信号EDA实验一
- 格式:ppt
- 大小:209.50 KB
- 文档页数:9
(此文档为word格式,下载后您可任意编辑修改!)目录实验一单级放大电路的设计与仿真 (2)一、实验目的 (2)二、实验要求 (2)三、实验原理图 (2)四、实验过程及结果 (3)1、电路的饱和失真和截止失真分析 (3)2、三极管特性测试 (6)3.电路基本参数测定 (9)五、数据分析 (12)六、实验感想 (12)实验二差动放大电路的设计与仿真 (13)一、实验目的 (13)二、实验要求 (13)三、实验原理图 (13)四、实验过程及结果 (14)1、电路的静态分析 (14)2.电路电压增益的测量 (20)五、数据分析 (22)六、实验感想 (23)实验三反馈放大电路的设计与仿真 (23)一、实验目的 (23)二、实验要求 (23)三、实验原理图 (23)四、实验过程及结果 (24)1.负反馈接入前后放大倍数、输入电阻、输出电阻的测定 (24)2.负反馈对电路非线性失真的影响 (27)五、实验结论 (30)六、实验感想 (30)实验四阶梯波发生器电路的设计 (30)一、实验目的 (30)二、实验要求 (30)三、电路原理框图 (31)四、实验过程与仿真结果 (31)1.方波发生器 (31)2.微分电路 (32)3.限幅电路 (33)4.积分电路 (34)5.比较器及电子开关电路 (35)五、实验思考题 (37)六、实验感想 (38)写在后面的话对此次EDA设计的感想 (38)问题与解决 (38)收获与感受 (38)期望与要求 (38)实验一单级放大电路的设计与仿真一、实验目的1.掌握放大电路静态工作点的调整和测试方法2.掌握放大电路的动态参数的测试方法3.观察静态工作点的选择对输出波形及电压放大倍数的影响二、实验要求1.设计一个分压偏置的胆管电压放大电路,要求信号源频率10kHz(峰值1—10mV),负载电阻,电压增益大于80.2.调节电路静态工作点(调节偏置电阻),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
EDA实验报告班级:姓名:目录实验一:七段数码显示译码器设计 (1)摘要 (1)实验原理 (1)实验方案及仿真 (1)引脚下载 (2)实验结果与分析 (3)附录 (3)实验二:序列检测器设计 (6)摘要 (6)实验原理 (6)实现方案及仿真 (6)引脚下载 (7)实验结果与分析 (8)实验三:数控分频器的设计 (11)摘要 (11)实验原理 (11)方案的实现与仿真 (11)引脚下载 (12)实验结果及总结 (12)附录 (12)实验四:正弦信号发生器 (14)摘要 (14)实验原理 (14)实现方案与仿真 (14)嵌入式逻辑分析及管脚下载 (16)实验结果与分析 (17)附录 (18)实验一:七段数码显示译码器设计摘要:七段译码器是一种简单的组合电路,利用QuartusII的VHDL语言十分方便的设计出七段数码显示译码器。
将其生成原理图,再与四位二进制计数器组合而成的一个用数码管显示的十六位计数器。
整个设计过程完整的学习了QuartusII的整个设计流程。
实验原理:七段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用译码程序在FPGA\CPLD中来实现。
本实验作为7段译码器,输出信号LED7S的7位分别是g、f、e、d、c、b、a,高位在左,低位在右。
例如当LED7S 输出为“1101101”时,数码管的7个段g、f、e、d、c、b、a分别为1、1、0、1、1、1、0、1。
接有高电平段发亮,于是数码管显示“5”。
实验方案及仿真:I、七段数码显示管的设计实现利用VHDL描述语言进行FPGA上的编译实现七段数码显示译码器的设计。
运行QuartusII在G:\QuartusII\LED7S\下新建一个工程文件。
新建一个vhdl语言编译文件,编写七段数码显示管的程序见附录1-1。
实验一五人表决器设计一、实验目的1 加深对电路理论概念的理解3 加深计算机辅助分析及设计的概念4 了解及初步掌握对电路进行计算机辅助分析的过程二、实验要求制作一个五人表决器,共五个输入信号,一个输出信号。
若输入信号高电平数目多于低电平数目,则输出为高,否则为低。
三、实验原理根据设计要求可知,输入信号共有2^5=32种可能,然而输出为高则有15种可能。
对于本设计,只需一个模块就能完成任务,并采用列写真值表是最简单易懂的方法。
四、计算机辅助设计设A,B,C,D,E引脚为输入引脚,F为输出引脚。
