高一数学必修4:诱导公式五、六
- 格式:doc
- 大小:53.50 KB
- 文档页数:5
A 级 基础巩固一、选择题1.sin 95°+cos 175°的值为( ) A .sin 5° B .cos 5° C .0D .2sin 5°解析:原式=cos 5°-cos 5°=0. 答案:C2.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是( )A.13B.23 C .-13D .-23解析:sin(α-15°)+cos(105°-α)=sin[(75°+α)-90°]+cos[180°-(75°+α)] =-sin[90°-(75°+α)]-cos(75°+α) =-cos(75°+α)-cos(75°+α) =-2cos(75°+α), 因为cos(75°+α)=13,所以原式=-23.答案:D3.如果角θ的终边经过点⎝ ⎛⎭⎪⎫-35,45,那么sin ⎝ ⎛⎭⎪⎫π2+θ+cos(π-θ)+tan(2π-θ)=( )A .-43B.43C.34D .-34解析:易知sin θ=45,cos θ=-35,tan θ=-43.原式=cos θ-cos θ-tan θ=43.答案:B4.若角A 、B 、C 是△ABC 的三个内角,则下列等式中一定成立的是( )A .cos(A +B )=cosC B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A2解析:因为A +B +C =π,所以A +B =π-C ,A +C 2=π-B 2,B +C 2=π-A2,所以cos(A +B )=cos (π-C )=-cos C , sin(A +B )=sin (π-C )=sin C , cos A +C 2=cos ⎝ ⎛⎭⎪⎫π2-B 2=sin B 2,sinB +C 2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2. 答案:D5.函数f (x )=15sin ⎝⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:因为⎝ ⎛⎭⎪⎫x +π3-⎝ ⎛⎭⎪⎫x -π6=π2,即⎝ ⎛⎭⎪⎫x -π6=⎝ ⎛⎭⎪⎫x +π3-π2, 所以cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3, 所以f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=65sin ⎝ ⎛⎭⎪⎫x +π3. 故f (x )的最大值为65.答案:A 二、填空题6.若cos α=15,且α是第四象限角,则cos ⎝ ⎛⎭⎪⎫α+π2=________.解析:因为cos α=15,且α是第四象限角,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫152=-265.所以cos ⎝ ⎛⎭⎪⎫α+π2=-sin α=265.答案:2657.已知cos α=13,则sin ⎝ ⎛⎭⎪⎫α-π2·cos⎝ ⎛⎭⎪⎫3π2+α·tan (π-α)=________.解析:sin ⎝ ⎛⎭⎪⎫α-π2cos ⎝ ⎛⎭⎪⎫3π2+αtan (π-α)=-cos αsin α·(-tan α)=sin 2α=1-cos 2α=1-⎝ ⎛⎭⎪⎫132=89.答案:898.sin 21°+sin 22°+sin 245°+sin 288°+sin 289°=________. 解析:原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+sin 245°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+⎝ ⎛⎭⎪⎫222=1+1+12=52.答案:52三、解答题9.化简:sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-αcos (π+α)+sin (π-α)cos ⎝ ⎛⎭⎪⎫π2+αsin (π+α).解:因为sin ⎝ ⎛⎭⎪⎫π2+α=cos α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α, cos(π+α)=-cos α,sin(π-α)=sin α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin α,sin(π+α)=-sin α, 所以原式=cos α·sin α-cos α+sin α·(-sin α)-sin α=-sin α+sin α=0.10.(1)已知sin α=14,sin β=1,求cos (α+β)的值;(2)已知sin ⎝ ⎛⎭⎪⎫α-π4=13,求cos ⎝ ⎛⎭⎪⎫π4+α的值. 解:(1)由sin β=1得β=π2+2k π(k ∈Z),所以cos (α+β)=cos ⎝ ⎛⎭⎪⎫α+π2+2k π=-sin α=-14. (2)因为π4+α-⎝⎛⎭⎪⎫α-π4=π2, 所以π4+α=π2+⎝⎛⎭⎪⎫α-π4. 所以cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫α-π4=-13.B 级 能力提升1.