2mn=m2+n2
D . (m+n)(m-n)=m2-n2
8. (2分)已知:a2﹣3a+1=0,则a+ ﹣2的值为()
A . +1
B . 1
C . ﹣1
D . ﹣5
9. (2分) (2016八上·萧山期中) 工人师傅常用角尺平分任意角,做法如下:如图,∠AOB是一个任意角,在OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点P的射线OP便是∠AOB 的平分线,师傅这么做的依据是()
A . SAS
B . SSS
C . 角平分线逆定理
D . AAS
10. (2分)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于()
A . 90°
B . 100°
C . 130°
D . 180°
二、填空题 (共8题;共8分)
11. (1分) (2019八上·民勤期末) 点P(3,-4)关于x轴对称的点的坐标为________.
12. (1分) (2017八上·台州期末) 我们知道三角形的内角和是180°,四边形的内角和可以转化成两个三角形的内角和来得到是360°,那十二边形的内角和是________°.
13. (1分) (2019九上·道里期末) 函数中,自变量的取值范围是________
14. (1分) (2017·本溪模拟) 某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x元/立方米,则所列方程为________.
15. (1分) (2019八上·皇姑期末) 如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为________.
16. (1分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为________.
17. (1分) (2017七上·深圳期中) 设[x]表示不超过x的最大整数,计算[−6.5]+[2.9]的值为________.
18. (1分)(2020·惠山模拟) 如图,四边形ABCD中,对角线AC和BD交于点O,∠AOB=60°,BD=AC=4,则四边形ABCD的面积为________.
三、解答题 (共6题;共50分)
19. (10分)(2017·娄底) 先化简,再求值:
(a+b)(a﹣b)+(a﹣b)2﹣(2a2﹣ab),其中a,b是一元二次方程x2+x﹣2=0的两个实数根.
20. (10分) (2019八上·榆树期末) 因式分解:ab2﹣4ab+4a .
21. (5分) (2017七上·汕头期中) 先化简,再求值. x﹣2(x﹣ y2)+(﹣ x+ y2),其中x=﹣2,y= .
22. (5分) (2019八上·延边期末) 八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
23. (5分) (2016八上·赫章期中) 有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?
24. (15分)如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以2cm/s的速度运动,动点E也同时从点C开始在直线CM上以1cm/s的速度运动,连接AD、AE,设运动时间为t秒.
(1)当t为多少时,△ABD的面积为10cm2?
(2)当t为多少时,△ABD≌△ACE?并简要说明理由(可在备用图中画出具体图形).
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共6题;共50分)
19-1、20-1、
21-1、22-1、23-1、
24-1、24-2、。