则原理图如1所示图1.1 五人表决器原理图实验程序清单如下:MODULE VOTEA,B,C,D,E PIN;F PIN ISTYPE 'COM';TRUTH_TABLE([A,B,C,D,E]->[F])[0,0,1,1,1]->[1];[0,1,1,1,0]->[1];[0,1,0,1,1]->[1];[0,1,1,0,1]->[1];[1,0,1,1,1]->[1];[1,1,0,1,1]->[1];[1,1,1,0,1]->[1];[1,1,1,1,0]->[1];[1,1,1,0,0]->[1];[1,1,0,1,0]->[1];[1,1,1,1,1]->[1];[1,1,0,0,1]->[1];[1,0,0,1,1]->[1];[1,0,1,0,1]->[1];[1,0,1,1,0]->[1];END五、实验测试与仿真根据题目要求,可设输入分别为:0,0,0,0,0;1,1,1,1,1;1,0,1,0,0;0,1,0,1,1。
其测试程序如下所示:MODULE fivevoteA,B,C,D,E,F PIN;X=.X.;TEST_VECTORS([A,B,C,D,E]->[F])[0,0,0,0,0]->[X];[1,1,1,1,1]->[X];[1,0,1,0,0]->[X];[0,1,0,1,1]->[X];END测试仿真结果如图1.2所示:图1.2 五人表决器设计仿真图可知,设计基本符合题目要求。
南京理工大学EDA课程设计(一)实验报告专业:自动化班级:姓名:学号:指导老师:2013年10月摘要在老师的悉心指导下,通过实验学习和训练,我已经掌握基了于Multisim的电路系统设计和仿真方法。
在一周的时间内,熟悉了Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常见电路分析方法。
能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。
实验一:单级放大电路的仿真及设计,设计一个分压偏置的单管电压放大电路,并进行测试与分析,主要测试最大不失真时的静态工作点以及上下限频率。
实验二:负反馈放大电路的设计与仿真,设计一个阻容耦合两级电压放大电路,给电路引入电压串联深度负反馈,,观察负反馈对电路的影响。
实验三:阶梯波发生器的设计与仿真,设计一个能产生周期性阶梯波的电路,对电路进行分段测试和调节,直至输出合适的阶梯波。
改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的元器件。
关键词:EDA设计及仿真multisim 放大电路反馈电路阶梯波发生器实验一:单级放大电路的仿真及设计一、实验要求1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。
2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3、调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:(1)电路静态工作点值;(2)三极管的输入、输出特性曲线和 、r be 、r ce值;(3)电路的输入电阻、输出电阻和电压增益;(4)电路的频率响应曲线和f L、f H值。
二、实验步骤1、设计分压偏置的单级放大电路如图1-1所示:图1-1、单级放大电路原理图2、电路饱和失真输出电压波形图调节电位器的阻值,改变静态工作点,当电阻器的阻值为0%Rw,交流电压源为10mV时,显示饱和失真的波形图如图1-2所示:图1-2、电路饱和失真输出电压波形图饱和失真时的静态工作点:Ubeq=636。
湖北民族学院信息工程学院实验报告(电气、电子类专业用)班级: 09 姓名:周鹏学号:030940908 实验成绩:实验地点: EDA实验室课程名称:数字系统分析与设计实验类型:设计型实验题目:实验一简单的QUARTUSII实例设计,基于VHDL格雷码编码器的设计实验仪器:HH-SOC-EP3C40EDA/SOPC实验开发平台,PC机。
一、实验目的1、通过一个简单的3—8译码器的设计,掌握组合逻辑电路的设计方法。
2、初步了解QUARTUSII原理图输入设计的全过程。
3、掌握组合逻辑电路的静态测试方法。
4、了解格雷码变换的原理。
5、进一步熟悉QUARTUSII软件的使用方法和VHDL输入的全过程。
6、进一步掌握实验系统的使用。
二、实验原理、原理图及电路图3-8译码器三输入,八输出。
当输入信号按二进制方式的表示值为N时,输出端标号为N的输出端输出高电平表示有信号产生,而其它则为低电平表示无信号产生。
因为三个输入端能产生的组合状态有八种,所以输出端在每种组合中仅有一位为高电平的情况下,能表示所有的输入组合。
其真值表如表1-1所示输入输出A B C D7 D6 D5 D4 D3 D2 D1 D00 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 1 00 1 0 0 0 0 0 0 1 0 00 1 1 0 0 0 0 1 0 0 01 0 0 0 0 0 1 0 0 0 01 0 1 0 0 1 0 0 0 0 01 1 0 1 0 0 0 0 0 01 1 1 1 0 0 0 0 0 0 0表1-1 三-八译码器真值表译码器不需要像编码器那样用一个输出端指示输出是否有效。
