信号系统(第3版)习题解答
- 格式:doc
- 大小:5.14 MB
- 文档页数:69
《信号与系统(第三版)习题解析》勘误表1谷源涛2012年3月25日一、可能影响理解的错误1、 第12页,第3行“(t −π4)”改为“(t +π4)”,即把减号改成加号2、 第291页,第10行“=Wal2{[(i −1)⊕j ]+1,t]”改为“=Wal2{[(i −1)⊕j ]+1,t }”,即最后一个中括号改成大括号3、 第297页,第7行行末“πA 28δ(ω+1800)”改为“πA 28[δ(ω+1800)”并移至第8行行首,注意改动是插入方括号4、 第311页,倒数第6行“cos (ωc T −ωc t )+sin (ωc T −ωc t )”改成“cos (ωc T −ωc t )−sin (ωc T −ωc t )”,即加号改成减号5、 第311页,倒数第5行“cos (ωc t )−sin (ωc t )”改成 “cos (ωc t )+sin (ωc t )”,即减号改成加号6、 第391页,倒数第4行“DFT[x (n )]=X (k )”改为“DFT[x (n )]=X (k )”,即去掉x 和X 上的黑体;将“IDFT[X ](k )=x (n )”改为“IDFT[X (k )] =x (n )”,即一方面去掉黑体,另一方面将(k )移到方括号之内7、 第434页,第7行“0.739”改为“2.825”8、 第434页,倒数第3行“0.739”改为“2.825”9、 第455页,倒数第4行“,代价是增大了主瓣宽度和过渡带宽度”删掉10、 第460页,第9行“在∞有一个四阶零点,”删掉11、 第469页,第6行“ℒ[KΘ(t )]”改为“ℒ[Kθ(t )]”,即大写Θ改成小写θ,注意花体的ℒ还用原来的样子12、 第472页,倒数第3、4行“在PI 控制跟踪阶跃信号稳态误差不为零的情况下,”删掉13、 第472页,倒数第3行“可以改善”改为“可以提高系统稳定性,改善”14、 第486页,最后一行,分母“e jw −12”改成“e jω−12”,即把w 改成omega15、 第521页,第5行“|000−100006232−200−3|”改为“[000−100006232−200−3]”,即把绝对值号改为方括号 1 已将本勘误表交给出版社;希望这些问题能在第二次印刷中更正。
数字信号处理教程课后习题答案目录第一章离散时间信号与系统第二章Z变换第三章离散傅立叶变换第四章快速傅立叶变换第五章数字滤波器的基本结构第六章无限长单位冲激响应(IIR)数字滤波器的设计方法第七章有限长单位冲激响应(FIR)数字滤波器的设计方法第八章数字信号处理中有限字长效应第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。
分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y ②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个(③ 围的不同的不同时间段上求和范一定要注意某些题中在 n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。
)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。
分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ;③卷积和求解时,n 的分段处理。
第3章 傅里叶变换3-1 求图3-1所示对称周期矩形信号的傅里叶级数(三角形式与指数形式)。
图3-1解:(1)三角形式由图3-1可知,f(t)为奇函数,故有所以三角形式的傅里叶级数为。
(2)指数形式因所以指数形式的傅里叶级数为。
3-2 周期矩形信号如图3-2所示。
若:重复频率f=5kHz脉宽τ=20μs幅度E=10V求直流分量大小以及基波、二次和三次谐波的有效值。
图3-2解:由图3-2可知,f(x)为偶函数,且f=5kHz,得:所以直流分量为1V基波分量为1sin() 1.3910Vπ=≈二次谐波为2sin( 1.325Vπ=≈三次谐波为。
33sin() 1.2110V π=≈3-3 若周期矩形信号f 1(t )和f 2(t )波形如图3-2所示,f 1(t )的参数为τ=0.5μs,T=1μs,E=1V ;f 2(t )的参数为τ=1.5μs,T=3μs,E=3V ,分别求:(1)f 1(t )的谱线间隔和带宽(第一零点位置)频率单位以kHz 表示;(2)f 2(t )的谱线间隔和带宽;(3)f 1(t )与f 2(t )的基波幅度之比;(4)f 1(t )基波与f 2(t )三次谐波幅度之比。
解:由题3-2的结论可知,f(t)的傅里叶级数可表示为其中,。
