数据分析真题
- 格式:docx
- 大小:43.17 KB
- 文档页数:62
专题06 数据的分析(真题测试)一、单选题1. (2019 浙江杭州) 点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差2. (2019 广西梧州) 某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A. 众数是108B. 中位数是105C. 平均数是101D. 方差是933. (2019 广西柳州) 阅读【资料】,完成下列小题.【资料】:如图,这是根据公开资料整理绘制而成的2004-2018年中美两国国内生产总值(GDP)的直方图及发展趋势线.(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x表示年数)2004-2018年中美两国国内生产总值(GDP,单位:万亿美元)直方图及发展趋势线(1)依据【资料】中所提供的信息,2016-2018年中国GDP的平均值大约是( )A. 12.30B. 14.19C. 19.57D. 19.71(2)依据【资料】中所提供的信息,可以推算出中国的GDP要超过美围,至少要到( )A. 2052年B. 2038年C. 2037年D. 2034年4. ( 2019 四川宜宾) 如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为 x 甲̅̅̅̅ 、 x 乙̅̅̅̅ ,甲、乙的方差分别为 s 甲2, s 乙2,则下列结论正确的是( ) A. x 甲̅̅̅̅=x 乙̅̅̅̅ , s 甲2<s 乙2B. x 甲̅̅̅̅=x 乙̅̅̅̅ , s 甲2>s 乙2C. x 甲̅̅̅̅>x 乙̅̅̅̅ , s 甲2<s 乙2D. x 甲̅̅̅̅<x 乙̅̅̅̅ , s 甲2<s 乙25. (2019 上海) 甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A. 甲的成绩比乙稳定B. 甲的最好成绩比乙高C. 甲的成绩的平均数比乙大D. 甲的成绩的中位数比乙大 6. (2019 辽宁本溪) 下表是我市七个县(区)今年某日最高气温(℃)的统计结果:则该日最高气温(℃)的众数和中位数分别是( )A. 25,25B. 25,26C. 25,23D. 24,25二、填空题7. (2019 浙江金华) 数据3,4,10,7,6的中位数是________. 8. ( 2019 浙江衡州) 数据2,7,5,7,9的众数是________ 。
人教版初中数学数据分析真题汇编及答案解析一、选择题1.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,14岁B.15岁,15岁C.15岁,156岁D.14岁,15岁【答案】A【解析】【分析】根据众数、平均数的定义进行计算即即可.【详解】观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.这12名队员的年龄的平均数是:1231311421551611412⨯+⨯+⨯+⨯+⨯=故选:A【点睛】本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.3.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.4.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于()A.34abB.43abC.34baD.43ba【答案】D【解析】【分析】根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.5.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.6.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.7.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】+=,由众数是3知a、b中一个数据为3、另一个数据为先根据平均数为5得出a b107,再根据中位数的定义求解可得.【详解】解:Q数据3,a,4,b,8的平均数是5,+=,∴++++=,即a b103a4b825又众数是3,∴、b中一个数据为3、另一个数据为7,a则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.8.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义依次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A 正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元, ∴班上比小慧捐款金额多的人数可能超过20人,故B 正确; 班上捐款金额的中位数不一定是10元 ,故C 错误; 班上捐款金额数据的众数不一定是10元,故D 正确, 故选:C. 【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .100【答案】A 【解析】 【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案. 【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元. 故答案为A . 【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.13.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是( ) A .22个、20个 B .22个、21个C .20个、21个D .20个、22个【答案】C 【解析】 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】在这一组数据中20出现了3次,次数最多,故众数是20; 把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21. 故选C . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( ) A .8 B .5C .6D .3【答案】A 【解析】 【分析】先由平均数的公式计算出a 的值,再根据方差的公式计算即可. 【详解】∵数据6、4、a 、3、2平均数为5, ∴(6+4+2+3+a )÷5=5, 解得:a=10, ∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8. 故选:A . 【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .22,x x S S =<乙丁乙丁B .22,x x S S =>乙丁乙丁 C .22,x x S S >>乙丁乙丁D .22,x x S S <<乙丁乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】x 乙45635552605++++==55,则215S =⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁51535856575++++==55,则215S =⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22S S >乙丁,故选:B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.17.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( ) A .10 B 10C 2D .2【答案】D【解析】 【分析】 【详解】∵3、a 、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5, 解得,a=5S 2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2] =2, 故选D .18.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.19.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.20.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.。
