2014中考数学押题特训卷 一次函数分级演练
- 格式:doc
- 大小:72.00 KB
- 文档页数:4
一次函数专题训练1 (2014辽宁阜新)对于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(-1,-2)2(2014辽宁盘锦)如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA =OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是________.3(2014江苏常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x 轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.4 (2014江苏常州)某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件) 38 36 34 32 30 28 26 t(件) 4 8 12 16 20 24 28 假定试销中每天的销售号t(件)与销售价x(元/件)之间满足一次函数.(1)试求t与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价)5 (2014江苏常州)在平面直角坐标系xOy中,已知一次函数y=kx+b的图像过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是________.6(2014广西崇左)在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(-3,0),B(0,-3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的解析式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;(3)当-3≤x≤0时,二次函数y=x2+mx+n的最小值为-4,求m,n的值.7 (2014广西崇左)若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是( )A.(1,2)B.(-2,-1)C.(-1,2)D.(2,-4)8 (2014湖北鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 … 50 p(件) 118 116 114 … 20 销售单价q(元/件)与x满足:当1≤x<25时,q=x+60;当25≤x≤50时,.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?9 (2014黑龙江龙东)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A、B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集.两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:沼气池修建费用(万元/个) 可供使用户数(户/个) 占地面积(平方米/个) A型 3 20 10 B 型 2 15 8 政府土地部门只批给该村沼气池用地212平方米,设修建A型沼气池x个,修建两种沼气池共需费用y万元.(1)求y与x之间函数关系式.(2)试问有哪几种满足上述要求的修建方案.(3)要想完成这项工程,每户居民平均至少应筹集多少钱?10 (2014湖南湘潭)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1·k2=-1.(1)应用:已知y=2x+1与y=kx-1垂直,求k;(2)直线经过A(2,3),且与垂直,求解析式11(2014辽宁大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=________,b=________;(2)求小明的爸爸下山所用的时间.12 (2014四川甘孜州)已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用.该厂生产的桌椅分为A,B两种型号,有关数据如下:桌椅型号一套桌椅所坐学生人数(单位:人) 生产一套桌椅所需木材(单位:m3) 一套桌椅的生产成本(单位:元) 一套桌椅的运费(单位:元) A 2 0.5 100 2 B 3 0.7 120 4 设生产A 型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y(元).(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.13 (2014四川甘孜州)给出下列函数:①y=2x-1;②;③y=-x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是________.14 (2014年湖南郴州)已知直线l平行于直线y=2x+1,并与反比例函数的图象相交于点A(a,1),求直线l的解析式.15(2014辽宁营口)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?16(2014辽宁锦州)在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图像为折线OABC,y2的图像是过O、B、C三点的抛物线一部分.(1)根据图像回答:①调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是________;②说明线段AB的实际意义是________.(2)求出调试过程中,当6≤x≤8时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.17(2014湖南岳阳)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.18 (2014辽宁本溪)若实数a、b满足ab<0,且a<b,则函数y=ax+b的图象可能是( ) A.B.C.D.19(2014山东日照)如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(Ⅰ)求直线AB的解析式.(Ⅱ)若设点P的横坐标为x,矩形PKDH的面积为S.(1)用x表示S;(2)当x为何值时,S取最大值,并求出这个最大值.20(2014福建莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图2所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?21(2014贵州贵阳)如图,A点的坐标为(-4,0),直线与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为( )A.-2B.C.D.22(2014贵州贵阳)如图,三棱柱的体积为10,其侧棱AB上有一个点P从点A开始运动到点B 停止,过P点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x、y,则下列能表示y与x之间函数关系的大致图象是( )A.B.C.D.23(2014黑龙江绥化)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C 运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求S与t之间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.24(2014黑龙江绥化)在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为________km,a=________;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?25(2014甘肃天水)天水市某校为了开展“阳光体育”活动,需购买某一品牌的羽毛球,甲、乙两超市均以每只3元的价格出售,并对一次性购买这一品牌羽毛球不低于100只的用户均实行优惠:甲超市每只羽毛球按原价的八折出售;乙超市送15只羽毛球后,其余羽毛球每只按原价的九折出售.(1)请你任选一超市,一次性购买x(x≥100且x为整数)只该品牌羽毛球,写出所付钱y(元)与x之间的函数关系式.(2)若共购买260只该品牌羽毛球,其中在甲超市以甲超市的优惠方式购买一部分,剩下的又在乙超市以乙超市的优惠方式购买.购买260只该品牌羽毛球至少需要付多少元钱?这时在甲、乙两超市分别购买该品牌羽毛球多少只?26 (2014四川乐山)某校一课外兴趣小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印数x(张)的函数关系如下表:印数x(张) … 100 200 300 …收费y(元) … 15 30 45 …乙印刷社收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反应良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?27(2014江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn,则Sn的值为________.