中考数学专题复习 统计与概率的应用
- 格式:doc
- 大小:177.00 KB
- 文档页数:8
2018届初三数学中考复习统计与概率的应用专题复习训练题1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理90≤x≤100 c请根据上述统计图表,解答下列问题:(1)在表中,a=__0.1__,b=__0.3__,c=__18__;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略(3)平均成绩是81分(4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:乙 ∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了__150__个评价;②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略.(2)列表:由表可知,一共有95种,∴两人中至少有一个给“好评”的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.28=50,a=18÷50=0.36(2)b=50×0.20=10,补图略(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__; (2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60 ②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略(2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图以上 严重污染 2(1)统计表中m =__20__,n =__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m 的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。
中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。
以下是对这些知识点的详细梳理。
1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。
概率的计算方法包括:理论概率、几何概率和频率概率。
-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。
-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。
-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。
2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。
统计的主要目的是对研究对象进行客观的描述和分析。
-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。
-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。
-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。
3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。
抽样调查的方法包括概率抽样和非概率抽样。
-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。
-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。
4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。
中考数学中的概率与统计问题解题方法总结概率与统计是中考数学中重要的考点之一,掌握相关解题方法对于获得高分至关重要。
本文将总结中考数学中的概率与统计问题解题方法,帮助同学们更好地备考。
一、概率问题解题方法1.1 随机事件的概率计算在解决概率问题时,首先要明确问题中所涉及的随机事件,然后确定事件的样本空间和事件的可能数。
计算概率时,可采用“有利结果数与总结果数比”或“频率”两种方法。
1.2 事件的排列与组合当问题中涉及的事件是有序排列或无序组合时,可以使用排列组合的方法来计算概率。
对于有序排列的事件,可以使用全排列的方法,对于无序组合的事件,可使用组合数的方法。
1.3 复合事件的概率计算当问题中的事件是复杂的复合事件时,可以使用独立事件的概率乘法原理或互斥事件的概率加法原理来计算概率。
需要注意确定事件之间的独立性或互斥性。
二、统计问题解题方法2.1 数据的整理与描述在解决统计问题时,首先需要对给定的数据进行整理和描述。
可通过制表、绘图等方式对数据进行整理,计算出均值、中位数、众数、极差等统计量,从而有助于进一步分析和解决问题。
2.2 统计规律的探究通过观察和分析给定的统计数据,寻找其中的规律和趋势,可以通过绘制直方图、折线图等来展示数据的变化趋势和分布情况。
这有助于深入理解数据的特点,并根据规律解决问题。
2.3 数据的分析与推理在统计问题中,常常需要根据已经给定的数据进行推理和判断。
这时需要通过归纳、分析,利用已知的统计规律和统计方法来判断未知的事物或问题的解答。
三、应用举例3.1 概率问题的应用例如,某次抽奖活动,参与抽奖的人数为100人,其中60人是女性,40人是男性。
如果从中随机抽取一人,求抽中女性的概率。
解题时,可根据女性人数占总人数的比例,得出概率为60/100=0.6。
3.2 统计问题的应用例如,某班级同学的考试成绩如下:74, 68, 82, 90, 76, 84, 78, 86, 92, 80。
【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。
统计与概率是历年江苏省各地市中考的必考点,选择、填空以及解答均有考查。
其中在数据的收集与整理方面,主要考查全面调查与抽样调查的判断,总体、个体、样本、样本容量的概念,各类统计图表的判读,考查难度较低考生只要掌握基本的概念即可;在数据的分析方面,考点主要为平均数、中位数、众数的概念和计算、极差、方差、标准差的计算,以及数据稳定性和波动性的判断,考查难度较低。
概率方面,在选择题的考查一般为基本概念、事件发生的可能性大小、几何概率等。
【2022·江苏徐州·中考母题】我国近十年的人口出生率及人口死亡率如图所示.已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是()A.与2012年相比,2021年的人口出生率下降了近一半B.近十年的人口死亡率基本稳定C.近五年的人口总数持续下降D.近五年的人口自然增长率持续下降【考点分析】本题考查了折线统计图,从统计图获取信息是解题的关键.【思路分析】根据折线统计图逐项分析判断即可求解.【2022·江苏徐州·中考母题】将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .14B .13C .12D 【考点分析】本题主要考查几何概率,根据正六边形的性质得到图中每个小三角形的面积都相等是解题的关键.【思路分析】如图,将阴影部分分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【2022·江苏常州·中考母题】某汽车评测机构对市面上多款新能源汽车的0~100/h km 的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100/h km 的加速时间的中位数是s m ,满电续航里程的中位数是nkm ,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在( )A .区域①、②B .区域①、③C .区域①、④D .区域③、④【考点分析】本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键. 【思路分析】根据中位数的性质即可作答.【2022·江苏镇江·中考母题】第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( ) A .①②B .①③C .①④D .③④【考点分析】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键. 【思路分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.1.(2022·江苏苏州·二模)如图,若随机向88⨯正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .25642.(2022·江苏·靖江市教师发展中心二模)甲、乙两个学校统计男女生人数,分别绘制了扇形统计图(如图),下列说法正确的是( )A .甲校的男生人数比乙校的男生人数多B .甲、乙两个学校的人数一样多C .乙校的女生人数比甲校的女生人数多D .甲校的男女生人数一样多3.(2022·江苏徐州·模拟预测)抗击新冠肺炎疫情期间,为了避免人员大量聚集,某公司复工后采取分时段上、下班方式,以错开高峰.小刘为了解本公司员工上下班情况,将考勤表中某天的相关数据制成条形统计图,已知该公司员工上下班各时段分别为:(8:0016:30)A -,(8:3017:00)B -,(9:0017:30)C -,(9:3018:00)D -,由图可知,下列说法错误的是( )A .统计图反映了该公司员工上下班各时段内的人数情况B .该公司共有870人C .该公司员工上下班在时段C 内的人数占总人数的30%D .该公司员工上下班在时段B 内的人数比时段A 内的人数多1倍 4.(2022·江苏泰州·一模)下列说法正确的是( ) A .“清明时节雨纷纷”是必然事件B .为了解某灯管的使用寿命,可以采用普查的方式进行C .两组身高数据的方差分别是2S =甲0.01,2S =乙0.02,那么乙组的身高比较整齐 D .一组数据3,5,4,5,6,7的众数、中位数和平均数都是5 5.(2022·江苏盐城·一模)下列说法错误的是( ) A .为了统计实验中学的学生人数,应采用抽样调查B .从一个只装有黄球和白球的不透明的袋子中,“摸出红球”是不可能事件C .想要了解盐城地区2021年第一季度的气温变化趋势,应选择折线统计图D .甲乙两组数据,若20.2S =甲,20.23S =乙,则甲组数据更为稳定6.(2022·江苏徐州·一模)下图是第七次全国人口普查的部分结果.下列判断正确的是( )A.江苏0-14岁人口比重高于全国B.徐州15-59岁人口比重高于江苏C.江苏60岁以上人口比重低于徐州D.徐州15岁以上人口比重低于江苏7.(2022·江苏苏州·模拟预测)有一个摊位游戏,先旋转一个转盘的指针,如果指针箭头停在奇数的位置,玩的人可以从袋子里抽出一个弹珠,当摸到黑色的弹珠就能得到奖品,转盘和弹珠如下图所示,小明玩了一次这个游戏,则小明得奖的可能性为()A.