但可以在输入中加入一个输出使能端,用来指示是否将当前的输入进行有效的译码,当使能端指示输入信号无效或不用对当前信号进行译码时,输出端全为高电平,表示无任何信号。
本例设计中没有考虑使能输入端,自己设计时可以考虑加入使能输入端时,程序如何设计。
《EDA技术基础》实验报告学院:信息科学技术学院专业:电子信息工程指导教师:龙翔完成日期:2013年12月目录实验一MAX-plusll 及开发系统使用 (3)实验二高速四位乘法器设计 (6)实验三秒表的设计 (9)实验四序列检测器的设计 (13)实验五数字频率计的设计 (18)六实验总结 (20)实验一一:实验名称:MAX-plusll 及开发系统使用二:实验内容1.利用MAX-plusII中的图形编辑器设计一半加器,进行编译、仿真,并将其设置成为一元件。
2.建立一个更高的原理图设计层次,利用前面生成的半加器元件设计一个全加器,进行编译、仿真,并将其设置成为一个元件。
3.再建立一个更高的原理图设计层次,利用前面生成的半加器元件设计一个全加器,进行编译、仿真。
4.选择器件“Assign”“Device”“MAX7000S”“EPM7128SLC84-6”,并根据下载板上的标识对管脚进行配置。
然后下载,进行硬件测试,检验结果是否正确。
三.实验程序1).半加器图2)全加器图3)四位全加器四:仿真图1).半加器仿真图2).全加器仿真图3).四位全加器仿真图实验二一:实验名称高速四位乘法器设计二: 实验内容1.利用MAX-plusⅡ中的图形编辑器设计1-4的二进制乘法器,进行编译、仿真,并将其设置成为一元件,命名为and14。
2.建立一个更高得原理图设计层次,利用前面生成的1-4的二进制乘法器和调用库中的74283元件设计一高速4位乘法器。
三:实验程序1.2.四:仿真图实验三一:实验名称秒表的设计二:实验内容(一)、实验步骤1、采用自顶向下的设计方法,首先将系统分块;2、设计元件,即逻辑块;3、一级一级向上进行元件例化(本实验只需例化一次即可),设计顶层文件。
(二)、实验程序设计原理实验程序如三所示,其中输入信号分别为使能信号ENA、清零信号CLR、时钟信号CLK,输出信号有秒针信号CA和分针信号CB。
姓名:郭灵芝学号:0704240115班级:通信一班07042200实验一0704240115 郭灵芝通信一班一.实验内容1.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
2.加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益;3.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。
4.测电路的频率响应曲线和f L、f H值。
二.放大电路的原理图(1-1)放大电路的原理图R为滑动变阻器,该电路用的是三极管来实现放大,采用的是电压偏置,接法是共射极,1R的大小从而改变三极管的静态工作点,使三极管处于正常放通过它改变接入电路中的1大状态。
为了确定好的静态工作点,进行如下静态分析:上面图1-1的静态电路如下(1-2)放大电路所对应的静态电路可以用两个交流电压表分别测量输入电压和输出电压,输出电压除以输入电压即为放大倍数。
为了保证放大电路工作在放大区(可用示波器监测,保证波形不失真),将交流输入电压调为1mv,2mv,3mv 。
电压表均用交流模式。
当交流信号源取下表所示不同值时,读出电压表的读数,即i V 和0V ,并计算电压的放大倍数。
(表一)结论:当三极管工作在放大区时,其电压放大倍数近似为常数。
即输入电压随输入电压线性变化。
且放大倍数符合大于50的要求。
(表二)结论1R 调到10%到80%之间时三极管都正常放大,这可以通过C I 与B I 的比值即β来确定,在这个区间里β基本保持不变,当然1R 处于0%到10%之间的确定不了,这个还要通过实际测量的β来确定。
三.失真研究1. 电位器调到0%,交流信号保持20mv ,5 KHz ,输出信号如下(1-3)饱和失真的波形图此时负半周出现了失真,即削底,对于NPN 管说明出现了饱和失真。
实验一组合逻辑器件设计一、实验目的1、通过一个简单的3-8译码器的设计,掌握组合逻辑电路的设计方法。
2、掌握组合逻辑电路的静态测试方法。
3、初步了解QUARTUS II原理图输入设计的全过程。
二、实验主要仪器与设备1、输入:DIP拨码开关3位。
2、输出:LED灯。
3、主芯片:EP1K10TC100-3。
三、实验内容及原理三-八译码器即三输入,八输出。
输出与输入之间的对应关系如表1-1-1所示。