2021年中考数学真题分项汇编【全国通用】(第01期)专题28数据的分析(共51题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·四川成都市·中考真题)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【答案】B【分析】根据中位数的意义求解即可.【详解】解:将数据30,40,34,36按照从小到大排列是:30,34,36,40,故这组数据的中位数是3436352+=,故选:B.【点睛】本题考查了中位数,解答本题的关键是明确中位数的含义,求出相应的中位数.2.(2021·浙江宁波市·中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∴甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h【答案】C【分析】根据众数的定义及所给频数分布直方图可知,睡眠时间为7小时的人数最多,根据中位数的定义,把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,从而可得结果.【详解】由频数分布直方图知,睡眠时间为7小时的人数最多,从而众数为7h;把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,而第25位学生的睡眠时间为7h,第26位学生的睡眠时间为8h,其平均数为7.5h,故选:C.【点睛】本题考查了频数分布直方图,众数和中位数,读懂频数分布直方图,掌握众数和中位数的定义是解决本题的关键.4.(2021·四川南充市·中考真题)据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7,下列说法错误的是()A.该组数据的中位数是6B.该组数据的众数是6C.该组数据的平均数是6D.该组数据的方差是6【答案】D【分析】根据众数、平均数、中位数、方差的定义和公式分别进行计算即可.【详解】解:A、把这些数从小到大排列为:5,5,6,6,6,7,7,则中位数是6,故本选项说法正确,不符合题意;B、∴6出现了3次,出现的次数最多,∴众数是6,故本选项说法正确,不符合题意;C、平均数是(5+5+6+6+6+7+7)÷7=6,故本选项说法正确,不符合题意;D、方差=17×[2×(5−6)2+3×(6−6)2+2×(7−6)2]=47,故本选项说法错误,符合题意;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.5.(2021·四川资阳市·中考真题)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.6.(2021·四川凉山彝族自治州·中考真题)某校七年级1班50名同学在“森林草原防灭火”知识竞赛中的成绩如表所示:则这个班学生成绩的众数、中位数分别是()A.90,80B.16,85C.16,24.5D.90,85【答案】D【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:90分的有16人,人数最多,故众数为90分;处于中间位置的数为第25、26两个数,为80和90,∴中位数为80902=85分.故选:D.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(2021·四川自贡市·中考真题)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A.16,15B.11,15C.8,8.5D.8,9【答案】C【分析】根据众数和中位数的意义与表格直接求解即可.【详解】解:这50名学生这一周在校的体育锻炼时间是8小时的人数最多,故众数为8;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间分别是8,9,故中位数是(8+9)÷2=8.5.故选:C.【点睛】本题考查了众数和中位数的意义,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.(2021·四川遂宁市·中考真题)下列说法正确的是()A.角平分线上的点到角两边的距离相等B.平行四边形既是轴对称图形,又是中心对称图形C.在代数式1a,2x,xπ,985,42ba+,13y+中,1a,xπ,42ba+是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a,2x,xπ,985,42ba+,13y+中,1a,42ba+是分式,故选项错误;D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是3,故选项错误;【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.9.(2021·山东枣庄市·中考真题)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( )A .平均数是144B .众数是141C .中位数是144.5D .方差是5.4【答案】B【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可. 【详解】 解:根据题目给出的数据,可得: 平均数为:14151442145114621435212x ,故A 选项错误; 众数是:141,故B 选项正确;中位数是:141144142.52,故C 选项错误; 方差是:222221141143514414321451431146143210S 4.4,故D 选项错误;故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.10.(2021·湖北十堰市·中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是( )A .8,15B .8,14C .15,14D .15,15【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.(2021·四川达州市·中考真题)以下命题是假命题的是()A的算术平方根是2B.有两边相等的三角形是等腰三角形C.一组数据:3,1-,1,1,2,4的中位数是1.5D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据所学知识对命题进行判断,得出真假即可.【详解】解:A,命题为假命题,符合题意;B,有两边相等的三角形是等腰三角形,命题为真命题,不符合题意;C,一组数据:3,1-,1,1,2,4的中位数是121.52+=,命题为真命题,不符合题意;D,过直线外一点有且只有一条直线与已知直线平行,命题为真命题,不符合题意,故选:A.【点睛】本题考查了命题的真假,解题的关键是:要结合所学知识对选项逐一判断,需要对基本知识点掌握牢固. 12.(2021·湖南长沙市·中考真题)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm )分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A .24,25B .23,23C .23,24D .24,24 【答案】C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C .【点睛】本题考查了众数和中位数,熟记定义是解题关键.13.(2021·湖南岳阳市·中考真题)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是( )A .9.0,8.9B .8.9,8.9C .9.0,9.0D .8.9,9.0 【答案】C【分析】 根据众数的概念和运用求平均数的公式12n x x x x n +++=即可得出答案.【详解】解:该班最后得分为(9.0+9.2+9.0+8.8+9.0)÷5=9.0(分).故最后平均得分为9.0分.在五个有效评分中,9.0出现的次数最多,因此众数为:9.0故选:C .【点睛】考查了众数和均数的求法.本题所描述的计分方法,是经常用到的方法,是数学在现实生活中的一个应用,熟记平均数的公式是解决本题的关键.14.(2021·四川眉山市·中考真题)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是()A.80,90B.90,90C.86,90D.90,94【答案】B【分析】先将该组数据按照从小到大排列,位于最中间的数和出现次数最多的数即分别为中位数和众数.【详解】解:将这组数据按照从小到大排列:80,86,90,90,94;位于最中间的数是90,所以中位数是90;这组数据中,90出现了两次,出现次数最多,因此,众数是90;故选:B.【点睛】本题考查了学生对中位数和众数的理解,解决本题的关键是牢记中位数和众数的概念,明白确定中位数之前要将该组数据按照从小到大或从大到小排列,若该组数据个数为奇数,则位于最中间的数即为中位数,若该组数据为偶数个,则位于最中间的两个数的平均数即为该组数据的中位数.15.(2021·湖南衡阳市·中考真题)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A.众数是82B.中位数是84C.方差是84D.