风力发电基础
- 格式:pdf
- 大小:1.43 MB
- 文档页数:48
第一章风力发电机组结构1.8 控制系统控制系统利用微处理器、逻辑程序控制器或单片机通过对运行过程中输入信号的采集传输、分析,来控制风电机组的转速和功率;如发生故障或其他异常情况能自动地检测平分析确定原因,自动调整排除故障或进入保护状态。
控控制系统的主要任务就是自动控制风机组运行,依照其特性自动检测故障并根据情况采取相应的措施。
控制系统包括控制和检测两部分。
控制部分又设置了手动和自动两种模式,运行维护人员可在现场根据需要进行手动控制,而自动控制应在无人值班的条件下预先设置控制策略,保证机组正常安全运行。
检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询。
现场数据可通过网络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。
安全系统要保证机组在发生非常情况时立即停机,预防或减轻故障损失。
例如定桨距风电机组的叶尖制动片在运行时利用液压系统的高压油保持与叶片外形组合成一个整体,同时保持机械制动器的制动钳处于松开状态,一旦发生液压系统失灵或电网停电,叶尖制动片和制动钳将在弹簧作用下立即使叶尖制动片旋转约90°,制动钳变为夹紧状态,风轮被制动停止旋转。
根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。
(1)待机状态风轮自由转动,机组不发电(风速为0~3m/s),刹车释放。
(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。
发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。
(3)故障停机方式:故障停机方式分为:可自启动故障和不可自启动故障。
停机方式为正常刹车程序:即先叶片顺桨,党当发动机转速降至设定值后,启动机械刹车。
(4)人工停机方式:这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后启动机械刹车。
风电基本知识包括以下几个方面:
•风力发电机:风力发电机是风电行业的核心设备,它将风的动能转化为电能,通常由叶片、机舱、传动系统、发电机等组成。
•风速和空气密度:风力发电的效率取决于风速和空气密度,在风速较低的情况下,风力发电的效率会降低。
•太阳辐射:风力发电主要依赖于太阳辐射,太阳能辐射量越大,风力发电的效率也会相应提高。
•系统效率:风电场的系统效率是指风力发电机输出的有效功率与输入的有效功率之比,系统效率取决于系统中各个组件的匹
配情况。
•并网问题:风力发电机需要与电网连接才能产生电能,并网问题包括电网接纳能力、电压稳定性等。
•储能技术:为了满足日益增长的电力需求,风力发电需要与储能技术相结合,如储能电池、储能器等。
•环境影响:风力发电对环境产生的影响包括减少温室气体排放、对气候变化的缓解等。
风电基础知识引言:随着对可再生能源的需求不断增长,风电作为一种无污染、可持续的能源形式,越来越受到关注。
无论是面对日趋紧张的能源供应,还是追求绿色环保的发展,风能都成为了各国政府和企业的关注焦点。
本文将介绍风电的基础知识,包括风能的转化原理、组成结构以及风电发电技术的发展趋势等。
一、风能的转化原理风能是一种动能,可以通过风力发电机将其转化为电能。
风力发电机是利用风能使转子旋转,通过转子与发电机的直接耦合或通过齿轮箱连接,使发电机产生电力。
风力发电机的核心部分是转子,其外形类似于大风车。
当风力吹向转子时,转子的叶片受到推动,并开始旋转。
转子上设置的发电机可以将旋转转子的运动转化为电力。
二、风电的组成结构1.风力发电机组风力发电机组是风电站的核心设备。
它由塔筒、轮毂、叶片、发电机和变频器等组成。
塔筒是风力发电机组的支撑结构,通常采用钢铁或混凝土制成。
轮毂是连接塔筒和叶片的部分,其主要作用是使叶片能够转动。
叶片是风力发电机组的动力装置,一般由纤维复合材料制成,具有轻质、高强度的特点。
发电机是将机械能转化为电能的核心部件,通常采用异步发电机或同步发电机。
变频器是将风力发电机组产生的交流电转化为稳定的直流电的装置。