(用含n的代数式表示,n为正整数)28 (2014四川资阳)一次函数y=-2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限29 (2014贵州黔西南州)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x-y+1=0,其中k=1,b=1所以点P(-2,1)到直线y=x+1的距离为.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.30(2014吉林)如图,直线y=2x+4与x、y轴分别交于点A、B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为________.31(2014湖南张家界)如图,在平面直角坐标系中,O为坐标原点,抛物线过y=ax2+bx+c(a ≠0)过O、B、C三点,B、C坐标分别为(10,0)和(,),以OB为直径的⊙A经过C点,直线l垂直x轴于B点.(1)求直线BC的解析式;(2)求抛物线解析式及顶点坐标;(3)点M是⊙A上一动点(不同于O,B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想m·n的值,并证明你的结论.(4)若点P从O出发,以每秒一个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.32(2014天津)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E、点F、点M 都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,-1).①当F的坐标为(1,1)时,如图,求点P的坐标;②当F的为直线l上的动点,记点P(x,y),求y关于x的函数解析式;(Ⅱ)若点M(1,m),点F(1,t),其中t≠0.过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.33 (2014天津)“黄金1号”玉米种子的价格为5元/kg.如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子数量/kg 1.5 2 3.5 4 …付款金额/元 7.5 16 … (Ⅱ)设购买种子的数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.34 (2014山东枣庄)将一次函数的图像向上平移2个单位,平移后,若y>0,则x的取值范围是( )A.x>4B.x>-4C.x>2D.x>-235 (2014山东潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数.当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.36(2014山东威海)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似,若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.37(2014山东威海)一次函数y1=kx+b与y2=x+a的图象如图所示,则kx+b>x+a的解集是________.38(2014山东泰安)已知函数y=(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx +n与反比例函数的图象可能是( )A.B.C.D.39 (2014湖北襄阳)我市为创建“国家级森林城市”,政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如下表:品种购买价(元/棵) 成活率甲 20 90%乙 32 95%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)设y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补栽;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?40 (2014广东珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物,所有商品价格可获九五折优惠;方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?41(2014广东广州)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<042 (2014四川凉山州)函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )A.B.C.D.43 (2014云南昆明)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.44(2014云南昆明)如图是反比例函数(k为常数,k≠0)的图像,则一次函数y=kx-k的图像大致是( )A.B.C.D.45 (2014广东深圳)已知函数y=ax+b经过(1,3)(0,-2)求a-b( )A.-1B.-3C.3D.746 (2014山东滨州)下列函数中,图象经过原点的是( )A.y=3xB.y=1-2xC.D.y=x2-147 (2014江苏无锡)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月份开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元,将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额w1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额w2(万元)?48 (2014江苏无锡)在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(,0),则直线a的函数关系式为( ) A.B.C.D.49(2014江苏苏州)如图,已知函数的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.50 (2014云南)写出一个图象经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):________.51(2014浙江湖州)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.52(2014四川成都)如图,在平面直角坐标系xOy中,直线与双曲线相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为________.53(2014四川成都)如图,一次函数y=kx+5(k为常数,且k≠0)的图像与反比例函数的图像交于A(-2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图像有且只有一个公共点,求m的值.54 (2014四川成都)在平面直角坐标系中,已知一次函数y=2x+1的图像经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1________y2.(填“>”,“<”或“=”)55 (2014四川巴中)已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过( )A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限56 (2014重庆B)夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗.该工人先只打开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满.已知每个进水管的进水速度与每个出水管的出水速度相同.从工人最先打开一个进水管开始,所用的时间为x,游泳池内的蓄水量为y,则下列各图中能够反映y 与x的函数关系的大致图象是( )A.B.C.D.57 (2014重庆A)从-1,1,2这三个数字中,随机抽取一个数,记为a.那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积为,且使关于x的不等式组有解的概率为________.58(2014重庆A)如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3,直线AB与x轴交于点C,则△AOC的面积为( )A.8B.10C.12D.2459 (2014浙江丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备 A型 B型价格(万元/台) m m-3 月处理污水量(吨/台) 220 180 (1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.60(2014浙江金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行________米.61 (2014浙江嘉兴)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1-y2________0(填“>”或“<”).。