不可能B.不太可能C.非常有可能D.一定可以8.(2022·江苏徐州·模拟预测)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分9.(2022·江苏无锡·一模)下列说法正确的是()A.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件B.某市天气预报明天的降水概率为90%,则“明天下雨”是确定事件C.小丽买一张体育彩票中“一等奖”是随机事件D.若a是实数,则“|a|≥0”是不可能事件10.(2022·江苏·苏州市振华中学校模拟预测)一组不完全相同的数据a1,a2,a3,…,an的平均数为m,把m加入这组数据,得到一组新的数据a1,a2,a3,…,an,m,把新、旧数据的平均数、中位数,众数、方差这四个统计量分别进行比较,一定发生变化的统计量的个数是()A.1B.2C.3D.411.(2022·江苏徐州·二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是160B.众数是165C.中位数是167.5D.方差是2 12.(2022·江苏连云港·二模)某校九年级学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()A.这组数据的中位数是7.4B.这组数据的众数是7.5C.这组数据的平均数是7.3D.这组数据极差的是0.513.(2022·江苏·兴化市教师发展中心一模)如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是()A.18B.14C.13D.1214.(2022·江苏徐州·一模)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D .样本中选择公共交通出行的有2400人15.(2022·江苏南京·模拟预测)某餐厅规定等位时间达到30分钟(包括30分钟)可享受优惠.现统计了某时段顾客的等位时间t (分钟),数据分成6组:1015t ≤<,1520t ≤<,2025t ≤<,2530t ≤<,3035t ≤<,如图是根据数据绘制的统计图.下列说法正确的是( )A .此时段有1桌顾客等位时间是40分钟B .此时段平均等位时间小于20分钟C .此时段等位时间的中位数可能是27D .此时段有6桌顾客可享受优惠16.(2022·江苏·江阴市祝塘第二中学一模)一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是( )A.极差B.方差C.中位数D.众数17.(2022·江苏·苏州市第十六中学一模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60B.9.60,9.60C.9.60,9.70D.9.65,9.6018.(2022·江苏扬州·一模)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①19.(2022·江苏·扬州中学教育集团树人学校一模)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁20.(2022·江苏泰州·一模)如图是小刚进入中考复习阶段以来参加的10次物理水平测试成绩(满分70分)的统计图,那么关于这10次测试成绩,下列说法错误的是()A.中位数是55B.众数是60C.方差是26D.平均数是5421.(2022·江苏扬州·一模)某学校足球队23人年龄情况如下表:则下列结论正确的是()A.极差为3B.众数为15C.中位数为14D.平均数为1422.(2022·江苏苏州·二模)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生23.(2022·江苏·靖江外国语学校一模)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月24.(2022·江苏·扬州中学教育集团树人学校一模)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.1225.(2022·江苏·无锡市天一实验学校三模)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15【选择题】必考重点08 统计与概率统计与概率主要包括三部分内容:数据的收集与整理、数据分析和概率。
第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。
本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。
一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。
在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。
解题方法:1. 仔细读题,理解题意。
确定需要统计的数值或范围,并分析给定数据的特点。
2. 建立频数统计表格。
将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。
3. 统计频数。
根据数据进行计数,并记录在频数统计表格中。
4. 统计完成后,根据题目要求回答相关问题。
举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。
题目要求统计数据中各个数字出现的次数。
解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。
3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。
二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。
通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。
解题方法:1. 读题,理解题意。
确定频率或百分数的计算对象,并分析给定数据的特点。
2. 计算频率或百分数。
使用给定数据和统计结果计算所需的频率或百分数。
3. 根据题目要求,回答相关问题或进行比较。
中考数学解题技巧如何利用统计解决概率问题概率问题在数学中占据着重要的位置,是中考数学中常见的一类题型。
为了更好地解决这类问题,我们可以运用统计学的思维和解题技巧。
本文将介绍如何利用统计解决概率问题,帮助考生在中考数学中取得更好的成绩。
一、理解基本概念在解决概率问题时,首先要确保对一些基本概念的理解。
例如,事件的概念,事件发生的可能性等。
对于统计学的应用来说,我们需要建立统计模型来求解我们想要的结果。
因此,熟悉统计学中的概念是解决概率问题的基础。
二、列举所有可能的情况在解决概率问题时,通常需要列举出所有可能的情况。
例如,抛硬币的问题,结果只有正面和反面两种情况。
对于更复杂的问题,我们可能需要使用树状图或者表格来列举情况,以便更好地组织和理解问题。
例如,一个抽奖活动,有10个人参与,只有一个奖品。
我们可以列举出每个人中奖和不中奖的情况,以便计算中奖的概率。
三、确定事件的可能性在解决概率问题时,需要确定事件的可能性。
这可以通过统计数据来获取。
例如,某次活动中,抽奖有10个人参与,我们可以通过统计过去的数据得出每个人中奖的概率是1/10。
在进行概率计算时,这将是非常有用的信息。
四、利用频率估计概率统计学中的频率是表示某个事件在一系列试验中出现的次数与试验总次数的比值。
当我们无法得到准确的概率时,可以通过频率来估计。
例如,某个班级中有30个学生,其中20个学生擅长数学。
现在要从中随机抽取一个学生,问该学生擅长数学的概率是多少。
我们可以利用频率来估计。
在多次抽取学生的试验中,记录下擅长数学的学生出现的次数,然后将次数与总试验次数的比值作为概率的估计值。
五、运用统计方法解决概率问题在解决概率问题时,我们可以应用统计学中的方法来帮助求解。
例如,当抽取的样本越大时,所得到的概率估计越准确。
我们可以运用大数定律来解决概率问题。
六、综合运用数学专业知识除了统计学的方法,我们还可以综合运用数学专业知识来解决概率问题。
例如,通过概率的乘法和加法原理来求解复杂的概率问题。
滚动小专题(十一) 统计与概率的实际应用类型1 统计知识的应用1.(2016·石家庄新华区模拟)我区为了了解七年级学生的环保意识,在全区范围内组织七年级学生进行了一次环保知识测试,随机抽取了若干名学生的成绩(成绩为整数,满分100分),进行统计后,绘制出如下频数分布表和如图所示不完整的频数分布直方图.频数分布直示方图)频数分布表成绩/分 频数 频率 50.5~60.5 20 0.1 60.5~70.5 40 0.2 70.5~80.5 70 0.35 80.5~90.5 a 0.3 90.5~100.510b请根据图表信息回答下列问题:(1)在频数分布表中,a =60,b =0.05.并补全频数分布直方图;(2)甲同学说:“我的成绩是此次抽样调查所得数据的中位数”,问甲同学的成绩应在什么范围?(3)全区共有七年级学生5 000名,若规定成绩在80分以上(不含80分)为优秀,估计这次考试中成绩为优秀的学生有多少人?解:补全的频数分布直方图如图.(2)∵一共有200个数据,按从小到大的顺序排列后,第100与101个数都落在第三组:70.5~80.5, ∴此次抽样调查所得数据的中位数所在范围是70.5~80.5. ∴甲同学的成绩所在范围是70.5~80.5.(3)这次考试中成绩为优秀的学生为5 000×(0.3+0.05)=1 750(人).2.(2016·河北考试说明)小华与同学随机调查了他们乡的一些农民参加合作医疗的情况,根据收集到的数据绘制了以下的统计图:根据以上信息,解答以下问题:(1)本次调查了多少名村民,在被调查的村民中,有多少人参加合作医疗得到了返回款? (2)该乡若有10 000名村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长率. 解:(1)240+60=300(人),240×2.5%=6(人).所以本次调查了300名村民,有6人参加合作医疗得到了返回款. (2)因为参加合作医疗的百分率为240300=80%,所以估计该乡参加合作医疗的村民有10 000×80%=8 000(人). 设年增长率为x ,由题意,得8 000×(1+x)2=9 680,解得x 1=0.1,x 2=-2.1(舍去),即年增长率为10%.3.(2016·河北模拟经典一)如图所示,A ,B 两个旅游景点从2012年至2016年“元旦小长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:(1)B 旅游景点的旅游人数相对上一年,增长最快的是哪一年?(2)求A ,B 两个旅游景点从2012年到2016年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游景点的情况进行评价;(3)A 旅游景点现在的门票价格为每人80元,为保护旅游景点的环境和游客的安全,A 旅游景点的最佳接待人数为4万人.A 旅游景点决定提高门票价格来控制游客数量.