平均数是85【答案】C【分析】根据该组数据结合众数、中位数的定义和平均数、方差的计算公式,求出众数、中位数、平均数和方差即可选择.【详解】根据该组数据可知82出现了2次最多,故众数为82,选项A正确,不符合题意;根据中位数的定义可知该组数据的中位数为8385842+=,选项B正确,不符合题意;根据平均数的计算公式可求出858286828392856x +++++==,选项D 正确,不符合题意; 根据方差的计算公式可求出2222222(8585)(8285)(8685)(8285)(8385)(9285)126s -+-+-+-+-+-==,选项C 错误,符合题意.故选C .【点睛】本题考查求众数、中位数、平均数和方差.掌握众数、中位数的定义,平均数、方差的计算公式是解答本题的关键.16.(2021·江苏苏州市·中考真题)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( )A .5kgB .4.8kgC .4.6kgD .4.5kg 【答案】C【分析】根据平均数的定义求解即可.【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.7 4.65kg =. 故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.17.(2021·浙江台州市·中考真题)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21 s ,则下列结论一定成立的是( )A . x x <1B . x x >1C .s 2>21 sD .s 221<s【答案】C【分析】根据平均数和方差的意义,即可得到答案.【详解】解:∴顾客从一批大小不一的鸡蛋中选购了部分大小均匀的鸡蛋,∴21s <s 2,x 和x 1的大小关系不明确,故选C【点睛】本题主要考查平均数和方差的意义,掌握一组数据越稳定,方差越小,是解题的关键.18.(2021·浙江嘉兴市·中考真题)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A .中位数是33C ︒B .众数是33C ︒C .平均数是197C 7︒D .4日至5日最高气温下降幅度较大【答案】A【分析】根据中位数,众数,平均数的概念及折线统计图所体现的信息分析求解.【详解】解:由题意可得,共7个数据,分别为26;30;33;33;23;27;25从小到大排列后为23;25;26;27;30;33;33位于中间位置的数据是27,∴中位数为27,故选项A符合题意;出现次数最多的数据是33,∴众数是33,故选项B不符合题意;平均数为(26+30+33+33+23+27+25)÷7=197C7,故选项C不符合题意;从统计图可看出4日气温为33∴,5日气温为23∴,∴4日至5日最高气温下降幅度较大,故选项D不符合题意;故选:A.【点睛】本题考查求一组数据的中位数,众数和平均数,准确识图,理解相关概念是解题关键.19.(2021·福建中考真题)某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁【答案】B【分析】利用加权平均数计算总成绩,比较判断即可【详解】根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;故选B【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.20.(2021·广西柳州市·中考真题)某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分为S如右表所示,那么这三名同学数学成绩最稳定的是()及方差2A.甲B.乙C.丙D.无法确定【答案】A【分析】先比较平均成绩,当平均成绩一致时,比较方差,方差小的波动小,成绩更稳定.【详解】甲、乙、丙的成绩的平均分x都是91,故比较它们的方差,甲、乙、丙三名同学的方差分别为6,24,54;故甲的方差是最小的,则甲的成绩是最稳定的.故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.21.(2021·广西玉林市·中考真题)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环【答案】B【分析】根据中位数的求法可得98822x ++=,然后求解即可. 【详解】 解:由题意得:甲乙两人的中位数都为第三次和第四次成绩的平均数, ∴98822x ++=, 解得:7x =;故选B .【点睛】本题主要考查中位数及一元一次方程的应用,熟练掌握中位数的求法及一元一次方程的应用是解题的关键.22.(2021·四川广元市·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( )A .平均数B .中位数C .众数D .方差 【答案】B【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=, 添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意.故选:B .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.23.(2021·江苏宿迁市·中考真题)已知一组数据:4,3,4,5,6,则这组数据的中位数是( ) A .3 B .3.5 C .4 D .4.5【分析】将原数据排序,根据中位数意义即可求解.【详解】解:将原数据排序得3,4,4,5,6,∴这组数据的中位数是4.故选:C【点睛】本题考查了求一组数据的中位数,熟练掌握中位数的意义是解题关键,注意求中位数时注意先排序.24.(2021·山西中考真题)每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()A.27点,21点B.21点,27点C.21点,21点D.24点,21点【答案】C【分析】根据中位数与众数定义即可求解.【详解】解:将下列数据从小到大排序为15,21,21,21,27,27,30,根据中位数定义,7个点数位于7+1=42位置上的点数是21点,∴这组数据的中位数是21点,根据众数的定义,这组数据中重复次数最多的点数是21 点,所以这组数据的众数是21点,故选择C.本题考查中位数与众数,掌握中位数与众数定义是解题关键.25.(2021·湖北随州市·中考真题)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8D.这组数据的中位数是36.6【答案】D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1∴,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.26.(2021·山东菏泽市·中考真题)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是( )A .中位数是10.5B .平均数是10.3C .众数是10D .方差是0.81 【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9,9,10,10,10,10,11,11,11,12;位于最中间的两个数是10,10,它们的平均数是10,所以该组数据中位数是10,故A 选项不正确;该组数据平均数为:()11211131049210.310⨯+⨯+⨯+⨯=,故B 选项正确; 该组数据10出现次数最多,因此众数是10,故C 选项正确;该组数据方差为:()()()()222211210.331110.341010.32910.30.8110⎡⎤-+⨯-+⨯-+⨯-=⎣⎦,故D 选项正确;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.二、填空题27.(2021·湖南株洲市·中考真题)中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如下表:则在这个时间段,该中药房的这三种中药的平均销售量为___________千克.【答案】2.5【分析】由销售额和销售单价可以求出每种中药的销售量,再根据平均数的求法,即可求解平均销售量.【详解】解:由题意得黄芪销售量:12080 1.5÷=(千克);焦山楂的销售量:120602÷=(千克);当归的销售量:360904÷=(千克); 所以平均销售量为:1.5242.53++=(千克). 故答案是:2.5.【点睛】本题考察平均数的定义,属于基础题型,难度不大.解题的关键是掌握平均数的定义.平均数:用一组数据的综合除以数据个数得到的数.28.(2021·浙江杭州市·中考真题)现有甲、乙两种糖果的单价与千克数如下表所示.将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为______元/千克.【答案】24【分析】根据题意及加权平均数的求法可直接进行求解.