三相桥式全控整流电路
- 格式:ppt
- 大小:3.30 MB
- 文档页数:84
三相桥式全控整流电路及工作原理
三相桥式全控整流电路是一种常用的电力电子变换电路,广泛应用于交流调速、直流传动、直流无刷电机等领域。
它具有输出电压可调、功率因数可控和双向传输功率等特点。
1. 电路结构
三相桥式全控整流电路由六个可控硅整流器()组成,三个正并联,另外三个反并联。
每个可控硅整流器的阳极与交流电源的一相相连,阴极与负载相连。
整流器的栅极连接到相应的脉冲发生电路,用于控制导通时间。
2. 工作原理
在每个周期内,三相交流电源的三相电压有两相电压大于另一相电压。
整流电路利用这一特性,使两相较高电压的可控硅整流器导通,从而将这两相电压的正半周经整流器输出到负载。
通过控制每个整流器的导通时间,可以调节输出电压的幅值和相位。
当某一相电压达到最大值时,该相的两个整流器将导通。
随着时间推移,其他两相电压将超过该相电压,相应的整流器也将导通。
如此循环,每个整流器在每个周期内均有一段导通时间。
通过调节每个整流器的导通时间,即控制脉冲发生电路对栅极施加脉冲的时间,可以控制输出电压的幅值。
同时,还可以改变脉冲施加的相位角,从而控制功率因数。
3. 特点
(1) 输出电压可连续调节
(2) 功率因数可控
(3) 双向传输功率
(4) 电路结构相对简单
三相桥式全控整流电路通过控制整流器的导通时间和相位,可以实现对输出电压和功率因数的精确控制,是一种非常重要和实用的电力电子变换电路。
8.2.6 三相桥式全控整流电路三相桥式全控整流电路相当于一组共阴极的三相半波和一组共阳极的三相半波可控整流电路串联起来构成的。
习惯上将晶闸管按照其导通顺序编号,共阴极的一组为VT1、VT3和VT5,共阳极的一组为VT2、VT4和VT6。
其电路如图8.22所示图8.22 三相桥式电阻性负载全控整流电路对于图8.22的电路,可以像分析三相半波可控整流电路一样,先分析若是不可控整流电路的情况,即把晶闸管都换成二极管,这种情况相当于可控整流电路的时的情况。
即要求共阴极的一组晶闸管要在自然换相点1、3、5点换相,而共阳极的一组晶闸管则会在自然换相点2、4、6点换相。
因此,对于可控整流电路,就要求触发电路在三相电源相电压正半周的1、3、5点的位臵给晶闸管VT1、VT3和VT5送出触发脉冲,而在三相电源相电压负半周的2、4、6点的位臵给晶闸管VT2、VT4和VT6送出触发脉冲,且在任意时刻共阴极组和共阳极组的晶闸管中都各有一只晶闸管导通,这样在负载中才能有电流通过,负载上得到的电压是某一线电压。
其波形如图8.23所示。
为便于分析,可以将一个周期分成6个区间,每个区间图8.23 三相桥式电阻性负载a=0°时波形区间,u相电位最高,在时刻,即对于共阴极组的u 相晶闸管VT1的的时刻,给其加触发脉冲,VT1满足其导通的两个条件,同时假设此时共阳极组阴极电位最低的晶闸管VT6已导通,这样就形成了由电源u相经VT1、负载及VT6回电源v相的一条电流回路。
若假设电流流出绕组的方向为正,则此时u相绕组的电流为正,v相绕组上的电流为负。
在负载电阻上就得到了整流后的直流输出电压,且,为三相交流电源的线电压之一。
过后到时刻,进入区间,这时u相相电压仍是最高,但对于共阳极组的晶闸管来说,由于w相相电压为最负,即VT2的阴极电位将变得最低。
所以在自然换相点2点,即时,给晶闸管VT2加触发脉冲,使其导通,同时由于VT2的导通,使VT6承受了反向的线电压而关断了。
摘要整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
关键词:整流,变压,触发,过电压,保护电路目录第1章三相桥式整流原理 (3)第2章系统主电路 (4)2.1 三相全控桥的工作原理 (4)2.2阻感负载时的波形分析 (4)第3章触发电路设计 (6)3.1芯片的连接 (6)3.2 触发电路原理说明 (7)第4章保护电路的设计 (9)4.1 晶闸管的保护电路 (9)4.2 直流侧阻容保护电路 (10)第5章参数的计算 (11)5.1 整流变压器参数 (11)5.2 晶闸管参数 (12)第6章MATLAB 建模与仿真 (13)6.1 MATLAB建模 (13)6.2 MATLAB 仿真 (15)6.3 仿真结构分析 (17)心得体会 (18)第1章三相桥式整流原理目前,在各种整流电路中,应用最为广泛的是三相桥式全控整流电路。
习惯将电路中阴极连在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组。
三相桥式全控整流电路通过变压器与电网连接,经过变压器的耦合,晶闸管电路得到一个合适的输入电压,是晶闸管在较大的功率因素下运行。
本设计中,主电路由三大部分构成,分别为主电路、触发电路、保护电路。
三相桥式全控整流电路
三相桥式全控整流电路是一种典型的多相变流器结构。
其概念是利用三个桥式变换器,并将三相电源转换成多脉冲的直流电压或电流。
三相桥式全控整流电路可以满足多种多种
应用场合的需求。
三相桥式全控整流电路具有输出电流均衡、无影响源特性和可靠性等优点。
结构简单,尺寸小,失压开关控制,可靠性高,功率非常低,因此可以有效减少处理器的使用,降低
成本。
控制电路精确,可以实现功率的精确控制,提高了净输出功率的效率。
电阻元件高
度可调,可以对输出电流进行良好的控制,从而获得更好的控制性能。
三相桥式全控整流电路结构简单,可以有效控制输出电流,并且可以满足输出频率和
脉宽调节等多种需求。
但它也有一定的局限性,如功率范围较小,无法处理较大的功率负载。
三相桥式全控整流电路是一种常用的多相变流器。
它结构简单,控制精度高,稳定性好,可以有效解决处理多种应用场景的需求,在工业自动化等领域有广泛的应用。
1系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。
可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。
由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。
按电路结构可分为桥式电路和零式电路。
按交流输入相数分为单相电路和多相电路。
按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。
本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。
三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。
三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。