一次函数(A卷)综合检测(40分钟60分)一、选择题(每小题5分,共20分)1.直线y=x-1不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=-2x+4的图象与y轴的交点坐标是( )A.(0,4)B.(4,0)C.(2,0)D.(0,2)3.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是( )A.(1,1)B.(-1,1)C.(-2,-2)D.(2,-2)4.若实数a,b,c满足a+b+c=0且a<b<c,则函数y=ax+c的图象可能是( )二、填空题(每小题5分,共15分)5.(2013·鞍山中考)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.6.若y=(3-m)为正比例函数,则m= .7.(2013·济南中考)若直线y=kx与四条直线x=1,x=2,y=1,y=2围成的正方形有公共点,则k的取值范围是.8.(12分)(2012·上海中考)某工厂生产一种产品,成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数关系式,并写出它自变量的取值范围.(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【探究创新】9.(13分)为提醒人们节约用水,及时修好漏水的水龙头,两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升.实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到1毫升):(1)在图1的坐标系中描出上表中数据对应的点.(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?(3)按此漏水速度,一小时会漏水千克(精确到0.1千克).实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?答案解析1.【解析】选B.由于x前的系数是大于零的,直线从左向右是向上倾斜的,而图象经过点(0,-1),所以图象经过y轴的负半轴,所以图象不经过第二象限.2.【解析】选A.当x=0时,y=-2×0+4=4,所以图象与y轴的交点坐标为(0,4).3.【解析】选A.点A(2,4)在函数y=kx-2的图象上,所以4=2k-2,k=3,函数的关系式是y=3x-2,当x分别为1,-1,-2,2时函数值分别是1,-5,-8,4,所以(1,1)在函数图象上.4.【解析】选A.实数a,b,c满足a+b+c=0,且a<b<c,得a<0,c>0,所以函数y=ax+c的图象可能是选项A.5.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.答案:四6.【解析】因为函数为正比例函数,所以m2-8=1,所以m=±3,又因为3-m≠0,所以m≠3,所以m=-3.答案:-3【归纳整合】讨论某函数是否为一次函数时,既要满足自变量x的最高指数为1,又要满足自变量x的系数不为零,两者缺一不可.除此之外,还应满足题目所给的限制条件.7.【解析】直线过点(1,2)和(2,1)时的关系式分别为y=2x和y=x,因此k的取值范围为≤k≤2.答案:≤k≤28.【解析】(1)设y=kx+b(k≠0),将(10,10),(50,6)代入,得∴y=-x+11(10≤x≤50).(2)根据“总成本=每吨的成本×生产数量”,得(-x+11)x=280,解得x1=40或x2=70,由于10≤x≤50,所以x=40.答:该产品的生产数量是40吨.9.【解析】实验一:(1)画图象如图所示.(2)设V与t的函数关系式为V=kt+b.根据表中数据知:当t=10时,V=2;当t=20时,V=5;所以解得∴V与t的函数关系式为V=t-1.由题意,得t-1≥100.解得t≥=336.∴337秒后量筒中的水会满而溢出.(3)1.1千克.实验二:因为小李同学接水的量筒装满后并开始溢出.。
7.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()
8.一次函数y=kx+b的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为(
A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=1
2
x-3
二、你能填得又快又对吗?(每小题4分,共40分)
下列函数中,的正比例函数的是:
x<2
且y随x的增大而减小,则此函数的图
)。
一次函数(正比例函数)的图象与性质一、选择题1、(某某市一模)一次函数23y x =+的图象交y 轴于点A ,则点A 的坐标为( ). ,0)[来*源:中 答案:A2、(曲阜市实验中学中考模拟)如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )答案:D3、(曲阜市实验中学中考模拟)如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到()A .N 处B .P 处C .Q 处D .M 处 答案:C4、(某某育才二中一摸)若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<答案:D 5、(某某市)如果一条直线l 经过不同的三点(,)A a b 、(,)B b a 、(,)C a b b a --,那么直线l 经过(A )第二、四象限; (B )第一、二、三象限; (C )第一、三象限; (D )第二、三、四象限. 答案:A 二、填空题1、 (某某育才二中一摸)如图,直线1y=x 22-与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为一1 ,点D 在反比例函数ky=x的图象上 ,CD 平行于y轴,OCD 5S 2∆=则k 的值为 ▲ 。
答案:3三、解答题1、(某某市一模)如图,正比例函数(0)y kx k =≠经过点A (2,4), AB ⊥x 轴于点B . (1)求该正比例函数的解析式.(2)将△ABO 绕点A 逆时针旋转90︒得到△ADC ,写出点C 的坐标,试判断点C 是否在直线113y x =+的图象上,并说明理由.[.zzs%te*p.~c#om]答案:解:(1)∵正比例函数(0)y kx k =≠经过点A (2,4)∴42k =2k ∴=2y x ∴=(2)∵A (2,4),AB ⊥x 轴于点B∴2,4OB AB ==∵△ABO 绕点A 逆时针旋转90︒得到△ADC ∴2,4DC OB AD AB ====∴C (6,2)D OBACyx(第1题)(第16题)∵当6x =时,161323y =⨯+=≠ ∴点C 不在直线113y x =+的图象上2、(某某模拟)已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点A (3,2)(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)点M (m ,n )是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ··························· 2分∴反比例函数的表达式为:6y x = ··················· 3分正比例函数的表达式为23y x = ·················· 4分(2)观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值. ································· 6分(3)BM DM = 理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形 ········· 7分 即OCOB =12yxO ADMC B∵3OC =∴4OB = ························· 8分 即4n =∴632m n == ∴3333222MB MD ==-=, ···················· 9分∴MB MD = ··························· 10分。