【详解】解:由题意得:3022032423⨯+⨯=+(元/千克); 故答案为24.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的求法是解题的关键.29.(2021·山东临沂市·中考真题)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是___.【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:3852905951010032510⨯+⨯+⨯+⨯+++=95.5, 故答案为:95.5.【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.30.(2021·四川乐山市·中考真题)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)【答案】甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x=(5+9+6+7+8)÷5=7(环),乙2s=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,甲2s=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∴1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.A B C D E F六省60岁及以上人口31.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东,,,,,占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.【答案】18.75%【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.32.(2021·江苏扬州市·中考真题)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是__________.【答案】5【分析】根据平均数的定义先算出a的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∴这组数据的平均数为5,则456755a++++=,解得:a=3,。
数据分析真题汇编及答案一、选择题1.在去年的体育中考中,某校6名学生的体育成绩统计如下表:则下列关于这组数据的说法错误的是()A.众数是18 B.中位数是18 C.平均数是18 D.方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:16[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选D.【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].2.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.3.一组数据3、2、1、2、2的众数,中位数,方差分别是:()A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2中位数为:2方差为:()()()()()22222212222222320.45s-+-+-+-=+-=故选:D【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.4.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:品种甲乙丙平均产量/(千克/棵)9090方差10.224.88.5若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.6.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A.平均数是6B.中位数是6.5C.众数是7D.平均每周锻炼超过6小时的人数占该班人数的一半【答案】A【解析】【分析】根据中位数、众数和平均数的概念分别求得这组数据的中位数、众数和平均数,由图可知锻炼时间超过6小时的有20+5=25人.即可判断四个选项的正确与否.【详解】A、平均数为150×(5×7+18×6+20×7+5×8)=6.46,故本选项错误,符合题意;B、∵一共有50个数据,∴按从小到大排列,第25,26个数据的平均值是中位数,∴中位数是6.5,故此选项正确,不合题意;C、因为7出现了20次,出现的次数最多,所以众数为:7,故此选项正确,不合题意;D、由图可知锻炼时间超过6小时的有20+5=25人,故平均每周锻炼超过6小时的人占总数的一半,故此选项正确,不合题意;故选A.【点睛】此题考查了中位数、众数和平均数的概念等知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【答案】D【解析】【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为67889106+++++=8,中位数为882+=8、众数为8,方差为16×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=53,∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为7788896+++++=476,中位数为882+=8、众数为8,方差为16×[2×(7﹣476)2+3×(8﹣476)2+(9﹣476)2]=1736,则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选D.【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.8.回忆位中数和众数的概念;9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.11.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.12.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()体温(℃)36.136.236.336.436.536.6人数(人)48810x2A.这些体温的众数是8 B.这些体温的中位数是36.35C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A 错误;由表可知这些体温的中位数是36.336.42+=36.35(℃), 故B 正确.故选A .考点:①扇形统计图;②众数;③中位数.13.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;.故选D.【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.15.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.16.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.3【答案】A【解析】【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A 【解析】 【分析】根据极差的概念最大值减去最小值即可求解. 【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4. 故选A . 【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.18.一组数据-2,3,0,2,3的中位数和众数分别是( ) A .0,3 B .2,2C .3,3D .2,3【答案】D 【解析】 【分析】根据中位数和众数的定义解答即可. 【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2; 在这一组数据中3是出现次数最多的,故众数是3. 故选D . 【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x ,方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大 【答案】D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。