已知游客数量y(万人)与门票价格x(元)之间满足函数关系y =5-x100.若要使A 旅游景点的游客人数不超过4万人,则门票价格至少应提高多少元?解:(1)B 旅游景点的旅游人数相对上一年,增长最快的是2015年. (2)x A =1+2+3+4+55=3(万人),x B =3+3+2+4+35=3(万人),s 2A=(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)25=2,s 2B=(3-3)2+(3-3)2+(2-3)2+(4-3)2+(3-3)25=25,从2012年到2016年“元旦小长假”期间,A 、B 两个旅游景点平均每年的旅游人数均为3万人,但A 旅游景点较B 旅游景点的旅游人数波动更大一些.(3)由y =5-x100≤4,得x≥100,x -80≥20,所以A 旅游景点的门票至少要提高20元.类型2 概率知识的应用4.(2016·唐山路北区二模)某小区为了改善生态环境,促进生活垃圾的分类处理,将生活垃圾分为三类:厨余、可回收和其他,分别记为a ,b ,c ,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A ,B ,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取该小区三类垃圾箱中总共1 000吨生活垃圾,数据统计如下(单位:吨):A B Ca 400 100 100b 30 240 30 c202060试估计“厨余垃圾”投放正确的概率.解:(1)树状图略.由树状图可知垃圾投放共有9种等可能情况,正确的有3种,所以垃圾投放正确的概率为39=13.(2)厨余垃圾投放正确的概率为400400+100+100=23.5.(2016·遵义)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是23;(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是29.解:(1)若乙固定在E 处,移动甲后黑色方块构成的拼图一共3种可能,其中有2种情形是轴对称图形,所以若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是23.故答案为23.(2)①由树状图可知,黑色方块所构成拼图是轴对称图形的概率为59.②黑色方块所构拼图中是中心对称图形有两种情形:甲在B 处,乙在F 处;甲在C 处,乙在E 处,所以黑色方块所构拼图是中心对称图形的概率是29.故答案为29.类型3 统计与概率的综合应用6.(2016·唐山路北区三模)某校组织了一次初三科技小制作比赛,有A ,B ,C ,D 四个班共提供了100件参赛作品.C 班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.(1)B 班参赛作品有25件;(2)请你将图2的统计图补充完整; (3)通过计算说明,哪个班的获奖率高?(4)将写有A ,B ,C ,D 四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,用列表法或画树状图的方法求抽到A ,B 两班的概率.解:(2)∵C 班提供的参赛作品的获奖率为50%,∴C 班的参赛作品的获奖数量为100×20%×50%=10(件), 补充统计图如图. (3)A 班的获奖率为14100×35%×100%=40%,B 班的获奖率为1125×100%=44%,C 班的获奖率为50%,D 班的获奖率为8100×20%×100%=40%,故C 班的获奖率高. (4)如图所示:故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,抽到A 、B 两班的概率为212=16.7.(2016·邢台一模)经销商经销某种农产品,在一个销售月内,每售出1吨该产品获得500元,未售出的产品,每1吨亏损300元.根据历史资料记载的20个月的销售情况,得到如图所示的销售月内市场需求量的频数分布直方图,经销商为下一个销售月购进了130吨该农产品,以x(单位:吨,100≤x ≤150)表示下一个销售月内的市场需求量,T(单位:元)表示下一个销售月内经销该农产品的利润. 完成下列问题:(1)根据直方图可以看出,销售月内市场需求量的中位数在第③组; (2)当100≤x≤150时,用含x 的代数式或常数表示T ; (3)根据直方图估计利润T 不少于57 000元的概率.解:(2)当100≤x<130时,T =500x -300(130-x)=800x -39 000; 当130≤x≤150时,T =500×130=65 000. (3)由题意可知,800x -39 000≥57 000, 解得x≥120,所以当120≤x≤150时,利润不少于57 000元,根据直方图估计销售月内市场需求量120≤x≤150的频数为6+5+3=14,则估计销售月内市场需求量120≤x≤150的频率为14÷20=0.7,所以估计利润不小于57 000元的概率为0.7.。
2021年中考数学第三轮压轴题冲刺:统计与概率的综合专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.2、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x<;及格6075x;良好7585格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.4、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<,D等级:060x<.该校随机抽取了x<,C等级:6080x,B等级:8090一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<t<2040t<4060t<6080t<80100解答下列问题:(1)频数分布表中a=,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080<的男生人数为2人,其余为女生,现从该组中任选2人h t h代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A .书画类”所占扇形的圆心角的度数为___________度; (2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C .社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(1)统计表中m 的值为_______;(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“3040x ≤<”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;x<”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树(4)若从年龄在“20状图的方法,求恰好抽到2名男性的概率.14、为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B “沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.15、为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.16、“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有___________人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为_________度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?17、为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为__________人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为__________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.参考答案2021年中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有 50 人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为 ; (2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.【解答】解:(1)本次比赛参赛选手共有:(84)24%50+÷=(人), “59.5~69.5”这一范围的人数占总参赛人数的百分比为23100%10%50+⨯=, 79.5~89.5∴”这一范围的人数占总参赛人数的百分比为100%24%10%30%36%---=;故答案为:50,36%;(2) “69.5~79.5”这一范围的人数为5030%15⨯=(人),∴ “69.5~74.5”这一范围的人数为1587-=(人),“79.5~89.5”这一范围的人数为5036%18⨯=(人),∴ “79.5~84.5”这一范围的人数为18810-=(人);补全图2频数直方图:(3)能获奖.理由如下:本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为5040%20⨯=(人),又8884.5>,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率82==.1232、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x;良好7585x<;及格6075格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是 5% ; (2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数. 【解答】解:(1)在抽取的学生中不及格人数所占的百分比120%25%50%5%=---=, 故答案为5%.(2)所抽取学生测试成绩的平均分9050%7825%6620%425%79.81⨯+⨯+⨯+⨯==(分).(3)由题意总人数25%40=÷=(人),4050%20⨯=,2010%200÷=(人)答:该校九年级学生中优秀等级的人数约为200人.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A 、B 、C 、D 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有 600 人.(2)喜欢C 种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图. (3)若该居民小区有6000人,请你估计爱吃D 种粽子的有 人.