(1)f 1(t )的谱线间隔,则带宽:。
(2)f 2(t )的谱线间隔带宽:。
(3)由题3-2可知,所以f 1(t )的基波幅度为:f 2(t )的基波幅度为:故。
(4)的三次谐波幅度为:故。
3-4 求图3-3所示周期三角信号的傅里叶级数并画出频谱图。
图3-3解:由图3-3可知,f(t)为偶函数,故。
bn所以的傅里叶级数可表示为()f t其幅度谱如图3-4所示。
图3-43-5 求图3-5所示半波余弦信号的傅里叶级数。
若E=10V ,f=10kHz ,大致画出幅度谱。
图3-5解:由图3-5可知,f(t)为偶函数,因而b n =0,();所以其傅里叶级数可表示为若E=10V ,,则幅度谱如图3-6所示。
《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S RS LS C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。
在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。
下面是信号与系统第三版课后习题的答案。
第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。
系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。
2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。
离散时间信号是在离散时间范围内定义的信号,可以用数列表示。
3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。
非周期信号是指不具有周期性的信号。
4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。
偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。
5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。
6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。
7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。
第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。
奇偶分解的目的是简化信号的处理和分析。
2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。
卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。
3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。
冲激响应可以用来描述系统的特性和性能。
4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。
单位阶跃响应可以用来描述系统的稳定性和响应速度。
5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。
单位斜坡响应可以用来描述系统的积分特性。
第3章习题答案3-1 已知周期矩形脉冲信号的重复频率 5 kHzf=,脉宽20 sτ=μ,幅度10VE=,如图题3-1所示。
用可变中心频率的选频回路能否从该周期矩形脉冲信号中选取出5,12,20,50,80及100 kHz频率分量来?要求画出图题3-1所示信号的频谱图。
图题3-1解:5kHzf=,20μsτ=,10VE=,11200T sfμ==,41210fππΩ==频谱图为从频谱图看出,可选出5、20、80kHz的频率分量。
3-3 求图题3-3 所示周期锯齿信号指数形式的傅里叶级数,并大致画出频谱图。
图题3-3解:()f t在一个周期(0,T1)内的表达式为:11()()Ef t t TT=--111110011111()()(1,2,3)2T Tjn t jn tnE jEF f t e dt t T e dt nT T T nπ-Ω-Ω==--=-=±±±⎰⎰L11010011111()()2T T E EF f t dt t T dtT T T==--=⎰⎰傅氏级数为:111122()22244j t j t j t j tE jE jE jE jEf t e e e eππππΩ-ΩΩ-Ω=-+-+-Lnc12(kHz)f5205010015080(1,2,3)2nEF nnπ==±±±L(0)2(0)2nnnπϕπ⎧->⎪⎪=⎨⎪<⎪⎩频谱图为:3-4 求图题3-4 所示半波余弦信号的傅里叶级数,若10 VE=, 10 kHzf=,大致画出幅度谱。