2019 年中考真题——数据的解析一、选择题1.(毕节)在一次爱心义卖活动中,某中学九年级 6 个班捐献的义卖金额(单位:元)分别为 800、 820、 930、 860、820、 850,这组数据的众数和中位数分别是()A .820, 850B .820, 930C. 930,835D. 820, 8352.(铜仁)某班 17 名女同学的跳远成绩以下表所示:成绩( m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23234111这些女同学跳远成绩的众数和中位数分别是()A .1.70, 1.75B .1.75, 1.70C. 1.70,1.70D. 1.75, 1.7253.(成都)某校睁开了主题为“青春·梦想”的艺术作品收集互动,从九年级五个班收集到的作品数量(单位:件)分别为:A.42 件B.45 件42,50,45,46,50 则这组数据的中位数是()C.46 件D.50 件4. (广元)若是一组数据6,7,x,9,5 的平均数是2x,那么这组数据的中位数为()A .5B .6C. 7D. 95.(四川凉山)某班 40 名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班 40 名同学一周参加体育锻炼时间的众数、中位数分别是()A .17, 8.5B .17, 9C. 8, 9D. 8, 8.56.(四川眉山)某班七个兴趣小组人数以下:5,6, 6, x, 7,8, 9,已知这组数据的平均数是7,则这组数据的中位数是()A .6B .6.5C. 7D. 87. (四川绵阳)帅帅收集了南街米粉店今年 6 月1 日至 6 月5 日每天的用水量(单位:吨),整理并绘制成以下折线统计图.以下结论正确的选项是()A. 极差是6B.众数是 7C. 中位数是5D. 方差是88. (四川雅安)已知一数据 5 ,4 ,x,3,9 的平均数 5 ,数据的中位数是()A.3B. 4C. 5D. 69.(四川达州)一数据1,2, 1, 4的方差()A. 1B. 1. 5C. 2D. 2. 5二、填空1.(安)已知一数据x1,x2,x3,⋯,x n的方差 2 ,另一数据 3 x1,3 x2,3 x3,⋯,3 x n的方差.2. (黔东南)一组数据:2,1,2, 5, 3, 2 的众数是.3. (四川内江)一数据0, 1, 2,3, 4,数据的方差是.4.(四川遂宁)某校招聘一批秀教,其中某位教笔、、面三得分分 92 分、 85 分、 90 分,合成笔占40%,占40%,面占20%,名教的合成分.5.(四川南充)下表是某养殖的500 只销售量的数据.量 /kg 1.0 1.2 1.4 1.6 1.8 2.0数 /只561621121204010500 只量的中位数 ___________.6.(四川攀枝花)一数据1,2,x,5,8 平均数是 5,数据的中位数是 ____________7. (四川阳)一数据1,2,5, x,3,6 的众数 5.数据的中位数 _______.三、解答1.()某中学数学趣小在一次外学与研究中遇到一些新的数学符号,他将其中某些资料摘以下:于三个数a, b, c,用 M{ a, b, c} 表示三个数的平均数,用min{ a,b, c} 表示三个数中最小的数.比方:M{1,2,9}==4,min{1,2,3}=3,min{3,1,1} =1.请结合上述资料,解决以下问题:2 2,﹣ 2 2; ② min{sin30 °,cos60°,tan45°} =;( 1)① M{(﹣ 2),2 } =( 2)若 M{ ﹣ 2x ,x 2, 3} = 2,求 x 的值;( 3)若 min{3 ﹣ 2x , 1+3x ,﹣ 5} =﹣ 5,求 x 的取值范围.2. (贵阳) 为了提高学生对毒品危害性的认识, 我市相关部门每个月都要对学生进行 “禁毒知识应知应会” 测评.为了激发学生的积极性, 某校订达到必然成绩的学生授予 “禁毒小卫士”的荣誉称号.为了确定一个合适的奖励目标,该校随机采用了七年级20 名学生在5 月份测评的成绩,数据以下:收集数据: 9091 89 96 90 98 90 97 91 98 99 97 91 889097 95909588( 1)依照上述数据,将以下表格补充完满.整理、描述数据:成绩 /分 88 89 90 91 95 96 97 98 99 学生人数2132121数据解析:样本数据的平均数、众数和中位数以下表平均数众数中位数9391得出结论:( 2)依照所给数据,若是该校想确定七年级前50% 的学生为“优异”等次,你认为“良好”等次的测评成绩最少定为分.数据应用:( 3)依照数据解析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明原由.3. (黔东南)某中学数学兴趣小组在一次课外学习与研究中遇到一些新的数学符号,他们将其中某些资料摘录以下对于三个实数 a,b,c ,用M a,b,c表 示 这 三 个 教 的 平 均 数 , 用min a,b, c表示这 三 个 教 中 最 小 的 数 , 例 如 :129M 1,2,943, min 3,1,,1 1,清结合上述材3, min 1,2, 3料,解决下列问题:( 1 )①M ( 2)2,22,22____________,② min sin 30 ,cos60 ,tan 45____________;(2)若min 3 2x,13x,5 5 ,则x的取值范围为___________:(3)若M2x, x2 ,32, 求x的值(4)若是M 2,1 x,2x min 2,1x,2x ,求x的值。
项目数据分析师(CPDA)理论考试测试题及答案(一)填空题:题目1:(期望值)是各种可能的结果的取值中心,(标准差)表示了未来可能的收益水平围绕最佳期望值变化的区间大小。
题目2:某项永久性奖学金,每年计划颁发50000元奖金。
若年复利率为8%,该奖学金的本金应为(625000)元。
(说明:答案取整数)题目3:NPV的标准差越大,说明项目的风险越(大)题目4:折现率是将未来收益还原或转换为(现值)的比率,通常按项目的(资本成本)确定。
题解:折现率是将未来收益转换为现值的比率,在项目投资的效益评价中,折现率通常以项目的资本成本作为确定依据。
题目5:盈亏平衡分析按照产品销售量和销售收入的关系可以分为(线性)盈亏平衡分析和(非线性)盈亏平衡分析。
题解:根据产销量、成本、利润三者间的关系,可将盈亏平衡分析分为线性盈亏平衡分析与非线性盈亏平衡分析。
线性盈亏平衡分析是建立在假设销售收入与产销量、总成本与产销量成线性函数关系基础上,非线性盈亏平衡分析是在产品成本与产量往往呈非线性变化的实际情况下发展起来的。
判断题:题目1:投资是指与基础建设相关的经济活动,包括基本建设投资和固定资产更新改造投资。
(错误)题目2:会计收益中由于采用的折旧方法不同,各期计提的折旧费用就不同,影响当期收益的计算结果也就不同,会导致折算出来的现值就不一致。
(正确)题目3:风险就是不确定性,不确定性就是风险。
(错误)题目4:项目的数据分析必须通过建立数学模型的方法进行分析。
(正确)题目5:流动资金从本质上来说应归为长期借款。
(错误)题目6:资金时间价值是资金在周转使用中产生的,是资金所有者让渡资金使用权而参与社会财富分配的一种形式。
(正确)题解:资金的时间价值也被称为货币的时间价值。
从资金所有者的角度来看,资金的所有者把资金的使用权转让给使用者时,要求获得一定的报酬;从使用者的角度来看,投资的目的就是获得资本的增值;从消费者的角度来看,未来存在通货膨胀以及其他的风险,牺牲现在的消费总是要求获得补偿的。
数据分析真题汇编含答案解析一、选择题1 .某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述 正确的是( )A .众数是110 C.平均数是109.5【答案】A 【解析】 【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和 方差. 【详解】解:这组数据的众数是 110, A 正确;_ 1X -X( 110+106+109+111+108+110 )= 109, C 错误;6 1 S 2- [ (110 - 109) 2+ ( 106 - 109) 2+ ( 109 - 109) 2+ (111 - 109) 2+ ( 108 - 109) 2+ 6(110 - 109)2] = 8, B 错误; 3中位数是109.5 , D 错误; 故选A . 【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.【分析】 据此可得出1(-2+b-2+c-2)的值;再由3方差为4可得出数据a-2, b-2, c-2的方差. 【详解】B .方差是16 D .中位数是1092.已知一组数据 方差分别为(a 、b 、c 的平均数为5,方差为)4,那么数据a+2、b+2、c+2的平均数和A . 7, 6【答案】B【解析】 B . 7, 4 C. 5, 4 D .以上都不对根据数据a , b ,c 的平均数为5可知a+b+c=5X3,解:•••数据a , b , c 的平均数为5,.・. a+b+c=5X 3=151••• - (a-2+b-2+c-2) =3,3•••数据 •••数据2+ (b-5) 2+ ( c-5) 2]=4,1c-2 的方差=—[(a-2-3) 2+ (b-2-3) 2+ ( C--2-3) 2]31 =3[(a-5) 故选B .【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键3.