已知f (x )=sin x ,下列式子成立的是( ) A .f (x +π)=sin x B .f (2π-x )=sin xC .f ⎝ ⎛⎭⎪⎫x -π2=-cos x D .f (π-x )=-f (x )解析:f (x +π)=sin(x +π)=-sin x ;f (2π-x )=sin(2π-x )=sin(-x )=-sin x ;f ⎝ ⎛⎭⎪⎫x -π2=sin ⎝ ⎛⎭⎪⎫x -π2=-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x ;f (π-x )=sin(π-x )=sin x =f (x ).答案:C2.已知cos ⎝ ⎛⎭⎪⎫π3+α=34,则sin ⎝ ⎛⎭⎪⎫π6-α=________.解析:因为⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2, 所以sin ⎝ ⎛⎭⎪⎫π6-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫π3+α=34. 答案:343.设tan ⎝⎛⎭⎪⎫α+87π=a . 求证:sin ⎝ ⎛⎭⎪⎫157π+α+3cos ⎝ ⎛⎭⎪⎫α-137πsin ⎝ ⎛⎭⎪⎫207π-α-cos ⎝ ⎛⎭⎪⎫α+227π=a +3a +1.证明:左边=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫87π+α+3cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+87π-3πsin ⎣⎢⎡⎦⎥⎤4π-⎝ ⎛⎭⎪⎫α+ 87π-cos ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫α+87π=-sin ⎝ ⎛⎭⎪⎫α+87π-3cos ⎝ ⎛⎭⎪⎫α+87π-sin ⎝ ⎛⎭⎪⎫α+87π-cos ⎝ ⎛⎭⎪⎫α+87π=tan ⎝⎛⎭⎪⎫α+87π+3tan ⎝ ⎛⎭⎪⎫α+87π+1.将tan ⎝ ⎛⎭⎪⎫α+87π=a 代入得,左边=a +3a +1=右边,所以等式成立.。
1-3-2诱导公式五、六一、选择题1.已知sin(α+π4)=13,则cos(π4-α)的值为( )A.223B .-223C.13 D .-13[答案] C[解析] cos(π4-α)=cos[π2-(π4+α)].=sin(α+π4)=13.2.已知cos(3π2+α)=-35,且α是第四象限角,则cos(-3π+α)( )A.45 B .-45C .±45D.35[答案] B[解析] ∵cos(3π2+α)=-35,∴sin α=-35,∴cos(-3π+α)=-cos α=-1-sin 2α=-45.3.已知sin α=513,则cos(π2+α)等于( )A.513 B.1213 C .-513D .-1213[答案] C[解析] cos(π2+α)=-sin α=-513.4.若sin(3π+α)=-12,则cos(7π2-α)等于( )A .-12B.12C.32 D .-32[答案] A[解析] 由已知,得sin α=12,则cos(7π2-α)=-sin α=-12.5.已知sin10°=k ,则cos620°等于( ) A .k B .-k C .±k D.1-k 2 [答案] B[解析] cos620°=cos(360°+260°) =cos260°=cos(180°+80°)=-cos80° =-cos(90°-10°)=-sin10°=-k .6.已知sin(α+π2)=13,α∈(-π2,0),则tan α等于( )A .-2 2B .2 2C .-24D.24 [答案] A[解析] sin(α+π2)=cos α=13,又α∈(-π2,0),所以sin α=-1-cos 2α=-223,则tan α=sin αcos α=-2 2. 7.若sin α+cos αsin α-cos α2,sin(α-5π)·sin(3π2-α)等于( )A.34 B.310C .±310D .-310[答案] B[解析] sin α+cos αsin α-cos α=tan α+1tan α-1=2,解得tan α=3,则原式=(-sin α)(-cos α)=sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=332+1=310.8.若f (cos x )=cos3x ,那么f (sin30°)的值为( ) A .0 B .1 C .-1 D.32 [答案] C[解析] f (sin30°)=f (cos60°)=cos180°=-1,故选C.9.A 、B 、C 为△ABC 的三个内角,下列关系式中不成立的是( ) ①cos(A +B )=cos C ②cos B +C 2=sin A 2③tan(A +B )=-tan C ④sin(2A +B +C )=sin A A .①② B .③④ C .①④ D .②③ [答案] C[解析] ∵cos(A +B )=cos(π-C )=-cos C ,∴①错,排除B 、D ;cos B +C 2=cos π-A 2=cos ⎝ ⎛⎭⎪⎫π2-A 2=sin A2,∴②正确,排除A ,∴选C.10.tan110°=k ,则sin70°的值为( ) A .-k1+k 2B.k 1+k2C.1+k 2kD .-1+k 2k[答案] A[解析] 解法一:∵k <0,sin70°>0,∴排除C 、B , 又|sin70°|<1,∴排除D ,选A.解法二:k =tan110°=-tan70°,∴tan70°=-k >0,∴cos70°=-1k sin70°代入sin 270°+cos 270°=1中得,sin 270°=k 2k 2+1,∵k <0,sin70°>0, ∴sin70°=-k 1+k2.