中考压轴题中函数之一次函数、反比例函数和二次函数综合问题,选择和填空题主要是一次函数、反比例函数和二次函数图象的分析,解答题集中表现为一次函数和二次函数综合问题。
一. 一次函数、反比例函数和二次函数图象的分析问题原创模拟预测题1.若正比例函数y=kx (k≠0),y 随x 的增大而增大,则它和二次函数y=kx 2+k 的图象大致是【 】原创模拟预测题2. 二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y ax c =+在同一平面直角坐标系中的大致图象是【 】【答案】B。
原创模拟预测题3.如图,已知抛物线y1=﹣2x2+2,直线y2=﹣2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较大值记为M;若y1=y2,记M=y1=y2。
例如:当x=﹣1时,y1=0,y2=4,y1<y2,此时M=4。
下列判断:①当x<0时,y1>y2;②当x>0时,x值越大,M值越小;③当x≥0时,使得M大于2的x值不存在;④使得M=1的x值是22。
其中正确的有【】A.1个B.2个C.3个D.4个③∵抛物线y1=﹣2x2+2,直线y2=﹣2x+2,与y轴交点坐标为:(0,2),即当x=0时,M=2,∴当x≥0时,抛物线y1=﹣2x2+2和直线y2=﹣2x+2的最大值均为2,即M 大于2的x值不存在。
∴此判断正确。
二. 一次函数和二次函数的综合问题原创模拟预测题4.如图,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y 轴交于E点,且B点坐标为(3,0),经过A点的直线交抛物线于点D(2,3)。
(1)求抛物线的解析式和直线AD解析式;(2)在x轴上是否存在点F,使A、D、E、F组成的四边形是平行四边形?如果存在,求出满足条件的点F的坐标;如果不存在,请说明理由。
设直线AD的解析式为y=mx+n,则k b 02k b 3-+=⎧⎨+-⎩,解得:k 1b 1=⎧⎨=⎩。
中考压轴题中函数之一次函数问题,选择、填空和解答三种题型都有,内容主要包括一次函数关系式的建立,一次函数图象的分析,一次函数的应用三方面的内容。
一. 一次函数关系式的建立:原创模拟预测题1.如图,已知A点坐标为(5,0),直线y kx b(b0)=+>与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y kx b=+的表达式为【】A.3y x53=+ B.y3x5=+ C.y3x5=- D.3y x53=-+原创模拟预测题2.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y x1=-,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,0)且与直线=-+垂直的直线l6的函数表达式。
y5x6(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数关系,=-+垂直的直线l6的函数表达式为∴过点(1,0)且与直线y5x611=-。
y x55二. 一次函数图象的分析:原创模拟预测题3.小明、小亮从学校出发到体育场参加乒乓球训练,小明步行9分钟后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小亮出发时间t(分)之间的函数关系如图所示。
下列说法:①小亮先到达青少年宫;②小亮的速度是小明速度的2.5倍;③a=16;④b=480。
其中正确的是【】A.①②③ B.①②④ C.①③④ D.①②③④【答案】D。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列函数中,y随x的增大而减小的函数是( )A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x试题2:若正比例函数y=kx的图象经过点(1,2),则k的值为( )A.- B.-2 C. D.2试题3:一次函数y=2x+3的图象交y轴于点A,则点A的坐标为( )A.(0,3) B.(3,0) C.(1,5) D.(-1.5,0)试题4:在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为( )A.y=x+1 B.y=x-1 C.y=x D.y=x-2试题5:下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解是( )试题6:已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是( )试题7:若一次函数y=kx+b的函数值y随x的增大而减小,且图象与y轴的负半轴相交,那么对k和b的符号判断正确的是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0试题8:图329是某蓄水池的横断面示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水,下面图中能大致表示水的深度h和时间t之间关系的图象是( )图329A B C D试题9:在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第____象限.试题10:某市出租车计费方法如图3210,x(单位:km)表示行驶里程,y(单位:元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.图3210试题11:一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=( )A.-1 B.3 C.1 D.-1或3试题12:如图3211,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )A.x>0 B.x<0 C.x>1 D.x<1试题13:A,B两点在一次函数图象上的位置如图3212,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( ) A.a>0 B.a<0 C.b=0 D.ab<0试题14:为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如图3213的折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是__________元;(2)第二档的用电量范围是__________;(3)“基本电价”是__________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?图3213试题15:已知直线y= (n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012=____________.试题16:为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米) 单价(万元/平方米)不超过30(平方米) 0.3超过30平方米不超过m(平方米)部分(45≤m≤60) 0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.试题1答案:C试题2答案:D试题3答案:A试题4答案:A试题5答案:C试题6答案:B试题7答案:D试题8答案:C试题9答案:四试题10答案:解:(1)由图象,得出租车的起步价是8元.设当x>3时,y与x的函数关系式为y=kx+b,由函数图象,得解得故y与x的函数关系式为y=2x+2.(2)当y=32时,32=2x+2,x=15.答:这位乘客乘车的里程是15 km.试题11答案:B 解析:∵一次函数y=mx+|m-1|的图象过点(0,2),∴|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1.∵y随x的增大而增大,∴m>0,∴m=3.试题12答案:B试题13答案:B试题14答案:解:(1)108 (2)180<x≤450 (3)0.6(4)由图可知,小明家的用电量在450~540千瓦时之间,故设直线BC的解析式为y=kx+b,由图象,得y=0.9x-121.5.当y=328.5时,x=500.答:这个月他家用电500千瓦时.试题15答案:解析:令x=0,则y=,令y=0,则-=0,解得x=.∴S n=·∴S1+S2+S3+…+S2012=(-+-+-+…+-)=(-)=. 试题16答案:解:(1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元).(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x;②当30<x≤m时,y=0.3×3×30+0.5×3×(x-30)=1.5x-18;③当x>m时,y=0.3×3×30+0.5×3(m-30)+0.7×3×(x-m)=2.1x-0.6m-18.∴y=(3)由题意,得①当50≤m≤60时,y=1.5×50-18=57(舍);②当45≤m<50时,y=2.1×50-0.6m-18=87-0.6m.∵57<y≤60,∴57<87-0.6m≤60,∴45≤m<50.综合①②得45≤m<50.。