某校四个绿化小组一天植树的棵数如下: 相等,则这组数据的中位数是 ()A . 8【答案】C 【解析】 【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因 是10;再根据平均数是10,可求出这四个数的和是 40,进而求出个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位 数. 【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去. 当众数为10,根据题意得(10+10+X+8)十4=10解得x=12, 将这组数据按从小到大的顺序排列为 8, 10, 10, 12,处于中间位置的是 10, 10,所以这组数据的中位数是(10+10)十2=10 故选C. 【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有 们的决赛成绩如下表所示:a-2, b-2, c-2的平均数是 3; a , b , c 的方差为4,--a-2, b-2,2+ ( b-5) 2+ (c-5) 2]=4,10, X , 10, 8,已知这组数据的众数与平均数B . 9 C. 10 D . 1210出现了 2次)与平均数都X 的数值;然后把这四20名学生,他人数4 6 8 2那么20名学生决赛成绩的众数和中位数分别是 (A . 85, 90【答案】B 【解析】试题解析:85分的有8人,人数最多,故众数为 处于中间位置的数为第 10、11两个数, 为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数B . 85, 87.5C. 90, 8585分;D . 95, 9010次相比,小明12次射击的成绩A .平均数变大,方差不变 C.平均数不变,方差变大【答案】D【解析】 B .平均数不变,方差不变 D .平均数不变,方差变小【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击 和方差,进而可得答案. 【详解】前 10 次平均数:(6X 3+7X 1+8X 2+9X 1+10X^10= 8,2次后的平均数方差: 再射击S^= ■1[ (6 - 8) 2X 3+( 7 - 8) 2+ (8 - 8) 2X 2+(9 - 8) 2+3 X( 10- 8) 2] =2.6, 102 次后的平均数::(6X 3+7X 1+8X 2+9X 1 + 10X 3+7吃12= 8,S^= —[ (6 - 8) 2X 3+( 7 - 8) 2X 2(8 - 8) 2X 2+( 9 - 8) 2X 2+3X10-8) 2]=-,12 3平均数不变,方差变小, 故选:D . 【点睛】方差: 此题主要考查了方差和平均数,关键是掌握方差计算公式:1 一 - S 2= - [ ( X 1- x ) 2+ (X 2 - x )n5.小明参加射击比赛,10次射击的成绩如表:( )【分析】根据平行四边形的判定去判断 ①;根据必然事件的定义去判断 断③;根据圆内接正多边形的相关角度去计算 ④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形, 会发生的事件,遇到红灯是随机事件, ②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是 60,所以构成等边三角形,④结论正确.所以正确1个,答案选A .2+・・・+ (X n - X )2].6.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取 分钟跳绳次数测试,测试数据统计结果如下表•如果每分钟跳绳次数 么甲、乙两班的优秀率的关系是()27名女生进行一> 105次的为优秀,那A .甲优V 乙优【答案】A 【解析】 【分析】根据中位数可得甲班优秀的人数最多有 案. C. 甲优=乙优 D .无法比较13人,乙班优秀的人数最少有 14人,据此可得答【详解】解:由表格可知,每班有 •••甲班的中位数是 104, •••甲班优秀的人数最多有 •••甲优V 乙优,故选:A . 【点睛】本题考查了中位数的应用,27人,则中位数是排序后第14名学生的成绩,乙班的中位数是 106,13人,乙班优秀的人数最少有 14人,熟练掌握中位数的意义和求法是解题的关键.7.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是(A . 1个【答案】A 【解析】 B . 2个C. 3个D . 4个②;根据方差的意义去判①错误;必然事件是一定B .甲优 >乙优【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事 件等的区分;掌握方差的意义;会计算圆内接正多边形相关.8. 某小组长统计组内6人一天在课堂上的发言次数分別为 据的众数是(3.故选A . 【点睛】本题考查了众数的概念•众数是一组数据中出现次数最多的数据.9. 甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随 机各抽取10棵,对它们的产量进行统计,绘制统计表如下:若从这三个品种中选择一个在该地区推广,则应选择的品种是A .甲【答案】A 【解析】 【分析】根据平均数、方差等数据的进行判断即可. 【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广. 故选:A 【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.B .乙 C.丙)D .甲、乙中任选一个3, 3, 4, 6, 5, 0.则这组数A . 3【答案】A 【解析】 【分析】 根据众数的定义, 【详解】在 3, 3, 4, 6 ,B . 3.5 C. 4D . 5找数据中出现次数最多的数据即可.5, 0这组数据中,数字 3出现了 2次,为出现次数最多的数,故众数为10. 为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:C ), 小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是(体温(C )36.1 36.2 36.3 36.4 36.5 36.6人数(人)48 8 10 x 2故B 正确.故选A .考点:①扇形统计图;②众数;③中位数.11. 某鞋店一天卖出运动鞋 12双,其中各种尺码的鞋的销售量如下表:则这 码组成的一组数据中,众数和中位数分别是( ) 码(cm ) 23.5 24 24.5 25 25.5 销售量(双)1225236」艾A .这些体温的众数是 8B .这些体温的中位数是 36.35 C.这个班有40名学生【答案】A D . x=8【解析】 【分析】【详解:由扇形统计图可知:体温为36.1 C 所占的百分数为卫6X 360100%=10%则九(1)班学4生总数为10% =40, 故 C正确;则 x=40-( 4+8+8+10+2) =8, 故D 正确;由表可知这些体温的众数是36.4C,故A 错误; 由表可知这些体温的中位数是36.336.4=36.35 (C),12双鞋的尺363*C 36.4 r36.536A. 25, 25B. 24.5, 25C. 25, 24.5D. 24.5, 24.5【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25出现次数最多,故众数为 25; 12个数据的中位数为第 6、7个数据的平均数,故中位数为 故选:A .定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别20, 22, 23, 20 , 22.则这组数据中的众数和中位数分别是( ) 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位 数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】在这一组数据中20出现了 3次,次数最多,故众数是 20; 把数据按从小到大的顺序排列: 19 , 20, 20, 20, 22, 22, 23, 24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21. 故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大重新排列后,最中间的那个数 (最中间两个数的平均数 ),叫做这组数据的中位数,如果 中位数的概念掌握得不好,不把数据按要求重新排列,13. 一组数据,6、4、a 、3、2的平均数是5, A. 8B . 5 C.【答案】A 【解析】 【分析】先由平均数的公式计算出 a 的值,再根据方差的公式计算即可. 【详解】•••数据6、4、a 、3、2平均数为5,.•.( 6+4+2+3+a ) * 5=5解得:a=10,1•••这组数据的方差是-[(6-5) 2+ (4-5) 2+ (10-5) 2+ (2-5) 2+ (3-5) 2]=8 .525 25-2-=25,12.