为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。
因此,实际中一般不采用半波整流,而采用全波整流。
三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。
由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。
在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。
1.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。
整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。
1系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。
可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。
由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。
按电路结构可分为桥式电路和零式电路。
按交流输入相数分为单相电路和多相电路。
按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。
本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。
三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。
三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。
为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。
因此,实际中一般不采用半波整流,而采用全波整流。
三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。
由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。
在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。
1.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。
整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。
1系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。
可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。
由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。
按电路结构可分为桥式电路和零式电路。
按交流输入相数分为单相电路和多相电路。
按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。
本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。
三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。
三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。
为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。
因此,实际中一般不采用半波整流,而采用全波整流。
三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。
由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。
在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。
1.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。
整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。
三相桥式全控整流电路应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2)编号:1、3、5,4、6、2a 带电阻负载时的工作情况a =0°时的情况假设将电路中的晶闸管换作二极管进行分析对于共阴极阻的3个晶闸管,阳极所接交流电压值最大的一个导通对于共阳极组的3个晶闸管,阴极所接交流电压值最低(或者说负得最多)的导通任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态从相电压波形看,共阴极组晶闸管导通时,ud1为相电压的正包络线,共阳极组导通时,ud2为相电压的负包络线,ud=ud1 - ud2是两者的差值,为线电压在正半周的包络线直接从线电压波形看,ud为线电压中最大的一个,因此ud波形为线电压的包络线。
三相桥式全控整流电路的特点:(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60°。
共阴极组VT1、VT3、VT5的脉冲依次差120°,共阳极组VT4、VT6、VT2也依次差120°同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180°。
表2-1 三相桥式全控整流电路电阻负载a=0°时晶闸管工作情况时段I II III IV V VI共阴极组中导通的晶闸管 VT1 VT1 VT3 VT3 VT5 VT5共阳极组中导通的晶闸管 VT6 VT2 VT2 VT4 VT4 VT6整流输出电压Ud Ua-Ub=Uab Ua-Uc=Uac Ub-Uc=Ubc Ub-Ua=Uba Uc-Ua=Uca Uc-Ub=Ucb(3)ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲可采用两种方法:一种是宽脉冲触发另一种方法是双脉冲触发(常用)。
1三相桥式全控整流电路(电阻性负载)
三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。