二、填空题11.已知sin(π2+α)=34,则sin(π2-α)=________.[答案] 34[解析] ∵sin(π2α)=cos α=34,∴sin(π2-α)=cos α=34.12.化简cos (52π-α)cos (-α)sin (32π+α)cos (212π-α)=________.[答案] -1 [解析] 原式=cos[2π+(π2-α)]cos αsin[π+(π2+α)]cos[10π+(π2-α)]=cos (π2-α)cos α-sin (2+α)cos (2-α)=sin αcos α-cos αsin α=-1.13.若cos(π6 -α)=a ,则sin(2π3-α)=________.[答案] a[解析] ∵cos(π6-α)=cos(2π3-α-π2)=cos[π2-(2π3-α)]=sin(2π3-α),∴sin(2π3-α)=a .14.sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°+sin 290°的值为________.[答案] 912[解析] ∵sin 21°+sin 289°=sin 21°+cos 21°=1, sin 22°+sin 288°=sin 22°+cos 22°=1,sin 2x °+sin 2(90°-x °)=sin 2x °+cos 2x °=1,(1≤x ≤44,x ∈N )∴原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 290°+sin 245°=45+⎝ ⎛⎭⎪⎫222=912.三、解答题15.(2011~2012·宜春高一检测)化简: cos (2π-α)sin (3π+α)cos (3π2-α)cos (-π2+α)cos (α-3π)sin (-π-α).[解析] 原式=cos α(-sin α)(-sin α)sin α(-cos α)sin α=-1.16.若sin(180°+α)=-1010,0°<α<90°.求sin (-α)+sin (-90°-α)cos (540°-α)+cos (-270°-α)的值. [解析] 由sin(180°+α)=-1010,α∈(0°,90°),得sin α=1010,cos α=31010,∴原式=-sin α-sin (90°+α)cos (360°+180°-α)+cos (270°+α)=-sin α-cos α-cos α+sin α =-1010-31010-31010+1010=2.17.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,求sin (-α-3π2)sin (3π2-α)tan 3αcos (π2-α)cos (π2+α)的值.[解析] 由已知得sin α=-35.∵α是第三象限角,∴cos α=-1-sin 2α=-45.∴原式=cos α·(-cos α)·(sin αcos α)3sin α·(-sin α)=sin αcos α=34.18.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0. [证明] ∵sin(α+β)=1, ∴α+β=2k π+π2,k ∈Z ,∴α=2k π+π2-β,k ∈Z .∴tan(2α+β)+tan β=tan[2(2k π+π2-β)+β]+tan β=tan(4k π+π-4k π+π-β)+tan β =tan(π-β)+tan β=-tan β+tan β=0. 即tan(2α+β)+tan β=0.。
第一章三角函数1.3 三角函数的诱导公式第2课时诱导公式五、六课后篇巩固探究基础巩固1.若α∈(π,3π2),则√1-sin2(3π2-α)=( )A.sin αB.-sin αC.cos αD.-cos α(π,3π2),∴sinα<0.∴√1-sin2(3π2-α)=√1-cos2α=√sin2α=-sinα.2.已知P(sin 40°,-cos 140°)为锐角α终边上的点,则α=( )A.40°B.50°C.70°D.80°-cos140°)为角α终边上的点,因而tanα=-cos140°sin40°=-cos(90°+50°) sin(90°-50°)=sin50°cos50°=tan50°,又α为锐角,则α=50°,故选B.3.已知sin(π-α)=-2sin(π2+α),则sin αcos α=()A.25B.-25C.25或-25D.-15-α)=-2sin(π2+α),∴sinα=-2cosα.再由sin 2α+cos 2α=1可得sinα=2√55,cosα=-√55,或sinα=-2√55,cosα=√55,∴sinαcosα=-25.故选B.4.在△ABC 中,若sin A+B 2=45,则cos C2=( )A.-35B.-45C.35D.45解析∵A+B+C=π,∴A+B 2=π2−C2.∴sin A+B 2=sin (π2-C2)=cos C2=45.5.已知cos(60°+α)=13,且-180°<α<-90°,则cos(30°-α)的值为( ) A.-2√23B.2√23C.-√23D.√23-180°<α<-90°,得-120°<60°+α<-30°.又cos(60°+α)=13>0,所以-90°<60°+α<-30°,即-150°<α<-90°,所以120°<30°-α<180°,cos(30°-α)<0,所以cos(30°-α)=sin(60°+α)=-√1-cos 2(60°+α)=-√1-(13) 2=-2√23.6.