在趣味运动会为:24, 20, 19,A . 22 个、20 个【答案】C 【解析】 B . 22 个、21 个C. 20 个、21 个D . 20 个、22 个(或从大到小)就会出错.这组数据的方差为( )D . 3【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波 动性越大,反之也成立.【解析】 【分析】将一组数据按照从小到大(或从大到小)的顺序排列, 间位置的数就是这组数据的中位数. 【详解】将数据从小到大排列为:0,1,2,5,6,6,8 •••这组数据的个数是奇数 •••最中间的那个数是中位数 即中位数为5 故选C. 【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排 列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.15. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数 整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是(【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得 【详解】甲:数据7出现了 2次,次数最多,所以众数为 7,排序后最中间的数是 7,所以中位数是 7,14.数据2、5、6、0、6、1、8的中位数是( C. A . 8【答案】CB . 6 D . 0如果数据的个数是奇数,则处于中 A. 甲、乙的众数相同C. 甲的平均数小于乙的平均数【答案】D【解析】B. 甲、乙的中位数相同 D .甲的方差小于乙的方差— 2 6 7 7 8X 甲 = ----------- =6 ,516.在光明中学组织的全校师生迎 五四”诗词大赛中,来自不同年级的 25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是() 【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了 9次,出现次数最多,所以数据的众数为 98分;共有25个数,最中间的数为第 13个数,是96,所以数据的中位数为 96 分.故选A .【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.17.下列说法中正确的是( ). A. 打开电视,正在播放《新闻联播》 ”是必然事件S 甲二丄5乙数据 排序后最中间的数是 4,8出现了 2次, 次数最多, 所以中位数是4, 所以众数为8,=5 ,S l = 15所以只有故选D.【点睛】本题考查了众数、中位数、 D 选项正确, 2 6 =4.4, 2 5平均数、方差,熟练掌握相关定义及求解方法是解题的关键A . 96 分,98 分【答案】AC. 98 分,96 分 D . 97 分,96 分 B . 97 分, 98分B.—组数据的波动越大,方差越小C数据1, 1, 2, 2, 3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.18.一组数据 0、- 1、3、2、1的极差是( 故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小, 义,综合掌握各知识点是解题的关键.A .4 【答案】 A【解析】B .3C .2D .1【分析】 根据极差的概念最大值减去最小值即可求解.【详解】 解:这组数据: 0、-1、3、2、1 的极差是: 故选 A .【点睛】 本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差. 3-(-1)=4.19.下列说法正确的是( )对角线相等的四边形一定是矩形 任意掷一枚质地均匀的硬币 10 次,一定有 5次正面向上 如果有一组数据为 5,3,6,4,2,那么它的中位数是 6 用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形 ”这一事件是不可能事件A .B .C .D . 【答案】 D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义 依次判断即可 .【详解】A. 对角线相等的平行四边形是矩形,故该项错误;B.任意掷一枚质地均匀的硬币 10次,不一定有 5 次正面向上,故该项错误; C. 一组数据为 5,3,6,4,2,它的中位数是 4,故该项错误;D. 用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件, 正确, 中位数的计算方法,不可能事件的定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【答案】B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定, 故选B.。
数据分析真题汇编附答案一、选择题1.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义依次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键. 2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对【答案】B【解析】【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.4.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中出现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3出现了2次,为出现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中出现次数最多的数据.5.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;6.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.7.在去年的体育中考中,某校6名学生的体育成绩统计如下表:成绩171820人数231则下列关于这组数据的说法错误的是()A.众数是18 B.中位数是18 C.平均数是18 D.方差是2【答案】D【解析】【分析】根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:16[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选D.【点睛】本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].8.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据9.一组数据3、2、1、2、2的众数,中位数,方差分别是:()A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2中位数为:2方差为:()()()()()22222212222222320.45s-+-+-+-=+-=故选:D【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.10.下列说法正确的是()A.要调查人们对“低碳生活”的了解程度,宜采用普查方式B.一组数据:3,4,4,6,8,5的众数和中位数都是3C.必然事件的概率是100%,随机事件的概率是50%D.若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定【答案】D【解析】A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;B、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B选项错误;C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.故选D.11.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D .“用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件 【答案】D 【解析】 【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可. 【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形” 这一事件是不可能事件,正确, 故选:D. 【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.12.