图题3-4解:由于()f t是偶函数,所以展开式中只有余弦分量,故傅氏级数中0nb=,另由图可知()f t有直流分量,()f t在一个周期(2T-,2T)内的表达式为:111cos4()4TE t tf tTt⎧Ω<⎪⎪=⎨⎪>⎪⎩其中:112TπΩ=11112401112411()cosT TT TEa f t dt E tdtT Tπ--==Ω=⎰⎰111111241112422()cosT Tjn t jn tT Tn na c f t e dt E t e dtT T-Ω-Ω--===Ω⋅⎰⎰nF2Eπ6Eπ10Eπ1Ω13Ω15Ω1-Ω13-Ω15-ΩLL4Eπ12Ω14Ω8Eπ2E12-Ω14-Ω2π-2πnϕ15-Ω13-Ω1-Ω1Ω13Ω15ΩLL12Ω12-Ω14-Ω14Ω211sin sin 2122cos 3,5,71112n n E E n n n n n πππππ+-⎡⎤⎢⎥=+=-=⎢⎥+--⎢⎥⎣⎦L111211122()2Tj t T E a c f t e dt T -Ω-===⎰所以,()f t 的三角形式的傅里叶级数为:11122()cos cos 2cos 42315EE E E f t t t t πππ=+Ω+Ω-Ω+L3-6 利用信号()f t %的对称性,定性判断图题3-6中各周期信号的傅里叶级数中所含有的频率分量。
信号系统(第3版)习题解答《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S R S L S C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
1-6 判断下列方程所表示的系统的性质。
(1) ⎰+=t f tt f t y 0d )(d )(d )(ττ (2) )()(3)()(t f t y t y t y '=+'+''(3) )(3)()(2t f t y t y t =+'(4) )()()]([2t f t y t y =+'解 (1)线性;(2)线性时不变;(3)线性时变;(4)非线性时不变。
1-7 试证明方程)()()(t f t ay t y =+'所描述的系统为线性系统。
式中a 为常量。
证明 不失一般性,设输入有两个分量,且)()()()(2211t y t f t y t f →→,则有)()()(111t f t ay t y =+')()()(222t f t ay t y =+'相加得)()()()()()(212211t f t f t ay t y t ay t y +=+'++'即[][])()()()()()(d d212121t f t f t y t y a t y t y t +=+++可见)()()()(2121t y t y t f t f +→+即满足可加性,齐次性是显然的。
故系统为线性的。
1-8 若有线性时不变系统的方程为)()()(t f t ay t y =+'若在非零f ( t )作用下其响应t t y --=e 1)(,试求方程)()(2)()(t f t f t ay t y '+=+'的响应。
解 因为f ( t ) →t t y --=e 1)(,由线性关系,则)e 1(2)(2)(2t t y t f --=→由线性系统的微分特性,有t t y t f -='→'e )()(故响应t t t t y t f t f ----=+-=→'+e 2e )e 1(2)()()(2第2章习题解析2-1 如图2-1所示系统,试以u C ( t )为输出列出其微分方程。
题2-1图解 由图示,有 t u C R u i d d CC L +=又⎰-=tt u u L i 0C S L d )(1故C CC S )(1u C R u u u L ''+'=-从而得)(1)(1)(1)(S C C C t u LC t u LC t u RC t u =+'+''2-2 设有二阶系统方程0)(4)(4)(=+'+''t y t y t y在某起始状态下的0+起始值为2)0(,1)0(='=++y y试求零输入响应。
解 由特征方程λ2 + 4λ + 4 =0得 λ1 = λ2 = -2则零输入响应形式为t e t A A t y 221zi )()(-+=由于y zi ( 0+ ) = A 1 = 1-2A 1 + A 2 = 2所以A 2 = 4故有0,)41()(2zi ≥+=-t e t t y t2-3 设有如下函数f ( t ),试分别画出它们的波形。
(a) f ( t ) = 2ε( t -1 ) - 2ε( t -2 )(b) f ( t ) = sin πt [ε( t ) - ε( t -6 )]解 (a)和(b)的波形如图p2-3所示。