中考数学总复习《一次函数》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.一次函数y=kx−k(k<0)的图象大致是( )A.B.C.D.2.下列函数中,函数值y随自变量x增大而减小的是( )x−5A.y=4x B.y=12C.y=3x+6D.y=−1.6x+43.如果y=(m−1)x2−m2+3是一次函数,那么m的值是( )A.1B.−1C.+1D.±√24.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )A . x >−2B . x >0C . x >1D . x <15.若一次函数 y =kx +b 的图象如图所示,则 k ,b 的取值范围是 ( )A . k >0,b >0B . k >0,b <0C . k <0,b >0D . k <06.关于 x 的一次函数 y =12x +2,下列说法正确的是 ( )A .图象与坐标轴围成的三角形的面积是 4B .图象与 x 轴的交点坐标是 (0,2)C .当 x >−4 时D . y 随 x 的增大而减小7.如图,OA 和 BA 分别表示甲乙两名学生运动的一次函数的图象,图 s 和 t 分别表示路程和时间,根据图象判定快者比慢者得速度每秒快 ( )A . 2.5 米B . 2 米C . 1.5 米D . 2 米8.若直线 y =3x +6 与直线 y =2x +4 的交点坐标为 (a,b ),则解为 {x =a,y =b 的方程组是 ( )A . {y −3x =6,2x +y =4B . {3x +6+y =0,2x −4−y =0C . {3x +6−y =0,2x +4−y =0D . {3x −y =6,2x −y =4 二、填空题(共5题,共15分)9.已知二元一次方程组 {x −y =−5,x +2y =−2的解为 {x =−4,y =1, 则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=−1x−1的交点坐标为.210.已知函数y=(m−3)x+2m+2,当x=2时y=12,则m=.11.已知直线y=−3x+b与直线y=−kx+1在同一直角坐标系中交于点(3,−√3),则关于x的方程−3x+b=−kx+1的解为x=.12.已知一次函数y=kx+b的图象经过A(1,−1),B(−1,3)两点,则k0(填“>”或“<”).13.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a−b−2的值是.三、解答题(共3题,共45分)14.星期一升旗仪式前,李雷和韩梅梅两位数学课代表因为清查作业耽搁了时间,打算匀速从教室跑到600米外的中心广场参加升旗仪式,出发时李雷发现鞋带松了,停下来系鞋带,韩梅梅继续跑往中心广场,李雷系好鞋带后立即沿同一路线开始追赶韩梅梅,李雷在途中追上韩梅梅后,担心迟到继续以原速度往前跑,李雷到达操场时升旗仪式还没有开始,于是李雷站在广场等待,韩梅梅继续跑往中心广场.设李雷和韩梅梅两人相距s(米),韩梅梅跑步的时间为t(秒),s关于t的函数图象如图所示,则在整个运动过程中,李雷和韩梅梅第一次相距80米后,求再过多少秒钟两人再次相距80米.15.如图,正比例函数y=kx(k≠0)的图象过点A(2,−3).直线y=x+b沿y轴平行移动,与x轴、y轴分别交于点B,C与直线OA交于点D.(1) 若点D在线段OA上(含端点),求b的取值范围.(2) 当点A关于直线BC的对称点Aʹ恰好落在y轴上时,求直线BC的解析式.16.如图,一次函数y=−2x+4的图象与坐标轴分别交于A,B两点,将线段AB绕着点A顺时针旋转90∘至线段AC.(1) 求AB的长;(2) 求过B,C两点的直线的解析式.参考答案1. 【答案】D2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】C9. 【答案】(−4,1)10. 【答案】411. 【答案】312. 【答案】<13. 【答案】−514. 【答案】函数图象可以分段讨论,前10秒李雷没跑,韩梅梅跑了40米∴韩梅梅的速度为40÷10=4(米/秒)∵10秒至30秒,李雷在追赶韩梅梅,设李雷的速度为x米/秒∴(x−4)×20=40,解得x=6,即李雷的速度为6米/秒.∵李雷和韩梅梅相遇后,距离越来越远,当距离为80米时,需要的时间为80÷(6−4)=40(秒).∴此时韩梅梅的跑步时间为:40+30=70(秒).∵李雷在韩梅梅出发110秒后到达目的地,韩梅梅继续前进当距离目的地80米,就是距离李雷80米,此时距离她出发:[(110−10)×6−80]÷4=130(秒)∴李雷和韩梅梅第一次相距80米后,再过130−70=60(秒),两人再次相距80米.15. 【答案】(1) 当点D和点O重合时将点O(0,0)代入y=x+b中,得b=0当点D和点A重合时将点A(2,−3)代入y=x+b中,得−3=2+b,即b=−5∴b的取值范围为−5≤b≤0.(2) 在y=x+b中,令y=0,则x=−b,令x=0,则y=b∴B(−b,0)C(0,b)∴OB=OC∵∠BOC=90∘∴∠OCB=∠OBC=45∘∵点A关于直线BC的对称点Aʹ恰好落在y轴上∴CD垂直平分AAʹ∴CA=CAʹ∴∠ACD=∠OCB=45∘∴∠ACO=90∘∴C(0,−3)∴将点C(0,−3)代入y=x+b中,得−3=0+b∴b=−3∴直线BC的解析式为y=x−3.16. 【答案】(1) 在y=−2x+4中令x=0,则y=4,即点B(0,4)令y=0,得−2x+4=0,解得x=2,即点A(2,0)则AB=√22+42=2√5;(2) 如图,过C点作CD⊥x轴于点D∵线段AB绕点A顺时针旋转90∘∴AB=AC∠BAC=90∘∴∠BAO+∠CAD=90∘而∠BAO+∠ABO=90∘∴∠ABO=∠CAD.∵∠AOB=∠CDA∠ABO=∠CAD AB=CA∴△ABO≌△CAD(AAS)∴AD=OB=4CD=OA=2∴OD=OA+AD=2+4=6∴点C坐标为(6,2)设直线BC解析式为y=kx+4(k≠0)∵点C(6,2)在直线BC上∴6k+4=2∴k=−13x+4.∴直线BC解析式为y=−13。
(第2题图)2014年初中毕业生学业考试适应性测试数 学................命题人:范传科考生须知:1、全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷有三个大题,24个小题.满分:150分,时间:120分钟.2、请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.3、不允许使用计算器.抛物线2y ax bx c =++的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的) 1、在0,-1,l ,2-,3,4这六个数中,最小的是( ) A 、2- B 、0 C 、1 D 、32、如图,已知OB 是⊙O 的半径,点C ,D 在⊙O 上,∠DCB =25°,则∠BOD 的度数是( )A 、30°B 、35°C 、50°D 、60°3、不等式组242122x x -+>-⎧⎪⎨<⎪⎩的解集是( )A 、23x -<<B 、3x <C 、2x >-D 、无解 4、如图,由5个相同的正方体搭成的几何体如图所示,则它的俯视图是( )5、如图为我市5月某一周每天的最高气温统计,则这组数据(最高气温)的中位数是( ) A 、29 B 、29.5 C 、30 D 、30.56、化简2111x x x+--得( ) A 、21x - B 、1x - C 、1x - D 、1x +7、如图,△ABC 中,AB =AC ,∠A =120°,BD 是∠ABC 的角平分线,则∠ADB 的度数是( ) 、、、、A 、B 、C 、D 、(第4题图)(℃)(第5题图)ABCD(第7题图)8、已知1-是关于x 的一元二次方程2(1)30x m x +--=的一个根,则方程的另一个根是( ) A 、2- B 、3 C 、1- D 、3-9、如图,菱形ABCD 中,60B ∠=,4AB =,则以AC 为边长的正方形ACEF 的周长为( )A 、14B 、15C 、16D 、1710、如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转后得到AO B ''△,当点B '恰好落在直线BO′上时,四边形BOAO′的面积是( )A 、6B 、485C、12 D 、15 第Ⅱ卷 (非选择题,共110分)二、填空题(本题共6小题,每小题4分,共24分) 11、分解因式:23y y -=__________ _______.12、圆锥的底面直径为5cm ,母线长为6cm ,则圆锥的侧面积是 cm 2(结果保留π). 13、抛物线223y x x =++的顶点坐标是 ___.14、如表,鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量整理成统计表,则这20户家庭的平均月用水量是________________吨.15、如图,矩形ABCD 中,4,6AB BC ==,点E 是BC 边的中点,连接AE ,把B ∠沿AE 折叠,使点B 落在点'B 处,则'BC 的长为16、如图,点A 是函数9y x=的图象上一点,连接OA 交函数4y x =的图象于点B ,过B 作x 轴的平行线交函数9y x =的图象于点C ,连接AC 并延长交x 轴于点D ,则OAOB= ,△AOD 的面积为 .