表1-1 三-八译码器真值表四、预习要求做实验前必须认真复习数字电路中组合逻辑电路设计的相关内容(编码器、译码器)。
五、实验步骤1、利用原理图设计输入法画图1-1-1。
2、选择芯片ACEX1K EP1K10TC100-3。
3、编译。
4、时序仿真。
5、管脚分配,并再次编译。
6、实验连线。
7、编程下载,观察实验结果。
图1-1 三-八译码器原理图六、实验连线用拨码开关的低三位代表译码器的输入(A,B,C),将之与EP1K10TC100-3的管脚相连;用LED灯来表示译码器的输出(D0~D7),将之与EP1K10TC100-3芯片的管脚相连。
拨动拨档开关,可以观察发光二极管与输入状态的对应关系同真值表中所描述的情况是一致的。
七、实验结果八、思考题在输入端加入使能端后应如何设计?附:用硬件描述语言完成译码器的设计::LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY T2 ISPORT(A: IN STD_LOGIC_VECTOR(2 DOWNTO 0);Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END T2;ARCHITECTURE A OF T2 ISBEGINWITH A SELECTY <= "00000001" WHEN "000","00000010" WHEN "001","00000100" WHEN "010","00001000" WHEN "011","00010000" WHEN "100","00100000" WHEN "101","01000000" WHEN "110","10000000" WHEN OTHERS;END A;实验二组合电路设计一、实验目的1、掌握组合逻辑电路的设计方法。
福建农林大学金山学院信息工程类实验报告课程名称:EDA技术姓名:邱彬彬系:信息与机电工程系专业:电子信息工程专业年级:2010级学号:100201079指导教师:蔡剑卿职称:讲师2013年05月03日实验项目列表福建农林大学金山学院信息工程类实验报告系:信息与机电工程系专业:电子信息工程年级: 2010级姓名:邱彬彬学号: 100201079 实验课程: EDA技术实验室号:__田实405 实验设备号: 2B 实验时间: 2013年4月13日指导教师签字:成绩:实验一Quartus II 9.0软件的使用1.实验目的和要求本实验为验证性实验,其目的是熟悉Quartus II 9.0软件的使用,学会利用Quartus II 9.0软件来完成整个EDA开发的流程。
2.实验原理利用VHDL完成电路设计后,必须借助EDA工具中的综合器、适配器、时序仿真器和编程器等工具进行相应的处理后,才能使此项设计在FPGA上完成硬件实现,并得到硬件测试,从而使VHDL设计得到最终的验证。
Quartus II是Altera提供的FPGA/CPLD开发集成环境,包括模块化的编译器,能满足各种特定设计的需要,同时也支持第三方的仿真工具。
3.主要仪器设备(实验用的软硬件环境)实验的硬件环境是:微机一台GW48 EDA实验开发系统一套电源线一根十芯JTAG口线一根USB下载线一根USB下载器一个实验的软件环境是:Quartus II 9.0软件4.操作方法与实验步骤利用Quartus II 9.0软件实现EDA的基本设计流程:创建工程、编辑文本输入设计文件、编译前设置、全程编译、功能仿真。
利用Quartus II 9.0软件实现引脚锁定和编译文件下载。
利用Quartus II 9.0软件实现原理图输入设计文件的编辑和产生相应的原理图符号元件。
5.实验内容及实验数据记录安装QUARTUSII软件;因为实验时我的机器了已经有QUARTUSII软件,所以我并没有进行安装软件的操作。
杭州电子科技大学EDA实验报告第一次实验报告班级:1404751*学号: ********姓名:***实验一:双2选1多路选择器MUXKP893-5 图3-16所示的是双2选1多路选择器构成的电路MUXK。
对于其中MUX21A,当s=0和s=1时,分别有y=a和y=b。
试在一个模块中用两个过程来表达此电路。
MUX21A的代码如下module MUX21A(a,b,s,y);input a,b,s;output y;assign y=(s?a:b);endmoduleMUXK的代码如下module muxk(a1,a2,a3,s0,s1,outy);input a1,a2,a3,s0,s1;output outy;wire tmp;MUX21A u1(a2,a3,s0,tmp);MUX21A u2(a1,tmp,s1,outy);Endmodule代码分析:1.用例化语句,直接调用放在MUXK工程的mux21a,实现双二选一数据选择器;2.条件判断语句y=s?a:b,实现2选1。