图p2-32-4 试用阶跃函数的组合表示题2-4图所示信号。
题2-4图解 (a) f ( t ) = ε( t ) - 2ε( t -1 ) + ε( t -2 )(b) f ( t ) = ε( t ) + ε( t -T ) + ε( t -2T )2-5 试计算下列结果。
(1) t δ( t - 1 )(2)⎰∞∞--t t t d )1(δ (3) ⎰∞--0d )()3πcos(t t t δω (4)⎰+---003d )(e t t t δ解 (1) t δ( t - 1 ) = δ( t - 1 )(2)1d )1(d )1(=-=-⎰⎰∞∞-∞∞-t t t t t δδ(3) 21d )()3πcos(d )()3πcos(00=-=-⎰⎰∞∞--t t t t t δδω (4)1d )(d )(e d )(e 00003003===-⎰⎰⎰+-+-+---t t t t t t t t δδδ2-6 设有题2-6图示信号f ( t ),对(a)写出f ' ( t )的表达式,对(b)写出f " ( t )的表达式,并分别画出它们的波形。
题2-6图解 (a)20,21≤≤t f ' ( t ) = δ( t - 2 ), t = 2-2δ( t - 4 ), t = 4(b) f " ( t ) = 2δ( t ) - 2δ( t - 1 ) - 2δ( t - 3 ) + 2δ( t - 4 )图p2-62-7 如题2-7图一阶系统,对(a)求冲激响应i 和u L ,对(b)求冲激响应u C 和i C ,并画出它们的波形。
题2-7图解 由图(a)有Ri t u tiL-=)(d d S 即)(1d d S t u Li L R t i =+ 当u S ( t ) = δ( t ),则冲激响应)(e 1)()(t Lt i t h tL Rε⋅==-则电压冲激响应)(e )(d d )()(L t LR t t i L t u t h tL Rεδ⋅-===-对于图(b)RC 电路,有方程Ru i t u CC S C d d -=S C C11i Cu RC u =+' 当i S = δ( t )时,则)(e 1)()(C t Ct u t h RC tε⋅==-同时,电流)(e 1)(d d C C t RCt t u C i RCtεδ⋅-==-2-8 设有一阶系统方程)()()(3)(t f t f t y t y +'=+'试求其冲激响应h ( t )和阶跃响应s ( t )。
解 因方程的特征根λ = -3,故有)(e )(31t t x t ε⋅=-当h ( t ) = δ( t )时,则冲激响应)(e 2)()]()([)()(31t t t t t x t h t εδδδ⋅-=+'*=-阶跃响应)()e 21(31d )()(30t h t s t t εττ-+==⎰2-9 试求下列卷积。
(a) δ( t ) * 2(b) ε( t + 3 ) * ε( t - 5 ) (c) t e -t ⋅ε( t ) * δ' ( t )解 (a) 由δ( t )的特点,故δ( t ) * 2 = 2(b) 按定义ε( t + 3 ) * ε( t - 5 ) =⎰∞∞---+ττετεd )5()3(t考虑到τ < -3时,ε( τ + 3 ) = 0;τ > t -5时,ε( t -τ - 5 ) = 0,故ε( t + 3 ) * ε( t - 5 ) =2,2d 53>-=⎰--t t t τ也可以利用迟延性质计算该卷积。
因为ε( t ) * ε( t ) = tε( t )f1( t-t1 ) * f2( t-t2 ) = f( t-t1-t2 )故对本题,有ε( t + 3 ) * ε( t- 5 ) = ( t + 3 - 5 )ε( t + 3 - 5 ) = ( t- 2 )ε( t- 2 )两种方法结果一致。
(c) t e-t⋅ε( t ) * δ'( t ) = [t e-tε( t )]' = ( e-t-t e-t )ε( t )2-10对图示信号,求f1( t ) * f2( t )。
题2-10图解(a)先借用阶跃信号表示f1( t )和f2( t ),即f1( t ) = 2ε( t ) - 2ε( t- 1 )f2( t ) = ε( t ) -ε( t- 2 )故f1( t ) * f2( t ) = [2ε( t ) - 2ε( t- 1 )] * [ε( t ) -ε( t- 2 )]因为ε( t ) * ε( t ) = ⎰t0d1τ= tε( t )故有f1( t ) * f2( t ) = 2tε( t ) - 2( t- 1 )ε( t- 1 ) -2( t- 2 )ε( t- 2 ) + 2( t- 3 )ε( t- 3 ) 读者也可以用图形扫描法计算之。