(4)若有外型完全相同的A 、B 、C 、D 棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A 种粽子的概率. 【解答】解:(1)24040%600÷=(人), 所以本次参加抽样调查的居民有60人;(2)喜欢B 种口味粽子的人数为60010%60⨯=(人),喜欢C种口味粽子的人数为60018060240120---=(人),所以喜欢C种口味粽子的人数所占圆心角的度数为12036072︒⨯=︒;600补全条形统计图为:(3)600040%2400⨯=,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率31==.1244、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<.该校随机抽取了x<,D等级:060x,B等级:8090x<,C等级:6080一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a8 ,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【解答】解:(1)1640%20%8a=÷⨯=,1640%(120%40%10%)12b=÷⨯---=,120%40%10%30%m=---=;故答案为:8,12,30%;(2)本次调查共抽取了410%40÷=名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,共有12种等可能的结果,恰为一男一女的有8种,∴抽得恰好为“一男一女”的概率为82 123=.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.【详解】(1)1220%60÷=,∴本次调查的学生人数为60人,1830%60=,故m=30.故答案为:60,m=30.(2)C的人数为:60-18-12-9=21(人),补全图形如下所示:(3)星期一到星期五连续的两天为(星期一、星期二),(星期二、星期三),(星期三、星期四),(星期四、星期五)共4种情况,符合题意的只有(星期一、星期二)这一种情况,故概率为14;在星期一到星期四任选两天的所有情况如下:(星期一、星期二),(星期一、星期三),(星期一、星期四),(星期二、星期三)、(星期二、星期四),(星期三、星期四)共6种情况,其中有一天是星期三的情况有:(星期一、星期三),(星期二、星期三),(星期三、星期四)共3种情况,所以概率是31 62 =.故答案为:14,12.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.【详解】(1)本次接受问卷调查的学生有:3636%100÷=(名),故答案为100;(2)喜爱C的有:10082036630----=(人),补全的条形统计图如右图所示;(3)扇形统计图中B类节目对应扇形的圆心角的度数为:2036072100︒︒⨯=,故答案为72︒;(4)82000160100⨯=(人),答:该校最喜爱新闻节目的学生有160人.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有50 人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?【解答】解:(1)612%50m=----=(人),÷=(人),5018410612故答案为:50;补全条形统计图如图所示:(2)103607250︒⨯=︒,答:喜欢“毽球”所在的圆心角的度数为72︒;(3)18180064850⨯=(人),答:全校1800名学生中喜欢跳绳活动的有648人.8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【详解】(1)学生总人数为3÷15%=20(人)∴成绩为“B等级”的学生人数有20-3-8-4=5(人)故答案为:5;(2)“D等级”扇形的圆心角度数为436072 20⨯︒=︒m=810040 20⨯=,故答案为:72°;40;(3)根据题意画树状图如下:∴P(女生被选中)=42 63 =.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<2040t<4060t<6080t<80100t<解答下列问题:(1)频数分布表中a= 5 ,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080h t h<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.【分析】(1)根据频数分布表所给数据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率.【解答】解:(1)(20.1)0.255a=÷⨯=,m=÷=,4200.2补全的直方图如图所示:故答案为:5,0.2;(2)400(0.250.15)160⨯+=(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况, 1男1女有12种,故所选学生为1男1女的概率为:123205P ==. 10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________. (2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率. 【详解】(1)由条形统计图知:等级“良好”的人数为:200名 由扇形统计图知:等级“良好”的所占的比例为:40% 则该校八年级总人数为:20040%500÷=(名) 由条形统计图知:等级“优秀”的人数为:150名 其站该校八年级总人数的比例为:15050030%÷= 所以其所对的圆心角为:36030%108︒︒⨯= 故答案为:500,108°(2)等级“一般”的人数为:50015020050100---=(名) 补充图形如图所示:(3)该校八年级中不合格人数所占的比例为:5010% 500=故该市15000名学生中不合格的人数为:1500010%1500⨯=(名)(4)从甲,乙,丙,丁四名学生中任取选出两人,所得基本事件有:共计12种,其中必有甲同学参加的有6种,必有甲同学参加的概率为:61 122=.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.【详解】解:(1)由题意可知总人数=10÷20%=50名;(2)补全条形统计图如图所示:扇形统计图中C等级所对应扇形的圆心角=15÷50×100%×360°=108°;(3)列表如下:得到所有等可能的情况有20种,其中恰好抽中2名同学都是女生的情况有6种,所以恰好选到2名同学都是女生的概率=620=310.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为___________度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.【详解】解:(1)本次被抽查的学生共有:20÷40%=50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为103607250⨯︒=︒;故答案为:50,72;(2)B类人数是:50-10-8-20=12名,补全条形统计图如图所示:(3)86009650⨯=名,答:估计该校学生选择“C.社会实践类”的学生共有96名;(4)所有可能的情况如下表所示:由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率41 164==.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全。
热点1:通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,通过实例体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差.研究对象的全体称为总体(母体),用X表示,它是一个随机变量。
总体分为有限总体和无限总体。
组成总体的每个研究对象(或每个基本单位)称为个体。
从总体X中按一定的规则抽出的个体的全部称为样本,用X1,X2,…,Xn 表示。
样本中所含个体的个数称为样本容量,用n 表示。
平均数是对于几个数据的算术平均数。
中位数是一般几个数据按大小顺序排列,处最中间位置的一个数据(或最中间的两个数据的平均数)。
众数是一组数据中出现次数最多的那个数据。
极差是指一组数据中最大数据与最小数据的差。
方差是各个数据与平均数之差的平方的平均数。
标准差是方差的算术平方根。
概率的统计定义通常可以这样叙述:在相同的条件下做大量的重复试验,一个事件出现的次数k和总的试验次数n之比,称为这个事件在这n次试验中出现的频率。
例1(2008娄底)去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是()(A)这1 000名考生是总体的一个样本(B)7.6万名考生是总体(C)每位考生的数学成绩是个体(D)1 000名学生是样本容量分析:在这个问题中,样本应是“1 000名考生的数学成绩”而不是“1 000名考生”,所以(A)不正确,同样总体是指“7.6万名考生的数学成绩”这一数量指标,而不是“7.6万名考生”这个具体对象,所以(B)不正确,样本容量是样本中个体的数目,故样本容量是1 000,(D)显然不正确.解:选(C).点评:总体,个体,样本,样本容量是统计里的重要概念,用样本估计总体是统计的基本思想方法,也是一个重要的考点.热点2:在具体情境中计算平均数、加权平均数、众数、中位数;根据具体问题,能选择合适的统计量表示数据的集中趋势.例2(2008长沙)某校社会实践小组八位成员上街卖报,一天的卖报数如下表:成员A B C D EE F GH卖报数(份)25 28 29 28 27 28 3225则卖报数的众数为()(A)25(B)26(C)27(D)28分析:本题考查如何确定众数,观察发现表中卖报数为28份的最多,为3人,故众数为28.解:选(D).点评:确定众数的方法是找该组数据中出现次数最多的数,如果有多个数出现的次数相同,那这些出现次数相同的数都是这组数据的众数;平均数、众数、中位数及其应用,在中考试卷中它们有机地交汇于实际情境中,考查应用意识.热点3:会用条形统计图、折线统计图、扇形统计图直观表示数据,能从统计图中获得所需要的信息回答相关问题是最常见的题型之一.例3(2008郴州)“农民也可以报销医疗费了!”这是某市推行新型农村合作医疗的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了如图1的统计图.根据以上信息,解答以下问题:(1)本次调查了多少村民,被调查的村民中,有多少人参加合作医疗得到了返回款?(2)该乡若有10 000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长率.