1-1三相桥式全控整流电路(电阻性负载)
1-1三相桥式全控整流电路
n
d
VT VT VT 462d 2
d
2-1三相桥式全控整流电路(电阻性负载)仿真图2.2三相桥式全控整流电路(电阻性负载)电源参数
电源220V.相位分别为0︒,120︒,-120︒,频率50HZ
设置控制脚a为0︒,30︒,60︒,90︒与其相印的波形
3-1三相桥式全控整流电路(电阻性负载)a为0︒
3-2三相桥式全控整流电路(电阻性负载)a为30︒
3-3三相桥式全控整流电路(电阻性负载)a为60︒
3-4三相桥式全控整流电路(电阻性负载)a为90︒
4总结
2个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同一相器件。
同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180 。
1主电路的原理1.1主电路其原理图如图1所示。
图1 三相桥式全控整理电路原理图习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。
此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
1.2主电路原理说明整流电路的负载为带反电动势的阻感负载。
假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。
此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。
而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。
这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
此时电路工作波形如图2所示。
图2 反电动势α=0o时波形α=0o时,各晶闸管均在自然换相点处换相。
由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。
在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。
从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。
直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的相电压,输出整流电压ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线。
第六章引言6.1 同步电机的励磁简介同步电机的励磁绕组通常由外电源提供励磁电流,这些励磁电源可分为两大类:一类是用直流电源提供励磁的直流励磁机系统;另一类是用硅整流装置将交流变成直流后提供励磁的半导体励磁系统。
随着半导体技术的发展,可控硅整流装置已广泛应用于同步电机励磁系统。
可控硅整流装置将交流励磁机输出的三相交流电流转换成直流电流,励磁调节器根据发电机运行工况调节可控硅整流器的导通角,以此调节可控硅整流装置的输出电压,从而调节发电机的励磁。
6.2 研究同步电机励磁系统的背景在电力系统的运行中,同步发电机是电力系统获得无功功率的重要来源之一,通过调节励磁电流可以维持发电机端电压,改变发电机的无功功率。
不论系统是在正常运行情况下还是在故障情况下,同步发电机的励磁电流都必须得到有效控制,因此励磁系统是同步发电机的重中之重。
励磁系统的安全运行,不仅关系到发电机及电力系统的运行稳定性,而且关系到发电机及与其相关联的电力系统的经济运行指标。
对同步发电机励磁系统基本要求有:一、具有十分高的可靠性;二、保证发电机具有足够的励磁容量;三、具有足够的强励能力;四、保证发电机电压调差率有足够的整定范围;五、保证发电机电压有足够的调节范围;六、保证发电机励磁自动控制系统具有良好的调节特性等。
6.3 本文主要研究内容三相桥式全控整流电路是将交流电压转化为直流电压,进而转化为直流励磁电流的一个桥梁,所以对它的分析研究就显的尤为重要。
本次设计中综合运用MATLAB中的Simulink模块搭建三相桥式全控整流电路,仿真分析了在不同触发角情况下的输出电压波形,并在分析后通过电力系统综合自动化实验台上的示波器观察励磁装置中的六路脉冲、变压器二次测交流电压波形以及经整流后输出的直流电压波形。
u g u gu g u gu2u 图2 三相桥式整流电路的触发脉冲第七章 三相桥式全控整流电路简介7.1 主电路原理说明如图2.1,共阴极组——阴极连接在一起的3个晶闸管(VT 1,VT 3,VT 5)共阳极组——阳极连接在一起的3个晶闸管(VT 4,VT 6,VT 2)。
三相桥式全控整流电路1. 引言三相桥式全控整流电路是一种常用的电力电子器件,广泛应用于直流供电系统中。
它能将三相交流电转换成稳定的直流电,并且可以根据需要调整输出电压大小。
本文将详细介绍三相桥式全控整流电路的结构、工作原理以及优缺点。
2. 结构三相桥式全控整流电路由六个可控硅组成,分别为三相桥臂和控制电路。
其中,三相桥臂由三个可控硅和三个反并联的二极管组成,形成了一个三相全控整流单元。
控制电路用于控制可控硅的导通和关断,以实现对输出电压的调节。
3. 工作原理当输入电源为三相交流电时,通过变压器将其降压,并适当调整相位,然后将其输出到三相桥臂上。
根据控制电路的控制信号,控制可控硅的导通和关断。
当可控硅导通时,交流电信号经过可控硅和二极管之间的通路,形成一个通路;当可控硅关断时,通路中断。
可控硅的导通和关断时间可以通过控制电路的触发方式和触发角来控制。
触发角表示可控硅导通的延迟时间,可以调整导通角度来控制输出电压的大小。
通过调整可控硅的导通角度,可以实现对输出电压的调节。
一般情况下,三相桥式全控整流电路的工作周期是以输入交流电的周期为基准的。
在每个周期内,三相桥臂会分别导通和关断,以便实现对输出电压的稳定控制。
控制电路会根据电压反馈信号和控制信号,实时调整可控硅的导通角度,以使输出电压达到设定值。
4. 优缺点4.1 优点•三相桥式全控整流电路具有较高的稳定性和精度,适用于对电压要求较高的场合。
•可控硅的导通角度可调,可以实现对输出电压的精确调节。
•结构相对简单,制造成本较低。
4.2 缺点•由于可控硅的导通和关断需要外部控制电路的支持,因此整体的复杂度较高。
•整流过程中会产生一定的谐波,可能对其他电器设备造成干扰。
•输出电压的调节需要实时监测和反馈,对控制电路提出了一定的要求。
5. 应用三相桥式全控整流电路广泛用于直流供电系统中,如直流电源、电动机控制等领域。
其稳定性和精确控制性使其成为电力电子设备的重要组成部分。