(第14题表)(第10题(第9题图)EDFCB'BDAC三、解答题(本题有8小题,共86分)17、化简与计算(本题25分)(1)计算:0(1)π-⋅sin 60°+321(2)()4-⋅ (2)计算:1301(1)22-⎛⎫-+- ⎪⎝⎭(3) 201453(2007π)2-⎛⎫-+⨯- ⎪⎝⎭(4)1112sin 452o-⎛⎫-++ ⎪⎝⎭(5) 先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程2310x x ++=的根.18、(本题6分)如图,△ABC 是格点三角形.....(三角形的三个顶点都是小正方形的顶点). (1)在图甲中画出△CDE ,它是将△ABC 绕点C 逆时针旋转90°所得到的图形.(点B 对应点D ,点A 对应点E )(2)若以格点P ,A ,B 为顶点的三角形与△ABC 相似但不全等,请在图乙中画出一个符合条件的格点△P AB .(图乙)ACB(图甲)AC B19、(本题8分)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交()3,1(2)A B n -、,于两点,直线AB分别交x 轴、y 轴于D C 、两点.(1)求上述反比例函数和一次函数的解析式;(2)求ADCD的值.20、(本题8分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或画树状图表示出(x ,y )的所有可能出现的结果; (2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数2y x =的图象上的概率;21、(本题8分)如图,已知二次函数y =x 2+bx +c 过点A (1,0),C (0,﹣3)(1)求此二次函数的解析式; (2)试探究在抛物线上是否存在存在一点P 使△ABP 的面积为10,若存在,请直接写出点P 的坐标;若不存在,请说明理由.(第21题图)22、(本题9分)如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.23、(本题10分) “五一”假期间,某百货公司打出了如下的一则促销广告:(1) 小丫准备购买一件标价为290元的甲商品和一件标价为330元的乙商品,她有以下三种付款方案,请填表:付款方案该付的款(元)1 甲商品和乙商品一起选择“方式一” 4342 甲商品和乙商品一起选择“方式二”3433(2)小丫准备购买一件标价为290元的甲商品和一件标价在310400x <<的丙商品,试问:她该选择怎样的付款方案比较合算?请你帮忙算算(商品的标价均为整数). (第22题图)24、(本题12分) (本题14分)如图,二次函数24y x =+的图象与y 轴交点为A ,点P (t ,0)是x 轴上一动点,连接AP 并取中点B ,再把PB 绕点P 顺时针转90°得PQ . (1)当t =1时,点Q 的坐标为(_______,_______);当t =-2时,点Q 的坐标为(_______,_______); (2)当0t ≥时,设Q 的坐标为(x ,y ),求y 关于x 的函数关系式;(3)过点Q 作QC ∥y 轴交二次函数的图象于C ,问是否存在点P 使得AC ∥PQ ,若存在,请求出t 的值;若不存在,请说明理由; (4)求点Q 到二次函数24y x =+的图象上一点的距离的最小值为_____.(直接写出答案)(第24题图)(备用图) (备用图)数学试卷参考答案和评分标准一.二、填空题(本题有6小题,每小题4分,共24分)11、()3y y -; 12、15π; 13、(-1,2); 14、5.85 15、185; 16、(1)32…(2分), (2)454…(3分); 16、解∵△OFB 与△OAE 相似,相似比为OA OB =32, ∴设4,B a a ⎛⎫⎪⎝⎭,则639,,,2A a C a a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 则5CB a =,则531532OD a a =∙=- 115345224S a a =∙∙=三、解答题 (本题有7题,共62分) 17、(本题25分) 略18、(本题6分)略19、(本题8分)略20、(本题8分) 解:(1)……………(4分)(2)可能出现的结果共有16个,它们出现的可能性相等. ………………(2分)满足点(x ,y )落在反比例函数2y x =的图象上(记为事件A )的结果有2个,即(1,4),(2,4),121、(本题8分)解:(1)∵二次函数y =x 2+bx +c 过点A (1,0),C (0,﹣3), ∴, 解得,∴二次函数的解析式为y =x 2+2x ﹣3;………(4分)(2)P (﹣4,5)(2,5);………………(4分)22、(本题9分)(1)证明:∵BC 为圆的直径,∴∠BDC=90°,∴∠ABC+∠DCB=90°,又∠ACD=∠ABC , ∴∠ACD+∠DCB=90°,即∠ACB=90°, ∴AC ⊥BC ,BC 为圆的直径,则CA 为圆的切线;………………(4分)(2)10………………(5分)23、(本题10分) 解:(1)420元,甲商品选择“方式一”,乙商品选择“方式二”;(每空2分) (2)设小丫共付款y 元,若按方案1付款,则y 1=203+0.7x; ………………(1分) 若按方案2付款,则y 2=90+x; ………………(1分) 若按方案3付款,则y 3=103+x; ………………(1分) ∵103+x>90+x,即y 3>y 2,∴按方案2付款比按方案3付款合算,只需比较方案1和方案2(1分) (1) 当y 1>y 2时,203+0.7x>90+x,解得x<23763………………(1分) 又∵310400x <<,且x 为整数∴当310<x< 23763的整数时,选方案2合算;………………(1分)(2) 当y 1=y 2时,203+0.7x=90+x, 解得x= 23763………………(1分)又∵x 为整数∴y 1≠y 2;………………(1分) (3) 当y 1<y 2时,203+0.7x<90+x,解得x> 23763………………(1分) 又∵310400x <<,且x 为整数∴当 23763<x< 400 的整数时,选方案1合算;…(1分)24、(本题12分)解(1)当t =1时,点Q 的坐标为(3,0.5); 当t =-2时,点Q 的坐标为(O ,-1);……(4分)则△AOP ~△PEQ,则有QE PE PQOP OA AP==, ∴142y x t t -== ∴12,2x t y t =+=,得112y x =-………(4分) (3)①当0t ≥时, ∵12,2Q t t ⎛⎫+ ⎪⎝⎭,∴()()22,24C t t +++, ∴()212,,2,22PE EQ t CD t AD t ===+=+ ∵A C ∥PQ ,∴△PQE ~△CAD∴()()222122t t t ++=,∴48t t =+,∴283t =-(舍去)………………(2分) ②当2t ≤-时,∵12,2Q t t ⎛⎫+ ⎪⎝⎭, ∴()()22,24C t t +++, ∴()()212,,2,22PE EQ t CD t AD t ==-=-+=+ ∵A C ∥PQ ,∴△PQE ~△CAD∴()()222122t t t -++=-, ∴48t t =+, ∴183t =-………………(2分)③当20t -<≤时,显然不平行。
2014年中考数学函数与一次函数试题汇编函数与一次函数一、选择题1.(2014•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.2.(2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故本选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故本选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.(2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4.(2014•广西贺州,第14题3分)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.(2014•广西玉林市、防城港市,第12题3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()考点:动点问题的函数图象.分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.解答:解:①t≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x﹣x+,③当x≥2时两个三角形重叠面积为小三角形的面积为0,故选:B.点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.6.