若cos α=13,且α是第四象限的角,则cos (α+3π2)= .α是第四象限的角,所以sinα=-√1-cos 2α=-2√23. 于是cos (α+3π2)=-cos (α+π2)=sinα=-2√23. -2√237.若sin (π2+θ)=37,则cos 2(π2-θ)= .(π2+θ)=cosθ=37,则cos 2(π2-θ)=sin 2θ=1-cos 2θ=1-949=4049.8.求值:sin 2(π4-α)+sin 2(π4+α)= .解析∵π4-α+π4+α=π2,∴sin 2(π4+α)=sin 2[π2-(π4-α)]=cos 2(π4-α).∴sin 2(π4-α)+sin 2(π4+α)=sin 2(π4-α)+cos 2(π4-α)=1.9.化简:sin(-α-3π2)·sin(3π2-α)·tan 2(2π-α)cos(π2-α)·cos(π2+α)·cos 2(π-α).=sin(-α+π2)·[-sin(π2-α)]·tan 2(2π-α)cos(π2-α)·cos(π2+α)·cos 2(π-α)=cosα·(-cosα)·tan 2αsinα·(-sinα)·cos 2α=tan 2αsin 2α=1cos 2α.10.已知角α的终边经过点P (45,-35).(1)求sin α的值; (2)求sin(π2-α)tan (α-π)sin (α+π)cos (3π-α)的值.∵P (45,-35),|OP|=1,∴sinα=-35.(2)sin(π2-α)tan (α-π)sin (α+π)cos (3π-α)=cosαtanα-sinα(-cosα)=1cosα,由三角函数定义知cosα=45,故所求式子的值为54.能力提升1.已知π<α<2π,cos(α-9π)=-35,则cos (α-11π2)的值为( )A.35B.-35C.-45D.45cos(α-9π)=-cosα=-35,所以cosα=35.又因为α∈(π,2π),所以sinα=-√1-cos 2α=-45,cos (α-11π2)=-sinα=45.2.已知角α的终边上有一点P(1,3),则sin (π-α)-sin(π2+α)cos(3π2-α)+2cos (-π+α)的值为( )A.-25B.-45C.-47D.-4=sinα-cosα-sinα-2cosα=tanα-1-tanα-2.因为角α终边上有一点P(1,3), 所以tanα=3,所以原式=3-1-3-2=-25.故选A.3.已知α为第二象限角,则cos α√1+tan 2α+sin α√1+1tan 2α= .√sin 2α+cos 2αcos 2α+sinα√sin 2α+cos 2αsin 2α=cosα1|cosα|+sinα1|sinα|.因为α是第二象限角,所以sinα>0,cosα<0, 所以cosα1|cosα|+sinα1|sinα|=-1+1=0,即原式等于0.4.sin 21°+sin 22°+sin 23°+…+sin 289°= .sin 21°+sin 22°+sin 23°+…+sin 289°=sin 21°+sin 22°+sin 23°+…+sin 245°+cos 244°+…+cos 21°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(s in 244°+cos 244°)+sin 245°=44+12=892.5.已知函数f(x)=√2cos x-π12,x ∈R.若cos θ=35,θ∈3π2,2π,则fθ-5π12= .解析f θ-5π12=√2cos θ-5π12−π12=√2cos θ-π2=√2cosπ2-θ=√2sinθ,由已知可得θ为第四象限角,所以sinθ<0,故sinθ=-√1-cos 2θ=-45,f θ-5π12=√2sinθ=√2×-45=-4√25.-4√256.是否存在角α,β,α∈(-π2,π2),β∈(0,π),使等式sin(3π-α)=√2cos (π2-β),√3cos(-α)=-√2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. ,得{sinα=√2sinβ,√3cosα=√2cosβ,①②①2+②2得sin 2α+3cos 2α=2,∴sin 2α=12.又α∈(-π2,π2),∴α=π4或α=-π4.将α=π4代入②,得cosβ=√32.又β∈(0,π),∴β=π6,代入①可知符合.将α=-π4代入②得cosβ=√32,又β∈(0,π),∴β=π6,代入①可知不符合.综上可知,存在α=π4,β=π6满足条件.。
高一数学必修四三角函数诱导公式总结【公式一:】设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)【公式二:】设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα【公式三:】任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα【公式四:】利用公式二和公式三能够得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα【公式五:】利用公式一和公式三能够得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα【公式六:】π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)【函数复习资料】一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。