分析:由条形统计图,可看出共调查了300个村民;从扇形统计图,可以看出占2.5%,即参加合作医疗得到返回款的为6人.解:(1)240+60=300(人),240×2.5%=6(人).(2)因为参加合作医疗的百分率为240300=80%,所以估计该乡参加合作医疗的村民有:10 000×80%=8 000(人).设年增长率为x,由题意知28000(1)9680x⨯+=,解得10.1x=,22.1x=-(舍去),即年增长率为10%.答:共调查了300人,得到返回款的村民有6人,估计有8 000人参加了合作医疗,年增长率为10%.点评:条形统计图和扇形统计图是一种基本的统计图表,通过条形统计图可以看到各个对象或多个因素的绝对统计数据,能反应具体的数据;通过扇形统计图可清楚地表示出各部分数量占总量的百分比.本题背景新颖,首先考查了同学们的“图表”阅读能力,其次考查同学们根据图表中反映出的数据解答有关问题的能力.热点4:通过实例理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题;例4(2008湘潭)某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了“频率分布表”和“频数分布条形图”(如图2).请你根据图表中提供的信息,解答下列问题.频率分布表:代号教学方式最喜欢的频数频率1 老师讲,学生听20 0.102 老师提出问题,学生探索思考1003 学生自行阅读教材,独立思考300.154 分组讨论,解决问题0.25(1)补全“频率分布表”;(2)在“频数分布条形图”中,将代号为“4”的部分补充完整;(3)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由.(字数在20字以内)分析:本题背景材料来源于同学们的生活实际,可从仔细阅读频率分布表和频数分布条形图中获取重要信息来解决问题.解:(1)频数:50;频率:0.5;(2)略;(3)答案不惟一(略).点评:频数、频率、频数分布表,频数分布直方图是重要考点,本题既考查了同学们对统计图表的应用,各种统计量的计算掌握情况,又考查了解释统计结果及根据结果做出简单判断的能力,同时还为同学们留有个性化的思考和创新的空间.热点5:考查极差和方差的意义和计算方法,并会用它们表示数据的离散程度例5 (2008岳阳)某地统计部门公布最近五年国民消费指数增长率分别为8.5%,9.2%,9.9%,10.2%,9.8%.业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据的( )比较小.(A )方差 (B )平均数 (C )众数 (D )中位数分析:由题可知,判断“增长率之间是否相当平稳”,是考查数据的波动大小(离散程度). 解:选(A ).点评:统计中,数据的代表比较多,如平均数、众数、中位数、方差、极差、频数、频率等等,它们表示的意义各不相同,我们应抓住它们的本质.对统计概念的掌握一直以来都是中考的考点,新课标下的中考也不例外.热点6:会判断一个事件是确定事件(必然事件和不可能事件)还是不确定事件例6 (2008张家界)下列事件中是必然事件的是( )(A )明天我市天气晴朗 (B )两个负数相乘,结果是正数(C )抛一枚硬币,正面朝下 (D )在同一个圆中,任画两个圆周角,度数相等 分析:此题主要考查对确定事件与不确定事件的了解和掌握,准确对几类事件概念的理解是解决此题的关键. 解:选(B).点评:这类题是基础题,只要弄清概率的基本概念,不难正确解决. 热点7:理解概率的意义,会求一些事件的概率;会运用列举法(列表、画树状图)计算事件发生的概率,并能利用它们解决实际问题 例7 (2008怀化)“六一”儿童节前夕,我市某县“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行表彰,某校八年级8个班中只能选两个班级参加这项活动,且8(1)班必须参加,另外再从其它班级中选一个班参加活动.8(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标上1,2,3,4四个数字,转动转盘两次,将两次指针所指的数字相加,(当指针指在某一条等分线上时视为无效,重新转动)和为几就选哪个班参加,你认为这种方法公平吗?请说明理由. 分析:本例是判断游戏公平的题,它的关键是正确求出概率,而后看它们获胜的概率是否相等. 解:方法不公平.用表格说明:所以,八(2)班被选中的概率为:116,八(3)班被选中的概率为:21168=,八(4)班被选中的概率为:316,八(5)班被选中的概率为:41164=,八(6)班被选中的概率为:316,八(7)班被选中的概率为:21168=,八(8)班被选中的概率为:116,所以这种方法不公平. 点评:判断游戏是否公平的(或者奖项设置是否合理)原则是双方获胜的概率是否相等,公平的游戏机会是相等的;这类题既可以考查同学们正确掌握求概率方法的程度,也可以考查同学们运用概率思想和知识解决实际问题的能力.无论是强化应用意识,还是培养综合能力,都是有价值的. 【考题预测】1.我市某一周的最高气温统计如下表: 最高气温(℃)25 26 27 28 天数1123则这组数据的中位数与众数分别是( )(A )27,28 (B )27.5,28 (C )28,27 (D )26.5,272.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( ) (A)15(B)25(C)35(D)453.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )(A )12 (B )9 (C )4 (D )34.随着中国经济的高速发展,股市持续上涨,到2007年5月28日止,股市的开户人数已达到1亿人,同日对股民的市场抽样调查如图3所示,据此估计当日对后市看涨的股民为_________万人. 5.据统计,某州今年参加初三毕业会考的学生为46 000人.为了了解全州初三考生毕业会考数学考试情况,从中随机抽取了500名考生的数学成绩进行统计分析,在这个问题中,样本容量是________.6.某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,图4记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表.(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.7.为了进一步了解九年级学生的身体素质情况,体育老师对九年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:请结合图表完成下列问题:(1)表中的a =___________; (2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x )达标要求是:x <120不合格;120≤x <140为合格;140≤x <160为良;x ≥160为优.根据以上信息,请你给学校或九年级同学提一条合理化建议:___________________.8.小华与小丽设计了AB ,两种游戏: 姓名 平均数 众数 方差 王亮 7 李刚72.8游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.(33)概率 〖考试内容〗事件、事件的概率.列举法(包括列表、画树状图)计算简单事件的概率. 实验与事件发生的频率,大量重复实验时事件发生概率的估计值. 运用概率知识解决实际问题. 〖考试要求〗①在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率.②通过实验,获得事件发生的频率;知道大量重复实验频率可作为事件发生概率的估计值.③会通过实验获得事件发生的概率,并能运用概率知识解决一些实际问题.〖考点复习〗1.必然事件与随机事件[例1]下列事件中是必然事件的是( ) A. 打开电视机,正在播广告.B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球.C. 从一定高度落下的图钉,落地后钉尖朝上.D. 今年10月1日 ,厦门市的天气一定是晴天.2.可能性[例2]如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形了 乙:只要指针连续转六次,一定会有一次停在6号扇形 丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
备考2021年中考数学复习专题:统计与概率_概率_概率的简单应用,综合题专训及答案备考2021中考数学复习专题:统计与概率_概率_概率的简单应用,综合题专训1、(2019昆山.中考模拟) 如图所示,两个可以自由转动的转盘中,指针位置固定,每个转盘被分成面积相等的三个扇形,其中A转盘分别标有数字1,2,3,E转盘分别标有3,4,5.(1)转动A转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为.(2)转动A,B两个转盘各一次,当转盘停止转动时,求两指针所指扇形中的数字之积为偶数的概率.(用画树状图或列表等方法求解)2、(2018秦淮.中考模拟) 中国的茶文化源远流长,根据制作方法和茶多酚氧化(发酵)程度的不同,可分为六大类:绿茶(不发酵)、白茶(轻微发酵)、黄茶(轻发酵)、青茶(半发酵)、黑茶(后发酵)、红茶(全发酵).春节将至,为款待亲朋好友,小叶去茶庄选购茶叶.茶庄有碧螺春、龙井两种绿茶,一种青茶——武夷岩茶及一种黄茶——银针出售.(1)随机购买一种茶叶,是绿茶的概率为;(2)随机购买两种茶叶,求一种是绿茶、一种是银针的概率.3、(2019秀洲.中考模拟) 一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,不放回,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)4、(2019.中考模拟) 某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).画树状图得:5、(2018武汉.中考模拟) 两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车;而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下面的问题:(1)三辆车按出现的先后顺序共有种不同的可能.(2)你认为甲、乙两人所采用的方案中,不巧坐到下等车的可能性大小比较为:(填“甲大”、“乙大”、“相同”).理由是:.(要求通过计算概率比较)6、(2019孝感.中考真卷) 一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为点的纵坐标,如图,已知四边形的四个顶点的坐标分别为,,,,请用画树状图或列表法,求点落在四边形所围成的部分内(含边界)的概率.7、(2018遵义.中考模拟) 在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.8、(2018罗平.中考模拟) 某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白两白为止).这三个字母分别写在张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,九(“ ”“ ”“ ”“ ”,类似这样自上而下排成的三行符号还有其他的含义有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同(1)所有这些三行符号共有________种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.备考2021中考数学复习专题:统计与概率_概率_概率的简单应用,综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