(2014年四川资阳,第5题3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过二、四象限,当b>0时,函数图象与y轴相交于正半轴.7.(2014•温州,第7题4分)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(2014年广东汕尾,第8题4分)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快.据此即可选择.解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快.故选:C.点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.9.(2014年广东汕尾,第10题4分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.10.(2014•毕节地区,第14题3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3考点:一次函数与一元一次不等式分析:将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.解答:解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.点评:本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论.11.(2014•邵阳,第10题3分)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>bB.a=bC.a<bD.以上都不对考点:一次函数图象上点的坐标特征分析:根据一次函数的增减性,k<0,y随x的增大而减小解答.解答:解:∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.点评:本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.。
浙教版2014年数学中考第一轮复习分类测试--一次函数(一)答案二.填空题11. 3- 12. 2- 13. 1k < 14. 22y x =+ 15. 21-16. 3 三.解答题17解:(1)23y x =+;(2)设P 点坐标为()0x ,,依题意得3x =±,所以P 点坐标分别为 ()()123030P P -,,,. 1132733224ABP S ∆⎛⎫=⨯+⨯=⎪⎝⎭,213933224ABP S ∆⎛⎫=⨯-⨯= ⎪⎝⎭,所以ABP ∆的面积为274或9418.解:(1)∵y = kx +1交y 轴于点D .∴D (0,1) ∵P A ⊥x 轴 , PB ⊥y 轴, ∠BOA =90° ∴四边形OAPB 为矩形. ∴BP = OA = 2 ∴BP ∥CA ∴∠BPC =∠PCA ∵∠BDP =∠CDO ∴△BDP ∽△ODC ∵S △PBD = 4S △DOC ∴12CO OD BPDB==∵AO = BP = 2 ∴CO =12BP = 1 ∴C (-1,0) ∴一次函数解析式为:y = x +1∵OD = 1 ∴BD = 2 ∴BO = 3 ∴P (2,3) ∴m =xy =2×3=6 ∴y =6x(2)若反比例函数值小于一次函数的值则x >2.19.解:(1)丙种商品装()20y x --个集装箱,∴120)20(568=--++y x y x , ∴x y 320-=. (2)当5=x 时,55320=⨯-=y ,10552020=--=--y x . ∴甲、乙、丙三种商品装载集装箱个数分别是5、5、10,相应的每个集装箱装载商品总价值分别为96、90、100万元.20个集装箱装载商品总价值从小到大排列后第10、11个分别是96、100万元. ∴每个集装箱装载商品总价值的中位数是98210096=+(万元)20.解:(1)A (1-,0),OA =1, 在Rt △AOC 中,∵1010sin ==∠AC AO ACB ,AC =10, ∴OC =311022=-=-AO AC ,∴点C 的坐标(0,3). (2)当点D 在AB 延长线上时,∵B (0,1),∴BO =1,∴222=+=BO AO AB ,∵∠CDB =∠ACB ,∠BAC =∠CAD ,∴△ABC ∽△ACD . ∴AB AC AC AD =,∴21010=AD ,∴25=AD . 过点D 作DE ⊥y 轴,垂足为E ,∵DE //BO ,∴ABADAO AE OB DE ==, ∴5225===AE DE .∴OE =4,∴点D 的坐标为(4,5). 设二次函数的解析式为32++=bx ax y ,∴⎩⎨⎧++=+-=,34165,30b a b a∴⎪⎪⎩⎪⎪⎨⎧=-=.25,21b a ∴二次函数解析式为325212++-=x x y .当点D 在射线BA 上时,同理可求得点D (–2,–1), 二次函数解析式为342++=x x y .21.解:(1)∵正比例函数(0)y kx k =≠经过点A (2,4) ∴42k = 2k ∴= 2y x ∴= (2) ∵A (2,4),AB ⊥x 轴于点B∴2,4OB AB ==∵△ABO 绕点A 逆时针旋转90︒得到△ADC∴2,4DC OB AD AB ==== ∴C (6,2) ∵当6x =时,161323y =⨯+=≠ ∴点C 不在直线113y x =+的图象上22.(1)设购买排球x 个,购买篮球和排球的总费用y 元, 则x x x y 608000)100(8020-=-+=(2)设购买排球x 个,则篮球的个数是)100(x -,根据题意得:⎩⎨⎧≤-≥-66206080003100x xx ,解得:2523≤≤x ∵x 为整数,∴x 取23,24,25。
一、甲乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图,请根据图像所提供的信息解答下列问题:(1)乙队开挖到30m 时,用了小时,开挖到6h 时甲队比乙队多挖了 m ;(2)请你求出:①甲队在0≤x≤6的时段内,y 与x 之间的函数关系式;②乙队在0≤x≤6的时段内,y 与x 之间的函数关系式(3)当x 为何值时,甲乙两队在施工过程中所挖河渠的长度相等?二、A 市和B 市分别有某种库存机器12台和6台,现决定支援C 市10台,D 市8台,已知从A 市调运一台机器到C 市和D 市的运费分别是400元和800元,从B 市调运一台机器到C 市和D 市的运费分别是300元和500元,求总运费最低的调运方案,最低运费是多少元?三、如图,直线L :122y x =-+ 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。
(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标。
四、宏志中学九年级300名同学毕业前夕给灾区90名同学捐赠了一批学习用品(书包和文具盒),由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每个同学都只参加一件学习用品的购买),书包和文具盒的单价分别是54元和12元.(1)若有x名同学参加购买书包,试求出购买学习用品的总件数y与x之间的函数关系式(不要求写出自变量的取值范围);(2)若捐赠学习用品总金额超过了2300元,且灾区90名同学每人至少得到了一件学习用品,请问同学们如何安排购买书包和文具盒的人数?此时选择其中哪种方案,使购买学习用品的总件数最多?五、端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.六、(8分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠。