o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。
第2课时 诱导公式五、六[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 26~P 27的内容,回答下列问题. 如图所示,设α是任意角,其终边与单位圆交于点P 1(x ,y ),与角α的终边关于直线y =x 对称的角的终边与单位圆交于点P 2.(1)P 2点的坐标是什么? 提示:P 2(y ,x ).(2)π2-α的终边与角α的终边关于直线y =x 对称吗?它们的正弦、余弦值有何关系?提示:对称.sin ⎝ ⎛⎭⎪⎫π2-α=cos α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α. 2.归纳总结,核心必记 (1)诱导公式五和公式六(2)诱导公式的记忆诱导公式一~六可归纳为k ·π2±α的形式,可概括为“奇变偶不变,符号看象限”:①“变”与“不变”是针对互余关系的函数而言的.②“奇”、“偶”是对诱导公式k ·π2±α中的整数k 来讲的.③“象限”指k ·π2±α中,将α看成锐角时,k ·π2±α所在的象限,根据“一全正,二正弦、三正切,四余弦”的符号规律确定原函数值的符号.[问题思考](1)诱导公式五、六中的α是任意角吗? 提示:是.(2)在△ABC 中,角A 2与角B +C2的三角函数值满足哪些等量关系?提示:∵A +B +C =π,∴A 2=π2-B +C2,∴sin A 2=sin ⎝ ⎛⎭⎪⎫π2-B +C 2=cos B +C 2,cos A 2=cos ⎝ ⎛⎭⎪⎫π2-B +C 2=sin B +C 2.[课前反思](1)诱导公式五: ;(2)诱导公式六: .知识点1化简求值讲一讲1.已知f (α)=sin π-αcos 2π-αcos ⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-αsin ()-π-α.(1)化简f (α);(2)若α为第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[尝试解答] (1)f (α)=sin αcos α()-sin αsin αsin α=-cos α.(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α=15,∴sin α=-15, 又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=265.(3)f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-6×2π+5π3 =-cos 5π3=-cos π3=-12.类题·通法三角函数式化简的方法和技巧(1)方法:三角函数式化简的关键是抓住函数名称之间的关系和角之间的关系,据此灵活应用相关的公式及变形,解决问题.(2)技巧:①异名化同名;②异角化同角;③切化弦. 练一练1.已知f (x )=sin 3π-x cos ⎝⎛⎭⎪⎫x -3π2tan x -2πsin ⎝ ⎛⎭⎪⎫π2-x cos ⎝⎛⎭⎪⎫-x -π2tan x -5π.(1)化简f (x );(2)当x =π3时,求f (x )的值;(3)若f (x )=1,求sin ⎝⎛⎭⎪⎫3π2-x cos ⎝ ⎛⎭⎪⎫-x -7π2的值.解:(1)f (x )=sin x -sin x tan xcos x -sin x tan x =tan x .(2)当x =π3时,f (x )=tan π3= 3.(3)若f (x )=1,则tan x =1,所以sin ⎝⎛⎭⎪⎫3π2-x cos ⎝⎛⎭⎪⎫-x -7π2=-cos x sin x =-1tan x =-1.知识点2条件求值问题讲一讲2.(1)已知cos 31°=m ,则sin 239°tan 149°的值是( ) A.1-m2mB.1-m 2C .-1-m 2mD .-1-m 2(2)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α的值为________. [尝试解答] (1)sin 239°tan 149°=sin(180°+59°)·tan(180°-31°) =-sin 59°(-tan 31°)=-sin(90°-31°)·(-tan 31°) =-cos 31°·(-tan 31°)=sin 31°=1-cos 231°=1-m 2. (2)cos ⎝⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12. 答案:(1)B (2)12类题·通法解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角,函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.练一练2.已知cos(π+α)=-12,求cos ⎝ ⎛⎭⎪⎫π2+α的值. 解:∵cos(π+α)=-cos α=-12,∴cos α=12,∴α为第一或第四象限角.