2.电网连接装置电网连接装置包括变电站和输电线路。
变电站将风力发电机组产生的电能转换为适于输送的电气能,并将其接入电力系统中。
输电线路用于将发电站产生的电能输送到用户端。
三、风电发电技术的发展趋势1.提高风能利用率目前风能的利用率还有很大的提升空间。
为了提高风能利用率,风力发电机组的设计和运行需要更加科学合理。
同时,需要对风力资源进行更加准确的评估,选择更加适合的风力发电机组。
2.增强风电系统的稳定性由于风力发电的波动性较大,风电系统的稳定性一直是亟待解决的问题。
在未来的发展中,需要进一步完善风电并网技术,提高系统的稳定性和可靠性。
3.发展离岸风电相比于陆地风电,离岸风电具有风能资源丰富、风速稳定等优势。
风力发电场基础施工工序
风力发电作为清洁能源的代表之一,在全球范围内得到了广泛的应用。
而一座风力发电场的建设离不开基础施工工序的精确规划和有序进行。
下面就介绍一下风力发电场基础施工的相关工序。
一、场地准备
首先,在进行风力发电场基础施工之前,需要对场地进行准确的勘察和规划。
经过勘察后,确定场地的地形、土质等情况,为后续工作做好准备。
二、基坑开挖
接下来是基坑开挖阶段,根据项目的实际情况和设计要求,使用挖掘机等设备对基坑进行开挖,为后续的基础浇筑提供空间。
三、桩基施工
在基坑开挖完成后,就是进行桩基施工。
桩基是风力发电场的重要支撑结构,它能够承受风力机组的重量和扭矩。
桩基施工需要确保桩的数量、深度和质量符合设计要求。
四、基础浇筑
一旦桩基施工完成,就可以进行基础浇筑了。
基础浇筑是整个风力发电场基础施工中最关键的一个环节,需要确保混凝土的配合比例和浇筑质量,以确保风力机组的安全稳定。
五、主体结构施工
基础浇筑完成后,就可以进行主体结构的施工了。
主体结构包括风
力机组的塔筒、机舱等部分,需要严格按照设计要求进行安装和组装。
六、道路和设施建设
最后,风力发电场基础施工工序还包括道路和设施建设。
道路建设
是为了便于日后的维护和管理,设施建设则是为了保障风力发电场的
正常运行。
在风力发电场基础施工工序中,每一个环节都至关重要,只有严格
按照设计要求和工艺流程进行施工,才能确保风力发电场的安全性和
稳定性。
希望通过以上介绍,能对风力发电场基础施工的工序有一个
清晰的了解。
风力发电机组机舱底盘、塔架与基础介绍1、机舱底盘机舱底盘是风力发电机组的底座,风力发电机组的主要系统和部件都安装在它上面。
因此,要求机舱底盘有足够的机械强度和刚度,并且重量轻,有足够的抗振性能。
机舱底盘常采用铸造或焊接结构。
随着机组容量和体积的增大,为了改善其加工性能,机舱底盘多设计成分体结构拼接而成。
2、塔架塔架可支撑机舱和风轮到一定的高度,以便更好地吸收风能。
随着机组容量的增加,塔架高度和重量也相应增加。
随着机组容量和塔架高度的增加,塔架重量占机组重量的比例越来越大。
塔架按照结构材料可分为钢结构塔架和钢筋混凝土塔架。
(1)钢筋混凝土塔架在早期风力发电机组中,大量采用钢筋混凝土塔架,后来由于风力发电机组批量化生产,从批量生产的需要而被钢结构塔架所取代。
近年来随着风力发电机组容量的增加,塔架的直径增大,使得塔架运输出现困难,又有以钢筋混凝土塔架取代钢结构塔架的苗头。
(2)钢结构塔架按结构类型可分为桁架式和锥筒式两种。
①桁架式塔架在早期风力发电机组中大量使用,其主要优点是制造简单、成本低、运输方便,但其主要缺点是不美观、安全性差、不便于维护等。
②锥筒式塔架在当前风力发电机组中大量应用,其优点是美观大方,登塔时安全可靠,控制器等设备可直接安装在塔架内。
塔架内设置有直梯和平台,以便于登塔。
随着机组容量的增大和塔架的增高,塔架内常安装有登塔助力装置或电梯,以便于登塔。
3、基础根据风电场建设场地不同,可分为陆地风力发电机组和海上风力发电机组的基础。
(1)陆地风力发电机组的基础按照地质条件件可分为块状基础和桩基础。
当天然地基的承载力足够时,多采用块状基础。
块状基础结构简单、造价低、工期短。
当地基浅层土质软弱时,使用桩基础,在土壤中打入20~30m的钢筋混凝土桩或钢桩,再在上面浇注混凝土平台。
基础由钢筋混凝土组成,通过预埋地脚螺栓或基础环与塔架连接。
使用地脚螺栓结构的基础时,地脚螺栓需要预埋在基础内。
由于对地脚螺栓安装位置度的要求较高,地脚螺栓需要使用模板安装。