中考数学中的概率与统计实际问题解决实例总结概率与统计是数学中的重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计,我们可以应用数学知识解决实际问题,下面将通过实例总结几种常见的中考数学概率与统计实际问题的解决方法。
一、抽签问题抽签问题是概率与统计中常见的问题之一。
考生在中考数学中经常会遇到类似的问题,例如:某班有30个学生,其中有10名男生、20名女生,现在从中随机抽取一位学生,求抽到男生的概率。
解决这类问题的方法是先计算男生和女生的人数比例,然后利用概率的定义,男生的数量除以总人数,即可得到抽到男生的概率。
二、频率与统计问题频率与统计问题是指根据已有的数据进行分析与描述。
例如:某班有40名学生,学校要了解学生住校的比例,并调查了其中20名学生的住校情况,得知住校学生有14名,那么班上住校学生的估计人数是多少?解决这类问题的方法是利用已知数据进行比例估计。
已知住校学生与非住校学生的比值是14:6,可得比值为7:3,因此班上住校学生的估计人数为总人数乘以比值,即40 ×(7/10)= 28人。
三、骰子问题骰子问题是概率与统计中较为常见的问题之一。
例如:某游戏中,玩家需要掷两个骰子,求两个骰子的点数之和为7的概率。
解决这类问题的方法是可以列出所有掷骰子的可能数,然后计算出点数之和为7的情况数量,再利用概率的定义,点数之和为7的次数除以总次数,即可得到所求的概率。
四、问卷调查问题问卷调查问题是概率与统计中常见的实际问题之一。
例如:某班有50名学生,学校要了解学生是否有养宠物,并进行问卷调查,问卷结果显示有30名学生有养宠物,那么班上养宠物学生的估计人数是多少?解决这类问题的方法是利用问卷调查结果进行比例估计。
已知养宠物学生与非养宠物学生的比值是30:20,可得比值为3:2,因此班上养宠物学生的估计人数为总人数乘以比值,即50 ×(3/5)= 30人。
通过以上实例的总结,我们可以看到概率与统计在中考数学中具有重要作用。
概率(2)一、考点分析内容要求1、数据的收集、整理、描述与分析等统计的意义Ⅰ2、总体、个体、样本,全面调查及抽样抽查,频数、频率等概念Ⅰ3、利用扇形图、条形图、直方图及折线图进行数据整理Ⅱ4、理解概率的意义,会用列举法及频率求概率Ⅱ5、能利用统计与概率知识解决实际生活中的有关问题Ⅱ二、命题预测概率是新课程标准下新增的一部分内容,从中考试题来看,概率在试题中占有一定的比例,一般在10—15分左右,因此概率已成为近两年及今后中考命题的亮点和热点.在中考命题时,关于概率的考题,多设置为现实生活中的情境问题,要求学生能分清现实生活中的随机事件,并能利用画树状图及列表的方法计算一些简单事件发生的概率.因此学生在复习时要多接触现实生活,多作实验,留心身边的每一件事,把实际问题与理论知识结合到一块来考虑问题.预测2011年将进一步考查在具体情况中求简单事件发生的概率以及运用概率的知识对一些现象作出合理的解释.一选择1、以下说法合理的是()A、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖.D、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51.2、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.例8用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则应设个白球,个红球,个黄球.【考点要求】本题考查概率实验中小球数目的确定.【思路点拔】因为一共有6个球,需满足条件:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则白球有6×12=3个,红球有6×13=2个,黄球有6×16=1个.【答案】填3,2,1.【错解剖析】部分学生容易忽视总共是6个球,而只考虑三种颜色球之比为3:2:1. 例9在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小华记录了她预测时1分钟跳的次数分别为145,156,143,163,166,则他在该次预测中达标的概率是【考点要求】本题主要考查计算简单事件发生的概率.【思路点拔】这个事件的所有可能出现的结果有5种,其中达标的结果有2种,所以他达标的概率是25. 【答案】25【方法点拔】由预测的达标概率来估计中考达标原概率. 例10我市部分学生参加了2005年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下: 分数段 0-19 20-39 40-59 60-79 80-99 100-119 120-140人 数0 37 68 95 56 32 12 请根据以上信息解答下列问题:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围? (2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内? (4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.【考点要求】本题考查利用统计知识对所给数据进行分析,并解决相关问题. 【思路点拔】(1)全市共有300名学生参加本次竞赛决赛,最低分在20-39之间,最高分在120-140之间(2) 本次决赛共有195人获奖,获奖率为65% . (3) 决赛成绩的中位数落在60—79分数段内.(4) 如“120分以上有12人;60至79分数段的人数最多;……”等. 【答案】(1)最低分在20-39之间,最高分在120-140之间; (2)获奖率为65%; (3)60至79分;(4)120分以上有12人;60至79分数段的人数最多.【方法点拔】从问题出发,对表格中的数据进行分析,找出对解题有用的信息.例11市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m )如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67 乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75 (1)甲、乙两名运动员的跳高平均成绩分别是多少? (2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m 才能得冠军呢?【考点要求】本题考查平均数、方差等知识,并能利用方差判断成绩的稳定性,从而帮助作出决策的实际应用问题.【思路点拔】(1) 1.69 1.68x x ==乙甲(2)20.0006s =甲 20.0035s =乙 22s s <乙甲故甲稳定(3)可能选甲参加,因为甲8次成绩都跳过1.65m 而乙有3次低于1.65m ; 也可能选乙参加,因为甲仅3次超过1.70m .(答案不唯一,言之有据即可) 【答案】(1) 1.69 1.68x x ==乙甲;(2)甲稳定;(3)答案不唯一,言之有据即可【方法点拔】回答第(3)问时,并无固定答案,从不同角度可做出不同回答.例12如图所示,A 、B 两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A 、B 两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100xy =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?【考点要求】本题考查从折线图中获取信息,并结合信息加以评价,解决相关问题. (1)B 旅游点的旅游人数相对上一年增长最快的是2005年. (2)A X =554321++++=3(万元),B X =534233++++=3(万元)2AS =51[(-2)2+(-1)2+02+12+22]=2,2B S =51[02+02+(-1)2+12+02]=52从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3)由题意,得 5-100x≤4 解得x ≥100 100-80=20 【答案】(1)2005年;(2)从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游2002 2003 2004 2005 2006 年6 54 3 2 1万人A B图4-4点较B 旅游点的旅游人数波动大;(3)至少要提高20元.【方法点拔】完成第(3)问时要先确定票价与游客人数的函数关系,然后根据题目要求列出不等式,求出相应的票价,再计算出票价提高多少.例13小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图4-5),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么? (2)游戏结束后,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)【考点要求】本题考查设计用频率估计概率的方法,来估算非规则图形的面积的方案,即用概率知识进行方案设计.【思路点拔】(1)不公平∵P(阴)=95949=ππ-π,即小红胜率为95,小明胜率为94∴游戏对双方不公平(2)能利用频率估计概率的实验方法估算非规则图形的面积.设计方案:① 设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S ).如图4-6所示;② 往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不作记录). ③ 当掷点数充分大(如1万次),记录并统计结果,设掷入正方形内m 次,其中n 次掷图形内.④ 设非规则图形的面积为S ',用频率估计概率,即频率P '(掷入非规则图形内)=≈m n概率P(掷入非规则图形内)=SS 1, 故≈m n mSn S S S ≈⇒11 【答案】(1)不公平;(2)能利用频率估计概率的实验方法估算非规则图形的面积.【方法点拔】本题第(2)问的解决是在第(1)问的逆向思维基础上进行,只有正确解决了第(1)问并能正逆理解才能有第(2)问的方案设计思路. ● 难点突破方法总结统计与概率问题中,中考考查以基础题主为,难题一般为实际运用,解题时应注意以下几点.1.