①若α为第一象限角,则cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫122=-32; ②若α为第四象限角,则cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫122=32.知识点3三角恒等式的证明讲一讲3.求证:2sin ⎝⎛⎭⎪⎫θ-3π2cos ⎝ ⎛⎭⎪⎫θ+π2-11-2sin 2π+θ=tan 9π+θ+1tan π+θ-1. [尝试解答] 左边=-2sin ⎝ ⎛⎭⎪⎫3π2-θ·-sin θ-11-2sin 2θ =2sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝ ⎛⎭⎪⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=sin θ+cos θ2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ,右边=tan 9π+θ+1tan π+θ-1=tan θ+1tan θ-1=sin θ+cos θsin θ-cos θ,∴左边=右边,原式得证.类题·通法三角恒等式的证明策略对于恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一、变更论证的方法.常用定义法、化弦法,拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法.练一练3.求证:sin2π-θcos π+θcos ⎝ ⎛⎭⎪⎫π2+θcos ⎝ ⎛⎭⎪⎫11π2-θcos π-θsin 3π-θsin -π-θsin ⎝ ⎛⎭⎪⎫9π2+θ=-tan θ.证明:sin2π-θcos π+θcos ⎝ ⎛⎭⎪⎫π2+θcos ⎝ ⎛⎭⎪⎫11π2-θcos π-θsin 3π-θsin -π-θsin ⎝ ⎛⎭⎪⎫9π2+θ=-sin θ·-cos θ·-sin θ·co s ⎝⎛⎭⎪⎫3π2-θ-cos θ·sin θ·sin θ·si n ⎝ ⎛⎭⎪⎫π2+θ=sin θ·cos θ·sin θ·sin θ-cos θ·sin θ·sin θ·cos θ=-tan θ.[课堂归纳·感悟提升]1.本节课的重点是诱导公式五、六及其应用,难点是利用诱导公式解决条件求值问题. 2.要掌握诱导公式的三个应用(1)利用诱导公式解决化简求值问题,见讲1; (2)利用诱导公式解决条件求值问题,见讲2; (3)利用诱导公式解决三角恒等式的证明问题,见讲3. 3.本节课要掌握一些常见角的变换技巧π6+α=π2-⎝ ⎛⎭⎪⎫π3-α⇔⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫π3-α=π2,π4+α=π2-⎝ ⎛⎭⎪⎫π4-α⇔⎝ ⎛⎭⎪⎫π4+α+⎝⎛⎭⎪⎫π4-α=π2,⎝ ⎛⎭⎪⎫5π6+α-⎝ ⎛⎭⎪⎫π3+α=π2等.。
三角函数的诱导公式一、教学目标:(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式;(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题;(3)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力;(4)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.教学重点:用联系的观点发现并证明诱导公式.教学难点: 如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法.教学设想一.问题引入:角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。
求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,即有:sin(α+2kπ) = sinα,cos(α+2kπ) = cosα,ta n(α+2kπ) = tanα(k∈Z) 。
(公式一)二.尝试推导由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。
反过来呢?问题:你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π-α) = sin α,cos(π-α) = - cos α,(公式二)tan(π-α) = - tan α。
因为与角α 终边关于y 轴对称是角π-α,,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。
于是,我们就得到了角π-α 与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。
三.自主探究问题:两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α 与角α 的终边关于x 轴对称,有:sin(-α) = -sin α,cos(-α) = cos α,(公式三)tan(-α) = -tan α。
