理想气体的内能、热容和焓
- 格式:pdf
- 大小:167.99 KB
- 文档页数:12
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
rg气体常数rg气体常数是一个在物理学和化学中常用的重要常数。
它代表了单位质量的理想气体在恒定压力下的体积与温度之间的关系。
这个常数的值是一个非常关键的参数,可以帮助我们理解气体的行为以及在许多实际问题中的应用。
在研究理想气体时,rg气体常数起着至关重要的作用。
它的值通常用符号R表示,而具体数值取决于所选择的单位制。
在国际单位制中,rg气体常数的数值约为8.314焦耳/(摩尔·开)。
而在厘米-克-秒单位制中,它的数值约为1.987卡/(摩尔·开)。
理想气体状态方程可以用rg气体常数来表示,即PV = nRT。
在这个方程中,P代表气体的压力,V代表气体的体积,n代表气体的摩尔数,T代表气体的温度。
通过这个方程,我们可以推导出很多有关气体的性质和行为的重要信息。
rg气体常数也可以用来计算理想气体的内能和焓的变化。
内能的变化可以表示为ΔU = nCvΔT,其中Cv代表摩尔定容热容量。
而焓的变化可以表示为ΔH = nCpΔT,其中Cp代表摩尔定压热容量。
这些公式在热力学和热力学过程的研究中起着至关重要的作用。
除了在理想气体的研究中,rg气体常数在化学反应和热力学过程中也有着广泛的应用。
在计算化学反应的热效应时,我们经常会用到rg气体常数来计算反应的焓变。
而在工业生产中,rg气体常数也被广泛用于设计和优化化工过程。
总的来说,rg气体常数在物理学和化学中扮演着非常重要的角色。
它不仅帮助我们理解气体的行为和性质,还在实际问题的解决中发挥着关键作用。
因此,对rg气体常数的深入理解和熟练运用对于科学研究和工程实践都至关重要。
希望通过本文的介绍,读者能对rg 气体常数有更深入的了解,并在相关领域的学习和工作中有所裨益。
第二章理想气体的性质第一章一开始,我们就讲了工质是实现热能与机械能相互转化的媒介物,热能与机械能的相互转化是靠工质在设备中吸热膨胀作功等状态变化过程实现的。
因此必须熟悉常用工质的热力性质。
此外,我们也了解到,热能与机械能的转化是通过工质的膨胀实现的,所以,作为这样的工质必须具有可胀缩性和流动性,而在气固液三态中,只有气态具有这种性质,所以,在这一章我们就专门研究的气态的这种性质,研究工质在一定的状态下三个基本状态参数的关系—状态方程式。
比热容和内能、焓、熵的计算方法,其中状态方程的建立和比热容的计算是主要的只有知道了工质的状态方程和比热容其他参数,Δu、Δh、Δs才能推算出来。
2-1 理想气体与实际气体在普通物理学中,已经介绍过理想气体的概念,所谓的理想气体是一种实际并不存在的假想的气体,那么我们为什么还需要研究它呢?一、何为理想气体定义:1、气体分子是些弹性的,不占体积的质点。
2、分子相互间没有作用力。
二、为什么要研究它1、为了研究方便如果考虑了气体分子之间有相互作用力和分子本身的体积,那么气体的性质就变得很复杂,状态参数之间的函数关系,也会变得很复杂,要用较长的关系式来表达,这样的关系式对我们分析问题带来极大的困难,引入理想气体后,使得气体分子的运动规律大大简化了,这样,不但可以定性地分析气体的热力学现象,还可以定量地得出状态参数之间简单的函数关系,简化了分析计算,然后根据具体情况,加以修正,就可以接近实际气体的计算这种方法在科学研究和生产实践中常用的一种处理问题的方法。
2、工程技术上具有实际的意义经过简化之后,能否符合实际情况,偏差有多大,这要看具体条件。
当T很高、P很低→气体V很大→离液态很远,因为V很大→分子间距离很大→分子间作用力越小→可以忽略→分子本身的体积相对空间少→忽略作用力,本身的体积→误差不会很大,所以理想气体实质上是实际气体P→0、V→∞时的理想极限状态。
工程上,一定状态下的实际气体,都可以处理想气体,例如:H2、O2、N2、CO2及组成的气体,烟气,他们的液化温度较低(1标准大气压-183℃才能液化)离液液态较远,在通常P、T下,可处理为理想气体,误差不大,都在工程所需要的范围。