提高运算技能,平均数、中位数、极差、方差、频率等数值都要定的数学运算得到,而运算的结果将会影响到统计的预测.2.提高阅读理解和识别图表的能力,统计问题的试题中,许多问题都是以社会热点为背景,形式灵活多样,综合性较强,强调课内知识和课外活动相结合,调查分析和收集整理相结合;3.注重在具体情境中体会概率的意义,理解概率对生活指导的现实作用;4.加强统计与概率之间的关系,同时要避免将概率内容的学习变成数字运算的练习;图4-5 图4-65.加强训练,能用规范的语言表述自己的观点.●拓展演练一、填空题1.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是__ __.2. 一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.3.2006年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数是__________.4.为了缓解旱情,我市发射增雨火箭,实施增雨作业. 在一场降雨中,某县测得10个面积相等区域的降雨量如下表:区域 1 2 3 4 5 6 7 8 9 10 降雨量(mm)10121313201514151414则该县这10个区域降雨量的众数为_______(mm);平均降雨量为___________(mm ).5.一个骰子,六个面上的数字分别为1、2、3、3、4、5,投掷一次,向上的面出现数字3的概率是_____.6.某校学生会在“暑假社会实践”活动中组织学生进行社会调查,并组织评委会对学生写出的调查报告进行了评比.学生会随机抽取了部分评比后的调查报告进行统计,绘制了统计图如下,请根据该图回答下列问题:(1)学生会共抽取了______份调查报告;(2)若等第A 为优秀,则优秀率为_____________ ;(3)学生会共收到调查报告1000 份,请估计该校有多少份调查报告的等第为E ?7.有100张已编号的卡片(从1号到100号)从中任取1张,计算卡片是奇数的概率是_______,卡片号是7的倍数的概率是________.8.掷一枚正六面体的骰子,掷出的点数不大于3的概率是_________.二、选择题9.在样本方差的计算式S 2=101(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量、方差B .平均数、容量C .容量、平均数D .标准差、平均数 10.宾馆客房的标价影响住宿百分率.下表是某一宾馆在近几年旅游周统计的平均数据:客房价(元) 160140120100 住宿百分率 63.8% 74.3% 84.1%95%在旅游周,要使宾馆客房收入最大,客房标价应选( ).A .160元B .140元C .120元D .100元 11.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( )A .平均数或中位数B .方差或极差C .众数或频率D .频数或众数 12.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)情年人均收入 3500 3700 3800 3900 4500 村庄个数 0 1 3 3 1 第6题图况如右表,该乡去年年人均收入的中位数是( )A .3700元B .3800元C .3850元D .3900元13.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( )A .0.85B .0.085C .0.1D .85014.一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )A .825B .15C .1225D .132515.某商店举办有奖销售活动,购物满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个,若某人购物满100元,那么他中一等奖的概率是( )A .1100B .11000C .110000D .1111000016.如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A .25B .310C .320D .1517.军军的文具盒中有两支蜡笔,一支红色的、一支绿色的;三支水彩笔,分别是黄色、黑色、红色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率为( )A .56B .13C .15D .1618.甲、乙两位学生一起在玩抛掷两枚硬币的游戏,游戏规定:甲学生抛出两个正面得1分;乙学生抛出一正一反得1分.那么各抛掷100次后他们的得分情况大约应为( )A .甲→25分,乙→25分B .甲→25分,乙→50分C .甲→50分,乙→25分D .甲→50分,乙→50分 三、解答题19.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁 参赛人数5191214(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%. 你认为小明是哪个年龄组的选手?请说明理由.20.小谢家买了一辆小轿车,小谢连续记录了七天每天行驶的路程.第一天 第二天 第三天 第四天第五天 第六天 第七天 路程(千米)46393650549134请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)要行A B驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元?21.(连云港市2005)今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数据如下表:档次第一档第二档第三档第四档第五档分值a(分)a≥9080≤a<9070≤a<8060≤a<70a<60人数73 147 122 86 22 根据表中提供的信息,回答下列问题:(1)所有评分数据的中位数应在第几档内?(2)若评分不低于70分为“满意”,试估计今年“五一黄金周”期间对花果山景区服务“满意”的游客人数.22.在青岛市政府举办的“迎奥运登山活动”中,参加崂山景区登山活动的市民约有12000人,为统计参加活动人员的年龄情况,我们从中随机抽取了100人的年龄作为样本,进行数据处理,制成扇形统计图和条形统计图(部分)如下:(1)根据图①提供的信息补全图②;(2)参加崂山景区登山活动的 12000 余名市民中,哪个年龄段的人数最多?(3)根据统计图提供的信息,谈谈自己的感想.(不超过30字)23.袋中装有编号为1、2、3的三个形状大小相同的小球,从袋中随意摸出1球.并且随意抛掷一个面上标有1,2,3,4,5,6各一数字的正方体均匀骰子.(1)如果摸出1号球和骰子朝上的数字为1则甲胜;如果摸出2号球和骰子朝上的数字为2,则乙胜.这个游戏对双方公平吗?(2)如果摸出的球编号为奇数和骰子朝上的数字为奇数则甲胜;如果摸出的球编号为偶数和木块朝上的数字为偶数,则乙胜.这个游戏对双方公平吗?说明理由.24.小明拿着一个罐子来找小华做游戏,罐子里有四个一样大小的玻璃球,两个黑色,两个白色.小明说:“使劲摇晃罐子,使罐子中的小球位置打乱,等小球落定后,如果是黑白相间地排列(如图所示),就算甲方赢,否则就算乙方赢.”他问小华要当甲方还是乙方,请你帮小华出主意,并说明理由.专题四《统计与概率》●习题答案一、填空题1.1114 (提示:实验中,我们关注的结果的次数是11,所有等可能出现的结果的次数是14,故取到黄球的概率1114)2.13 (提示:P (白球)=441417123==++) 3.31(提示:将这组数据按从小到大排列为30、31、31、31、32、34、35,则位于中间位置的一个数为31,即这组数据的中位数是31)4.14,14(提示:14出现次数最多,平均降雨量是把各区域降雨量相加再除以10)5.13(提示:P (向上数字为3)=2163=) 6.50,0.16,40(提示:共抽查8+20+15+5+2=50;优秀率为8÷50=0.16;等第为E 的报告有210004050⨯=) 7.12,750(提示:1到100中奇数有50个,P (卡片是奇数)=5011002=;7的倍数有100÷7≈14,所以P (卡片号是7的倍数)=14710050=) 8.12(提示:点数不大于3的数字有1、2、3,所以P (点数不大于3)=3162=)二、选择题9.C (提示:要熟悉样本方差计算公式的意义)10.B (提示:应综合考虑客房价与住宿百分率两方面因素,要使两者乘积最大) 11.B (提示:反映数据稳定性的量是数据的方差或极差)12.C (提示:表中共有8个数据,位于中间位置的两个的数分别为3800、3900,故本组数据的中位数为(3800+3900)÷2=3850)13.A (提示:100人中吃早餐的概率85÷100=0.85,可以代表1000名学生吃早餐的概率)14.D (提示:P (摸出的是黑球)=1212851225=++,所以P (摸出的不是黑球)=1-1225=1325) 15.C (提示:共有10000张奖券,其中一等奖10个,购物100元,可得一张奖券,故P (中一等奖)=11000016.B (提示:P (A 指奇数)=35,P (B 指奇数)=2142=,所以P (A 、B 同时指奇数)=35×12=310) 17.D (提示:P (两支红色水笔)111236=⨯=) 18.B (提示:抛掷两枚硬币的所有可能是正正、正反、反正、反反.所以P (甲抛出两个正面)=14,P (乙抛出一正一反)=12,各抛100次后,甲得分100×14=25(分),乙得分100×12=50(分))三、解答题 19.解:(1)众数是14岁,中位数是15岁; (2)(5+19+12+14)×28%=14(人) 所以小明是16岁年龄组的选手.20.解:(1)由图知这七天中平均每天行驶的路程为50(千米). ∴每月行驶的路程为30×50=l 500(千米). 答:小谢家小轿车每月要行驶1500千米. (2)小谢一家一年的汽油费用是4 968元.21.解:(1)所有评分数据的中位数应在第三档内.(2)根据题意,样本中不小于70的数据个数为73+147+122=342, 所以,22.5万游客中对花果山景区服务“满意”的游客人数约为1.175.22450342=⨯(万). 22.解:(1)略 (2)60-69岁(3)根据统计图提供的信息,谈谈自己的感想合理即可. 23.解:①公平 因为获胜概率相同都等于118; ②不公平;因为甲获胜概率为31,乙获胜概率为61. 24.解:小华当乙方.理由:设A 1表示第一个黑球,A 2表示第二个黑球,B 1表示第一个白球,B 2表示第二个白球.有24种可能结果(可以利用树状图或表格解释),黑白相间排列的有8种.因此,甲方赢的概率为824=13 ,乙方赢的概率为23,故小华当乙方.。