必修四—第一章 三角函数1. ❖终边落在x 轴上的角的集合: .❖ 终边落在y 轴上的角的集合: .❖ 终边落在坐标轴上的角的集合: .2弧长公式: =l,=S .3.同角三角函数的基本关系:①平方关系: ②乘积关系:◆ 诱导公式(一)()()=+=+=+)2tan(2cos 2sin παπαπαk k k◆ 诱导公式(二) ()()()=+=+=+απαπαπtan cos sin◆ 诱导公式(三) ()()()=-=-=-αααtan cos sin◆ 诱导公式(四) ()()()=-=-=-απαπαπtan cos sin◆ 诱导公式(五)=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-απαπ2cos 2sin◆ 诱导公式(六)=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+απαπ2cos 2sin4.三角函数(x x x tan ,cos ,sin )的性质5.函数)sin(ϕ+=wx A y 的图像振幅变化:x y sin = x A y sin = 左右伸缩变化 x A y ωsin =左右平移变化)sin(ϕω+=x A y 上下平移变化 k x A y ++=)sin(ϕω第二章:平面向量1.平面向量共线定理: 一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ .,a b λλ=使得那么又且只有一个实数2.向量的一个定理的类似推广①向量共线定理: )0(≠=a a b λ②平面向量基本定理: 2211e e a λλ+=(其中21,e e 为平面内不共线的两向量)3.线段的定比分点点P 分有向线段21P P 所成的比的定义式21PP P P λ=,这时=x ,=y . 4.一般地,设向量()(),0,,,2211≠==a y x b y x a 且 ①那么如果b a // . ②如果b a ⊥,那么 .5.一般地,对于两个非零向量b a , 有 θb a =⋅,其中θ为两向量的夹角。
诱导公式知识集结知识元同名诱导公式的应用知识讲解诱导公式1、诱导公式(一)终边相同的角的同名三角函数值相等,即:,,,,其作用是把绝对值大于2π的任一角的三角函数值化为[0,2π)上的角的三角函数值.2、诱导公式(二)角的三角函数等于角的同名三角函数,前边放上把看作锐角时,所在象限的原三角函数值的符号.即:,,,其作用是把任意负角的三角函数转化为正角的三角函数.3、诱导公式(三)角,的三角函数等于角的同名三角函数,前边放上把角看成锐角时,,所在象限的原三角函数值的符号.即:,,.4、诱导公式(四),,,,,.5、诱导公式记忆口诀:“奇变偶不变,符号看象限”.(1)“奇、偶”指的是的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切,反之亦然成立.(2)“符号看象限”的含义是:把角看做锐角,不考虑角所在象限,看n是第几象限角,从而得到等式右边是正号还是负号.例题精讲同名诱导公式的应用例1.sin240°=()A.B.C.D.例2.sin240°=()A.B.C.D.例3.A.B.C.D.异名诱导公式的应用知识讲解诱导公式1、诱导公式(一)终边相同的角的同名三角函数值相等,即:,,,,其作用是把绝对值大于2π的任一角的三角函数值化为[0,2π)上的角的三角函数值.2、诱导公式(二)角的三角函数等于角的同名三角函数,前边放上把看作锐角时,所在象限的原三角函数值的符号.即:,,,其作用是把任意负角的三角函数转化为正角的三角函数.3、诱导公式(三)角,的三角函数等于角的同名三角函数,前边放上把角看成锐角时,,所在象限的原三角函数值的符号.即:,,.4、诱导公式(四),,,,,.5、诱导公式记忆口诀:“奇变偶不变,符号看象限”.(1)“奇、偶”指的是的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切,反之亦然成立.(2)“符号看象限”的含义是:把角看做锐角,不考虑角所在象限,看n是第几象限角,从而得到等式右边是正号还是负号.例题精讲异名诱导公式的应用例1.A.B.C.D.例2.已知cos(75°+α)=则cos(105°-α)-sin(15°-α)的值为()A.B.C.D.例3.已知sin110°=a,则cos20°的值为()A .aB .-aC .D .当堂练习单选题练习1.A .B .C .D .练习2.A .B .C .-1D .1练习3.A .B .C .D .练习4.已知cos(75°+α)=则cos(105°-α)-sin(15°-α)的值为()A .B .C .D .填空题练习1.练习2.已知函数f(x)满足f(cos x)=1-cos2x,则f(sin15°)=________.。
⾼⼀数学必修四诱导公式 诱导公式是⾼中数学学习的常⽤公式,数学必修四需要记忆的诱导公式有哪些呢?下⾯是店铺为⼤家整理的⾼⼀数学必修四诱导公式,希望对⼤家有所帮助! ⾼⼀数学必修四诱导公式⼤全 公式⼀: 设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式⼆: 设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意⾓α与 -α的三⾓函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三⾓函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐⾓来做会⽐较好做。
能 力 提 升
一、选择题
1.(2013·广东文)已知sin(5π2+α)=1
5,那么cos α=( )
A .-2
5
B .-15
C.15
D.25
[答案] C
[解析] 本题考查诱导公式,由sin(π2+α)=cos α=1
5,知选C.