目录第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题例2 2012年苏州市中考第29题例3 2012年黄冈市中考第25题例4 2010年义乌市中考第24题例5 2009年临沂市中考第26题例6 2008年苏州市中考第29题1.2 因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题例2 2012年扬州市中考第27题例3 2012年临沂市中考第26题例4 2011年湖州市中考第24题例5 2011年盐城市中考第28题例6 2010年南通市中考第27题例7 2009年江西省中考第25题1.3 因动点产生的直角三角形问题例1 2013年山西省中考第26题例2 2012年广州市中考第24题例3 2012年杭州市中考第22题例4 2011年浙江省中考第23题例5 2010年北京市中考第24题例6 2009年嘉兴市中考第24题例7 2008年河南省中考第23题1.4 因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题例2 2012年福州市中考第21题例3 2012年烟台市中考第26题例4 2011年上海市中考第24题例5 2011年江西省中考第24题例6 2010年山西省中考第26题1.5 因动点产生的梯形问题例1 2012年上海市松江中考模拟第24题例2 2012年衢州市中考第24题例4 2011年义乌市中考第24题例5 2010年杭州市中考第24题例7 2009年广州市中考第25题1.6 因动点产生的面积问题例1 2013年苏州市中考第29题例2 2012年菏泽市中考第21题例3 2012年河南省中考第23题例4 2011年南通市中考第28题例5 2010年广州市中考第25题例6 2010年扬州市中考第28题例7 2009年兰州市中考第29题1.7 因动点产生的相切问题例1 2013年上海市杨浦区中考模拟第25题例2 2012年河北省中考第25题例3 2012年无锡市中考第28题1.8 因动点产生的线段和差问题例1 2013年天津市中考第25题例2 2012年滨州市中考第24题例3 2012年山西省中考第26题第二部分图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例1 2013年宁波市中考第26题例2 2012年上海市徐汇区中考模拟第25题例3 2012年连云港市中考第26题例4 2010年上海市中考第25题2.2 由面积公式产生的函数关系问题例1 2013年菏泽市中考第21题例2 2012年广东省中考第22题例3 2012年河北省中考第26题例5 2011年山西省中考第26题例6 2011年重庆市中考第26题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例1 2013年南京市中考第26题例2 2013年南昌市中考第25题3.2几何证明及通过几何计算进行说理问题例1 2013年上海市黄浦区中考模拟第24题例2 2013年江西省中考第24题第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.图1动感体验请打开几何画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.请打开超级画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.点击按钮的左部和中部,可到达相似的准确位置。
一次函数
A 级 基础题 1.(2013年江苏徐州)下列函数中,y 随x 的增大而减小的函数是( )
A .y =2x +8
B .y =-2+4x
C .y =-2x +8
D .y =4x
2.(2013年浙江湖州)若正比例函数y =kx 的图象经过点(1,2),则k 的值为( )
A .-12
B .-2 C.12
D .2 3.一次函数y =2x +3的图象交y 轴于点A ,则点A 的坐标为( )
A .(0,3)
B .(3,0)
C .(1,5)
D .(-1.5,0)
4.(2011年湖南怀化)在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,其直线解析式为( )
A .y =x +1
B .y =x -1
C .y =x
D .y =x -2
5.(2012年内蒙古呼和浩特)下面四条直线,其中直线上每个点的坐标都是二元一次方程x -2y =2的解是( )
6.(2013年湖南益阳)已知一次函数y =x -2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( )
7.(2013年广东深圳育才二中一模)若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )
A .k >0,b >0
B .k >0,b <0
C .k <0,b >0
D .k <0,b <0
8.(2013年广东惠州惠城区模拟)图329是某蓄水池的横断面示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水,下面图中能大致表示水的深度h 和时间t 之间关系的图象是( )
图329
A B C D
9.(2013年辽宁鞍山)在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第____象限.
10.(2013年浙江绍兴)某市出租车计费方法如图3210,x (单位:km)表示行驶里程,y (单位:元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
图3210
B级中等题
11.(2012年广西玉林)一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=( )
A.-1 B.3 C.1 D.-1或3
12.(2012年辽宁阜新)如图3211,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )
A.x>0 B.x<0 C.x>1 D.x<1
图3211图3212
13.(2013年福建福州)A,B两点在一次函数图象上的位置如图3212,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( )
A.a>0 B.a<0 C.b=0 D.ab<0
14.(2013年湖南衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如图3213的折线图,请根据图象回答下列问题;
(1)当用电量是180千瓦时时,电费是__________元;
(2)第二档的用电量范围是__________;
(3)“基本电价”是__________元/千瓦时;
(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?
图3213
C 级 拔尖题
15.(2013年四川广安)已知直线y =-n +n +2x +1n +2
(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=____________.
16.(2013年湖北荆门)为了节约资源,科学指导居民改善居住条件,小王向房管部门
(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;
(2)设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于x 的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y 万元,且57<y ≤60 时,求m 的取值范围.
一次函数
1.C 2.D 3.A 4.A 5.C 6.B 7.D 8.C 9.四
10.解:(1)由图象,得出租车的起步价是8元.
设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧ 8=3k +b ,12=5k +b ,
解得⎩⎪⎨⎪⎧ k =2,b =2.
故y 与x 的函数关系式为y =2x +2.
(2)当y =32时,32=2x +2,x =15.
答:这位乘客乘车的里程是15 km.
11.B 解析:∵一次函数y =mx +|m -1|的图象过点(0,2),
∴|m -1|=2,∴m -1=2或m -1=-2,解得m =3或m =-1.
∵y 随x 的增大而增大,∴m >0,∴m =3.
12.B 13.B
14.解:(1)108 (2)180<x ≤450 (3)0.6
(4)由图可知,小明家的用电量在450~540千瓦时之间,故设直线BC 的解析式为y =kx +b ,由图象,得
⎩⎪⎨⎪⎧ 364.5=540k +b ,283.5=450k +b ,解得⎩
⎪⎨⎪⎧
k =0.9.b =-121.5. y =0.9x -121.5.
当y =328.5时,x =500.
答:这个月他家用电500千瓦时.
15.5032014 解析:令x =0,则y =1n +2
, 令y =0,则-n +1n +2x +1n +2=0,解得x =1n +1
. ∴S n =12·1n +1·1n +2=12(1n +1-1n +2
). ∴S 1+S 2+S 3+…+S 2012=12(12-13+13-14+14-15+…+12013-12014)=12(12-12014
)=5032014
. 16.解:(1)由题意,得三口之家应缴购房款为:
0.3×90+0.5×30=42(万元).
(2)由题意,得
①当0≤x ≤30时,y =0.3×3x =0.9x ;
②当30<x ≤m 时,y =0.3×3×30+0.5×3×(x -30)=1.5x -18;
③当x >m 时,y =0.3×3×30+0.5×3(m -30)+0.7×3×(x -m )=2.1x -0.6m -18. ∴y =⎩⎪⎨⎪⎧ 0.9x x ,1.5x -
x ≤m ,45≤m ,2.1x -0.6m -x >m
(3)由题意,得
①当50≤m ≤60时,y =1.5×50-18=57(舍);
②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m .
∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.
综合①②得45≤m <50.。