备考2022年中考数学二轮复习-统计与概率_概率_概率的简单应用-填空题专训及答案概率的简单应用填空题专训1、(2019鞍山.中考真卷) 一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为________个.2、(2018锦州.中考真卷) 如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积为________m2.3、(2019宁波.中考模拟) 在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出1个棋子,摸到黑色棋子的概率是,则白色棋子的个数是________.4、(2018西湖.中考模拟) 标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是________.5、(2018余姚.中考模拟) 不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是________.6、(2020长葛.中考模拟) 在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有________个7、(2018方城.中考模拟) 在一个不透明的口袋中放入只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机摸出一个球恰好是黄球的概率是.则n=________.8、(2019定安.中考模拟) 在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数________.9、(2020宁波.中考模拟) 有五张背面完全相同的纸质卡片,其正面分别标有数:6、、、-2、。
用心 爱心 专心 - 1 -
中考数学专题复习 统计与概率的应用 (时间:100分钟 总分:100分) 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,则老师需要知道小明这5次数学成绩的( ) A.平均数或中位数 B.方差或极差 C.众数或频率 D.频数或众数 2.下列调查,比较容易用普查方式的是( ) A.了解某市居民年人均收入 B.了解某市初中生体育中考成绩 C.了解某市中小学生的近视率 D.了解某一天离开贵阳市的人口流量 3.在频率分布直方图中,各个小长方形的面积等于( ) A.相应各组的频数 B.组数 C.相应各组的频率 D.组距 4.第五次我国人口普查资料显示:2000年某省总人口为780万,图中的“?•”表示某省2000年接受初中教育这一类别的人数数据丢失了,•那么结合图中其他信息,可推知2000年该省接受初中教育的人数为( ) A.93.6万 B.234万 C.23.4万 D.2.34万 5.把养鸡场的一次质量抽查情况作为样本,样本数据落在1.5~2.0(单位:千克)之间的频率为0.28,于是可估计这个养鸡场的2 000只鸡中,质量在1.5~2.0千克之间的鸡有( )只 A.56 B.560 C.80 D.150 6.设有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,从中任取1个乒乓球,抽到非一等品的概率是( ) A.425 B.125 C.15 D.45 7.某厂家准备投资一批资金生产10万双成人皮鞋,•现对顾客所需鞋的大小号码抽样调查如下:100名顾客中有15人穿36码,20人穿37码,25人穿38码,20人穿39码,…,如果你是厂商你准备在这10万双鞋中生产39码的鞋约( )双 A.2万 B.2.5万 C.1.5万 D.5万 8.在某次体育活动中,统计甲、乙两组学生每分钟跳绳的成绩(单位:次)情况如下: 用心 爱心 专心 - 2 -
班级 参加人数 平均次数 中位数 方差 甲班 55 135 149 190 乙班 55 135 151 110 下面有三个命题:①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生的成绩波动比乙班学生的成绩波动大;•③甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数(跳绳次数≥150次为优秀).其中正确的是( ) A.① B.② C.③ D.②③ 9.给出下述四个命题:①众数与数据的排列顺序有关;②10个数据中,至少有5个数据大
于这10个数据的平均数;③若x甲>x乙,则s甲2>s乙2;④频率分布直方图中,各长方形的面积和等于1,其中正确命题的个数是( ) A.1 B.2 C.3 D.4 10.近年来我国国内生产总值增长率的变化情况统计图如图,下列结论中不正确的是( ) A.1995─1999年,国内生产总值的年增长率逐年减少; B.2000年,国内生产总值的年增长率回升; C.这7年中,每年的国内生产总值不断增长; D.这8年中,每年的国内生产总值有增有减。 二、填空题(本大题共8题,每题3分,共24分) 11.在全年级的375名学生中,有两名学生生日相同的概率是_________. 12.从甲、乙两班抽取人数相等的学生参加了同一次数学竞赛,其竞赛成绩的平均分,方差
分别为:x甲=x乙=80,s甲2=240;s乙2=180,则成绩较稳定的是________. 13.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人. 14.用5分评价学生的作业(没有人得0分),然后在班上抽查16名学生的作业质量来估计全班的作业质量,从中抽查的数据中已知其众数是4分,•那么得4•分的至少有_______人. 15.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,•对其使用寿命跟踪调查结果如下(单位:年): 甲:3,4,6,8,8,8,10,5 用心 爱心 专心 - 3 -
乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12 三个厂家在广告中都标明产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、•众数、•中位数哪一种集中趋势的特征数,•甲:•______.•乙:_______.丙:________. 16.抽屉里有尺码相同的3双黑袜子和2双白袜子,混放在一起,•在夜晚不开灯的情况下,你随意拿出2只,它们恰好是1双的可能性是_________. 17.某商场5月份随机抽查7天的营业额,结果如下(单位:万元):3.6,3.2,3.4,3.9,3.0,3.1,3.6.试估计该商场5月份(31天)的营业额大约是________万元. 18.某公司董事会拨出总额为40万元作为奖金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工,原来设定一等奖每人5万元,二等奖每人3万元,三等奖每人2万元,后因考虑到获一等奖的职工科技创新已给公司带来的巨大的经济效益,•现在改为一等奖每人15万元,二等奖每人4万元,三等奖每人1万元,•那么该公司本年度获得一、二、三等奖的职工共________人. 三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤) 19.如图,为第27届奥运金牌扇形统计图,•根据图中提供的信息回答下列问题: (1)美国、俄罗斯、中国、德国四国的金牌榜排名如何? (2)哪两个国家金牌数最接近? (3)如果你是中国队的总教练,你在下一次奥运会的追赶目标是谁?
20.小文和小颖做游戏,在两个被6等分的转盘上分别写有数字1,2,3,4,5,6.•转动两个转盘,当转盘停止后,如果它们的指针指向数字的积为奇数,则小文胜,如果两个数字的积为偶数,则小颖胜.试问:这个游戏对双方公平吗?请说明你的理由. 用心 爱心 专心 - 4 -
21.为了解全校学生的身高情况,小明、小华、小刚三个同学分别设计了三个方案: (1)小明:测量出某班每个同学的身高,以此推出全校学生的身高. (2)小华:在校医务室找出了1995年全校各班的体检表,•从中摘录全校学生的身高情况. (3)小刚:在全校每个年级的(一)班中,抽取了学号为5的倍数的10名学生,•测量他们的身高,从而估计全校学生身高的情况. 这三种调查方案哪一种较好?为什么?
22.投放一个水库的鱼成活了5万条,从水中捕捞了10条,称得它们的质量(单位:kg)为2.5,2.2,2.4,2.3,2.4,2.5,2.8,2.6,2.7,2.6. (1)根据统计结果估计水库有上述这种活鱼多少千克? (2)估计质量在2.35~2.65kg的鱼有多少条? 用心 爱心 专心 - 5 -
23.将10盒同一品种的花施用甲、乙两种保花肥,随意分成两组,每组5盆,•其花期的记录结果如下(单位:天). 编号 1 2 3 4 5 甲组 23 25 27 28 22 乙组 24 24 27 23 27 (1)施用哪种花肥,使得花的平均花期较长?(2)施用哪种保花肥效果比较可靠?
24.某公司10名销售员,去年完成的销售额情况如下表: 销售额(单位:万元) 3 4 5 6 7 8 10 销售员(单位:人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数(单位:万元). (2)今年公司为调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较合理确定今年每个销售员统一的销售额标准是多少万元? 用心 爱心 专心 - 6 -
25.在学校开展的结合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至31日,评委会把同学们上交作品的件数按5天一组分组统计,绘制成频率分布直方图,如图所示,已知从左至右各长方形高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题: (1)本次活动共有多少作品参加评比? (2)哪组上交的作品中数量最多?有多少件? (3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?
用心 爱心 专心 - 7 -
答案 一、选择题 1.B 2.B 3.C 4.B 5.B 6.C 7.A 8.D 9.B 10.D 二、填空题 11.1 12.乙 13.5 14.4 15.众数 平均数 中位数 16.715 17.105.4 •18.17 三、解答题 19.解:(1)排名榜为:美国、俄罗斯、中国、德国. (2)澳大利亚与德国. (3)俄罗斯. 20.解:这个游戏不公平,指向数字的积为奇数的概率为14,积为偶数的概率为34,• 故不公平. 21.解:第三种方案较好,理由 22.解:(1)2.52.22.42.32.42.52.82.62.72.610=2.5(千克). 2.5×50 000=1125 000(千克). (2)610×50 000=30 000(条). 23.解:(1)甲组平均花期与乙组的平均花期均为25天. (2)s甲2=15 [(23-25)2+(25-25)2+(27-25)2+(28-25)2+(22-25)2=5.2, s乙2=15 [2(24-25)2+2(27-25)2+(23-25)2]=2.8. ∵s甲2>s乙2,∴乙种保花肥更可靠. 24.解:(1)平均数为5.6万元,众数为4万元,中位数为5万元. (2)5万元.