2.已知sin α=513,则cos(π
2+α)等于( )
A.5
13 B.1213 C .-513
D .-1213
[答案] C
[解析] cos(π2+α)=-sin α=-5
13
.
3.若sin(3π+α)=-12,则cos(7π
2-α)等于( )
A .-1
2
B.12
C.32
D .-
32
[答案] A
[解析] 由已知,得sin α=1
2,
则cos(7π2-α)=-sin α=-12
.
4.(山东济南一中12-13期中)若sin(π3-α)=13,则cos(5π
6-α)
的值为( )
A.1
3 B .-13
C.223
D .-223
[答案] B
[解析] cos(5π6-α)=cos[π2+(π
3-α)]
=-sin(π3-α)=-1
3
.
5.已知sin(α+π2)=13,α∈(-π
2,0),则tan α等于( )
A .-2 2
B .2 2
C .-
24
D.24 [答案] A
[解析] sin(α+π2)=cos α=13,又α∈(-π
2,0),
所以sin α=-1-cos 2
α=-22
3
,
则tan α=sin α
cos α=-2 2.
6.若
sin α+cos αsin α-cos α
=2,sin(α-5π)·sin(3π
2-α)等于( )
A.34
B.310 C .±310
D .-310
[答案] B
[解析] sin α+cos αsin α-cos α=tan α+1
tan α-1=2,解得tan α=3,则原式=(-
sin α)(-cos α)=sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=332+1=3
10
.
二、填空题
7.已知α是锐角,且2tan(π-α)-3cos(π
2+β)+5=0,tan(π+α)
+6sin(π+β)-1=0,则sin α的值是______________.
[答案] 310
10
[解析] 由已知可得-2tan α+3sin β+5=0,tan α-6sin β-1=0,∴tan α=3.又tan α=sin αcos α
,
∴9=sin 2αcos 2α=sin 2α1-sin 2α,sin 2
α=910.
∵α为锐角,∴sin α=
310
10
. 8.已知sin(π2+α)=34,则sin(π
2-α)=________.
[答案] 3
4
[解析] ∵sin(π2+α)=cos α=3
4,
∴sin(π2-α)=cos α=3
4
.
9.化简cos (5
2
π-α)cos (-α)
sin (32π+α)cos (21
2π-α)
=________.
[答案] -1 [解析] 原式
=
cos[2π+(
π
2-α)]cosα
sin[π+(
π
2+α)]cos[10π+(
π
2-α)]
=
cos(
π
2-α)cosα
-sin(
π
2+α)cos(
π
2-α)
=sinαcosα
-cosαsinα
=-1.
三、解答题
10.(2011~2012·宜春高一检测)化简:
cos(2π-α)sin(3π+α)cos(3π
2-α)
cos(-π
2+α)cos(α-3π)sin(-π-α)
.
[解析]原式=cosα(-sinα)(-sinα)
sinα(-cosα)sinα
=-1.
11.若sin(180°+α)=-
10
10,0°<α<90°.
求
sin(-α)+sin(-90°-α)
cos(540°-α)+cos(-270°-α)
的值.
[解析]由sin(180°+α)=-
10
10,α∈(0°,90°),得sinα=
10
10,
cosα=310 10,
∴原式=
-sinα-sin(90°+α)
cos(360°+180°-α)+cos(270°+α)
=-sinα-cosα-cosα+sinα
=-
1010-31010-31010+
1010=2.
12.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,求sin (-α-
3π2)sin (3π
2
-α)tan 3αcos (π2-α)cos (π2
+α)
的值.
[解析] 由已知得sin α=-35
.
∵α是第三象限角,∴cos α=-1-sin 2
α=-4
5
.
∴原式=cos α·(-cos α)·(sin αcos α)
3
sin α·(-sin α)=sin αcos α=3
4.。