MUXK RTL图MUXK 仿真波形图如下图所示P1114-1 多路选择器设计实验实验目的:进一步熟悉Quartus II的Verilog文本设计流程,组合电路的设计仿真和硬件测试。
实验内容:根据4.1节的流程,利用QuartusⅡ完成4选1多路选择器的文本代码编辑输入和仿真测试等步骤,给出图3-5所示的仿真波形。
代码如下module MUX41A(A,B,C,D,S1,S0,Y);input A,B,C,D,S1,S0;output Y;reg[1:0] SEL; reg Y;always@(A,B,C,D,SEL)beginSEL={S1,S0};if (SEL==0) Y=A;else if(SEL==1) Y=B;else if(SEL==2) Y=C;else Y=D; endendmodule电路图如下仿真波形如下图分析:当S=2’b00时,Y=A; 当S=2’b01时,Y=B;当S=2’b00时,Y=C; 当S=2’b00时,Y=D;4-2 8位加法器设计实验实验目的:熟悉利用QuartusⅡ的原理图输入方法设计简单组合电路,掌握层次化设计的方法,并通过一个8位全加器的设计把握文本和原理图输入方式设计的详细流程。
第一章 技术实验基础实验实验一 用原理图输入法设计一位半加器一、实验目的.熟悉利用Ⅱ的原理图输入方法设计简单组合电路;.通过一个半加器的设计把握利用软件进行电子线路设计的详细流程;.学会对实验板上的进行编程下载,硬件验证自己的设计项目。
二、实验设备及器材配置机一台综合实验开发系统中:基本核心板模块、发光管显示模块、普通键盘模块、下载器、下载线、十针连接线根。
三、实验原理.根据真值表表写出电路的逻辑表达式表 一位半加器真值表其中, 为输入端口,与分别为半加器的和与进位。
其逻辑表达式为:o s a b =⊕ab Co =.根据逻辑表达式进行原理图设计。
注意:在进行原理图设计时,元件之间的连线应尽量避免与元件外的虚线框重合。
四、实验步骤:.为本项工程设计建立文件夹,注意文件夹名不能用中文,且不可带空格。
.根据半价器逻辑表达式进行原理图设计。
.对所设计的工程文件进行编译,排查错误。
.时序仿真,记录时序分析表。
.选择目标芯片。
.引脚锁定。
推荐锁定形式:输入接口选择核心板上接口,与普通键盘模块相连,连接后,可任意选择按键所对应的引脚(例如,选择和,它们所对应的引脚编号为和;输出接口选择核心板上接口,与发光管显示模块相连,连接后,课任意选择发光二级管所对应的引脚(例如选择和,它们所对应的引脚编号为和)。
注:输入输出接口可在核心板上十针接口中任意选择(白色接口除外),对应的引脚可在核心板上的引脚标注中查找。
.编程下载,观察硬件结果。
下载时请下载器形式请选择。
注:如下载后硬件调试没有通过,需重新检查连接,如果修改后重新进行下载,请将下载界面中原有的*文件删除,重新加载一次,然后再下载。
.撰写实验报告册,思考如何利用半加器设计一位全加器。
五、练习题. 请用本实验所作的一位半加器设计一位全加器。
要求利用原理图输入方式。
. 请利用一位全加器设计四位全加器。
要求利用原理图输入方式。
注:本练习主要使学生牢固掌握原理图输入设计方法,同时掌握设计中有关层次的基本概念。
EDA设计(Ⅰ)实验报告院系:电子工程与光电技术学院专业:电子信息工程学号:914104姓名:指导老师:宗志园目录实验一单级放大电路的设计与仿真 (2)一、实验目的 (2)二、实验要求 (2)三、实验原理图 (3)四、三极管参数测试 (3)五、电路静态工作点测试 (6)六、电路动态参数测试 (8)七、频率响应测试 (10)八、数据表格 (10)九、理论分析 (11)十、实验分析 (11)实验二差动放大电路的设计与仿真 (12)一、实验目的 (12)二、实验要求 (12)三、实验原理图 (12)四、三极管参数测试 (13)五、电路工作测试 (18)六、电路增益测试 (18)七、数据表格 (21)八、理论分析 (22)九、实验分析 (22)实验三负反馈放大电路的设计与仿真 (23)一、实验目的 (23)二、实验要求 (23)三、实验原理图 (24)四、电路指标分析 (25)五、电路幅频特性和相频特性 (30)六、电路的最大不失真电压 (31)七、数据表格 (32)八、误差分析 (33)九、实验分析 (33)实验四阶梯波发生器电路的设计 (34)一、实验目的 (34)二、实验要求 (34)三、实验原理图 (35)四、实验原理简介 (35)五、电路分级调试步骤 (36)六、误差分析 (40)七、电路调整方法 (40)八、实验分析 (40)实验一单级放大电路的设计与仿真一、实验目的(1)设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz,峰值5mV ,负载电阻5.1kΩ,电压增益大于70.(2)调节电路静态工作点,观察电路出现饱和失真、截止失真和正常放大的输出信号波形,并测试对应的静态工作点值.(3)在正常放大状态下测试:1.三极管的输入、输出特性曲线和β、r be、r ce值;2.电路的输入电阻、输出电阻和电压增益;3.电路的频率响应曲线和f L、f H值.二、实验要求(1)给出单级放大电路原理图.(2)实验过程中各个参数的电路仿真结果:1.给出测试三极管输入、输出特性曲线和β、r be、r ce值的仿真图;2.给出电路饱和失真、截止失真和不失真的输出信号波形图;3.给出测量输入电阻、输出电阻和电压增益的仿真图;4.给出电路的幅频和相频特性曲线(所有测试图中要有相关仪表或标尺数据).(3)给出相关仿真测试结果.(4)理论计算电路的输入电阻、输出电阻和电压增益,并和测试值做比较,分析误差来源.三、实验原理图图1-1 实验原理图四、三极管参数测试图1-2 电路静态工作点(1)输入特性图1-3 测量输入特性曲线电路图图1-4 输入特性曲线(2)输出特性图1-5 测量输出特性曲线电路图图1-6输出特性曲线(3)根据图1-4及公式i V rb be be ∆∆= , 可计算出r be = . (4)根据图1-6及公式V r c CE ce ∆∆= ,可计算出r ce = . (5)根据图1-2.五、电路静态工作点测试(1)饱和失真图1-7饱和失真波形图1-8饱和失真数据(2)截止失真图1-9截止失真波形及其数据(3)正常放大黄色曲线为输入波形,蓝色曲线为输出波形.图1-10正常放大波形六、电路动态参数测试(1)Av图1-11 Av测量电路计算,得到.(2)Ri图1-12 Ri测量电路计算,得到.(3)Ro图1-13 Ro测量电路计算,得到. 七、频率响应测试图1-14 频率响应测试八、数据表格表1-1 静态工作点调试数据表1-2 电路正常工作数据九、理论分析(1)Ri理论值:.误差:.(2)Ro理论值:.误差:.(2)Av理论值:.误差:.十、实验分析本实验是EDA的第一项实验,在老师的指导下我初步了解了电路仿真的基础知识和Multisim软件的使用方法,并完成了第一个电路:单机放大电路的设计与参数测量。
实验一离散傅里叶变换的性质及应用一、实验目的1、了解DFT的性质及应用。
2、熟悉MATLAB编程的特点。
二、实验内容1、用三种不同的DFT程序计算x(n)=R8(n)的傅里叶变换X(e jw),并比较三种程序计算机运行时间。
(1) 用for loop 语句的M函数文件dft1.m,用循环变量逐点计算X(k);(2) 编写用MATLAB矩阵运算的M函数文件dft2.m,完成上述运算;(3) 编写函数dft3.m,调用FFT库函数,直接计算X(k);(4) 分别利用上述三种不同方式编写的DFT程序计算序列x(n)的傅立叶变换X(e jw),并画出相应的幅频和相频特性,再比较各个程序的计算机运行时间。
M函数文件如下:dft1.m:function[Am,pha]=dft1(x)N=length(x);w=exp(-j*2*pi/N);for k=1:Nsum=0;for n=1:Nsum=sum+x(n)*w^((k-1)*(n-1));endAm(k)=abs(sum);pha(k)=angle(sum);enddft2.m:function[Am,pha]=dft2(x)N=length(x);n=[0:N-1];k=[0:N-1];w=exp(-j*2*pi/N);nk=n'*k;wnk=w.^(nk);Xk=x*wnk;Am=abs(Xk);pha=angle(Xk);dft3.m:function[Am,pha]=dft3(x)Xk=fft(x);Am=abs(Xk);pha=angle(Xk);源程序及运行结果:(1) x=[ones(1,8),zeros(1,248)];t=cputime;[Am1,pha1]=dft1(x);t1=cputime-tn=[0:(length(x)-1)];w=(2*pi/length(x))*n;figure(1)subplot(2,1,1), plot(w,Am1,'b'); grid;title('Magnitude part');xlabel('frequency in radians');ylabel('|X(exp(jw))|');subplot(2,1,2), plot(w,pha1,'r'); grid;title('Phase Part');xlabel('frequency in radians');ylabel('argX[exp(jw)]/radians');(2) x=[ones(1,8),zeros(1,248)];t=cputime;[Am2,pha2]=dft2(x);t2=cputime-tn=[0:(length(x)-1)];w=(2*pi/length(x))*n;figure(2)subplot(2,1,1), plot(w,Am2,'b'); grid;title('Magnitude part');xlabel('frequency in radians');ylabel('|X(exp(jw))|');subplot(2,1,2), plot(w,pha2,'r'); grid;title('Phase Part');xlabel('frequency in radians');ylabel('argX[exp(jw)]/radians');(3) x=[ones(1,8),zeros(1,248)];t=cputime;[Am3,pha3]=dft3(x);t3=cputime-t;n=[0:(length(x)-1)];w=(2*pi/length(x))*n;figure(3)subplot(2,1,1), plot(w,Am3,'b'); grid;title('Magnitude part');xlabel('frequency in radians');ylabel('|X(exp(jw))|');subplot(2,1,2), plot(w,pha3,'r'); grid;title('Phase Part');xlabel('frequency in radians');ylabel('argX[exp(jw)]/radians')从以上运行结果可以看出,调用FFT库函数直接计算X(k)速度最快,矩阵运算次之,用循环变量逐点计算运行速度最慢。
实验一二选一数据选择器VHDL设计Quartus II 6.0开发环境与EDA实验箱使用一实验目的1.熟悉在Quartus II 6.0环境下原理图输入方法。
2.熟悉Quartus II 6.0环境下编辑、编译综合、仿真的操作方法。
3、掌握利用EDA软件进行电路设计的详细流程;4、熟悉EDA实验箱的基本使用方法。
学会对实验板上的FPGA/CPLD进行编程下载,硬件验证自己的设计项目。
二实验仪器PC机、Quartus II 6.0软件三实验内容1.详细解读教材117页。
2.在QuartusⅡ上输入该设计的原理图,并进行编辑、编译、综合、适配、仿真。
3.给出其所有信号的时序仿真波形。
四实验原理及步骤1.启动Quartus II 6.0软件在桌面上双击Quartus II 6.0图标或者在开始—>所有程序—>Altera—> Quartus II 6.0,如下图2.建立工作库文件夹及工程任何一次设计都是一项工程(Project),所有此工程相关的所有设计文件都需要放在同一个文件夹里。
不同的设计放在不同的文件夹中。
在E盘下建立一个存放本次设计的工程文件夹,比如“shiyan1”。
注意不要使用中文文件夹,文件夹的存放路径也不要包含中文。
注意本实验室计算机C盘和D盘是重启后复原,不要将任何文件和文件夹放置在桌面或者C、D盘下。
初次打开Quartus II 6.0,会有如图提示:选择是的情况下,首先是新工程向导:介绍下一步下一步下一步,选择目标芯片,首先在Family栏选择ACEX1K系列,然后选择此系列的具体芯片:EP1K30TC144-3。
注意不要选成了EP1K30TC144-3。
下一步就点完成。
3.建立文本程序文件选择File菜单下的New或者直接点击工具栏中的新建图标,选择新建文件类型为VHDL File。
接下来另存文件:保存时需更改文件名与项目名称一样,注意保存在同一个工程文件夹下面。
《EDA技术及应用》实验报告系部:指导教师:学号:姓名:实验一点亮LED设计一、实验目的通过此实验让用户逐步了解、熟悉和掌握FPGA开发软件QuartusII的使用方法及Verilog HDL的编程方法。
本实验力求以详细的步骤和讲解让读者以最快的方式了解EDA技术开发以及软件的使用,从而快速入门并激起读者对EDA技术的兴趣。
二、实验容SmartSOPC实验箱上有8个发光二极管LED1~8,并分别与FPGA的50、53~55、176和47~49引脚相连。
本实验的容是建立可用于控制LED亮/灭的简单硬件电路,要求点亮SmartSOPC实验箱上的4个发光二极管(LED1、LED3、LED5和LED7)。
三、实验原理FPGA器件同单片机一样,为用户提供了许多灵活独立的输入/输出I/O口(单元)。
FPGA每个I/O口可以配置为输入、输出、双向I/O、集电极开路和三态门等各种组态。
作为输出口时,FPGA的I/O口可以吸收最大为24mA的电流,可以直接驱动发光二极管LED等器件。
所以只要正确分配并锁定引脚后,在相应的引脚上输出低电平“0”,就可以实现点亮该发光二级管的功能。
四、实验步骤1、启动Quarters II建立一个空白工程,命名为led_test.qpf。
然后分别建立图形设计文件,命名为led_test.bdf,以及文本编辑文件led1.v,将他们都添加进工程中。
2、对工程进行设计。
在led1.v中输入程序代码,并保存,进行综合编译,若在编译中发现错误,则找出并更正错误,直至编译成功为止。
从设计文件中创建模块,由led1.v生成名为led1.bsf的模块符号文件。
在led_test.bdf中任意空白处双击鼠标左键,将symbol对话框中libraries:project下的led1模块添加到图形文件led_test.bdf中,加入输入、输出引脚,双击各管脚符号,进行管脚命名。
完整的顶层模块原理图如下图所示。
EDA实验报告班级:学号:姓名:实验一组合逻辑设计一、实验目的:通过一个简单的3-8译码器的设计,让学生掌握组合逻辑电路的设计方法。
二、实验的硬件要求:1、输入:DIP拨码开关3位2、输出:LED灯3、主芯片:EP2C8Q208C8三、实验原理:三八译码器三输入,八输出。
当输入信号按二进制方式的表示为N时,输出端从零标记到八。
因为三个输入端能产生的组合状态有八种,所以输出端在每种组合中仅有一位有效的情况下,能表示所有的输入组合。
3-8译码器真值表四、实验程序图:建立工程后,新建Block diagram/schematic file程序,在编辑窗口中选择相应原件用鼠标拖入文件中编辑,绘制完成后保存原理图,对程序进行编译,编译无误后,进行管脚配置,下图为程序图。
文本程序:library ieee;use ieee.std_logic_1164.all;entity program1 isport (A,B,C:in std_logic;D0,D1,D2,D3,D4,D5,D6,D7:out std_logic); end entity program1;architecture one of program1 issignal abc :std_logic_vector(2 downto 0); signal D :std_logic_vector(7 downto 0); beginabc <= A&B&C;process(abc)begincase abc iswhen "000"=>D<="10000000";when "100"=>D<="01000000";when "010"=>D<="00100000";when "110"=>D<="00010000";when "001"=>D<="00001000";when "101"=>D<="00000100";when "011"=>D<="00000010";when "111"=>D<="00000001";when others => null;end case;end process;D0<=D(7);D1<=D(6);D2<=D(5);D3<=D(4);D4<=D(3);D5<=D(2);D6<=D(1);D7<=D(0);end architecture one;五、实验仿真结果:仿真波形图如下:进行波形仿真完成后,用拨码开关的低三位代表译码器输入,将之与配置好的管脚相连;用led灯代表译码器的输出,将之与配置好的管脚相连。
EDA技术实验报告实验⼀利⽤原理图输⼊法设计4位全加器⼀、实验⽬的:掌握利⽤原理图输⼊法设计简单组合电路的⽅法,掌握MAX+plusII 的层次化设计⽅法。
通过⼀个4位全加器的设计,熟悉⽤EDA 软件进⾏电路设计的详细流程。
⼆、实验原理:⼀个4位全加器可以由4个⼀位全加器构成,全加器的进位以串⾏⽅式实现,即将低位加法器的进位输出cout 与相邻的⾼位加法器的低位进位输⼊信号cin 相接。
1位全加器f-adder 由2个半加器h-adder 和⼀个或门按照下列电路来实现。
半加器h-adder 由与门、同或门和⾮门构成。
四位加法器由4个全加器构成三、实验内容:1. 熟悉QuartusII 软件界⾯,掌握利⽤原理图进⾏电路模块设计的⽅法。
QuartusII 设计流程见教材第五章:QuartusII 应⽤向导。
2.设计1位全加器原理图(1)⽣成⼀个新的图形⽂件(file->new->graphic editor )(2)按照给定的原理图输⼊逻辑门(symbol ->enter symbol)COCO 1S 2S 3S 4(4)为管脚和节点命名:在管脚上的PIN_NAME处双击⿏标左键,然后输⼊名字;选中需命名的线,然后输⼊名字。
(5)创建缺省(Default)符号:在File菜单中选择Create Symbol Files for Current File项,即可创建⼀个设计的符号,该符号可被⾼层设计调⽤。
3.利⽤层次化原理图⽅法设计4位全加器(1)⽣成新的空⽩原理图,作为4位全加器设计输⼊(2)利⽤已经⽣成的1位全加器的缺省符号作为电路单元,设计4位全加器的原理图.4.新建波形⽂件(file->new->Other Files->Vector Waveform File),保存后进⾏仿真(Processing ->Start Simulation),对4位全加器进⾏时序仿真。