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变 C .增大 D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.14.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.15.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.16.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A .平均数是58B .中位数是58C .极差是40D .众数是60【答案】A 【解析】分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:526062545862586+++++=.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.综上所述,说法正确的是:平均数是58.故选A .17.一组数据-2,3,0,2,3的中位数和众数分别是( ) A .0,3 B .2,2C .3,3D .2,3【答案】D 【解析】 【分析】根据中位数和众数的定义解答即可. 【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2; 在这一组数据中3是出现次数最多的,故众数是3. 故选D . 【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是()A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.。
专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)1. 一组数据2,4,5,6,5.对该组数据描述正确的是( )A. 平均数是4.4B. 中位数是4.5C. 众数是4D. 方差是9.2(2022·黑龙江齐齐哈尔·统考中考真题)2. 数据1,2,3,4,5,x 存在唯一众数,且该组数据的平均数等于众数,则x 的值为( )A. 2B. 3C. 4D. 5(2022·内蒙古赤峰·统考中考真题)3. 下列说法正确的是( )A. 调查某班学生的视力情况适合采用随机抽样调查的方法B. 声音在真空中传播的概率是100%C. 甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,2 1.4s =乙,则甲的射击成绩比乙的射击成绩稳定D. 8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5(2022·江苏镇江·统考中考真题)4. 第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A. ①②B. ①③C. ①④D. ③④(2022·辽宁抚顺·统考中考真题)5. 甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是()A. 甲的射击成绩比乙的射击成绩更稳定B. 甲射击成绩的众数大于乙射击成绩的众数C. 甲射击成绩的平均数大于乙射击成绩的平均数D. 甲射击成绩的中位数大于乙射击成绩的中位数(2019·湖北恩施·统考中考真题)6. 某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A. 88.5B. 86.5C. 90D. 90.5(2022·辽宁锦州·中考真题)7. 某校开展安全知识竞赛,进入决赛的学生有20名,他们的决赛成绩如下表所示:决赛成绩/分100999897人数3764则这20名学生决赛成绩的中位数和众数分别是()A. 98,98B. 98,99C. 98.5,98D. 98.5,99(2022·山东济宁·统考中考真题)8. 某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是()A. 从2月到6月,阅读课外书的本数逐月下降B. 从1月到7月,每月阅读课外书本数的最大值比最小值多45C. 每月阅读课外书本数的众数是45D. 每月阅读课外书本数的中位数是58(2020·四川·统考中考真题)9. 某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A. 19.5元B. 21.5元C. 22.5元D. 27.5元(2021·内蒙古呼和浩特·统考中考真题)10. 以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一定位似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(2019·山东青岛·统考中考真题)11. 射击比赛中,某队员10 次射击成绩如图所示,则该队员的平均成绩是__________环.(2020·四川·统考中考真题)12. 小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图,这6次成绩的中位数是_____.(2019·四川巴中·统考中考真题)13. 如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为_______.(2019·四川·统考中考真题)14. 在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是_____.(2018·浙江丽水·中考真题)15. 如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是_____.(2021·贵州铜仁·统考中考真题)16. 若甲、乙两人射击比赛的成绩(单位:环)如下:甲:6,7,8,9,10;乙:7,8,8,8,9.则甲、乙两人射击成绩比较稳定的是______________(填甲或乙);(2019·广西柳州·统考中考真题)17. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是_____.(2017·重庆·中考真题)18. 某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.三、解答题(2022·江苏南通·统考中考真题)19. 为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县3.8533区B县3.854 2.5区(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.(2022·江苏盐城·统考中考真题)20. 合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.(2022·山东聊城·统考中考真题)21. 为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:众数中位数方差八年级竞赛成绩78 1.88九年级竞赛成绩a8b(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;(2)请根据图表中的信息,回答下列问题.①表中的=a______,b=______;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?(2021·广西桂林·统考中考真题)22. 某班为了从甲、乙两名同学中选出一名同学代表班级参加学校的投篮比赛,对甲、乙两人进行了5次投篮试投比赛,试投每人每次投球10个.两人5次试投的成绩统计图如图所示.(1)甲同学5次试投进球个数的众数是多少?(2)求乙同学5次试投进球个数的平均数;(3)不需计算,请根据折线统计图判断甲、乙两名同学谁的投篮成绩更加稳定?(4)学校投篮比赛的规则是每人投球10个,记录投进球的个数.由往届投篮比赛的结果推测,投进8个球即可获奖,但要取得冠军需要投进10个球.请你根据以上信息,从甲、乙两名同学中推荐一名同学参加学校的投篮比赛,并说明推荐的理由.(2013·江西·中考真题)23. 生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A:全部喝完;B:喝剩约13;C:喝剩约一半;D:开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学计算器)(2022·湖北襄阳·统考中考真题)24. 在“双减”背景下,某区教育部门想了解该区A ,B 两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A 学校50名九年级学生中,课后书面作业时长在70.5≤x <80.5组的具体数据如下:74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80【整理数据】不完整的两所学校的频数分布表如下,不完整的A 学校频数分布直方图如图所示:组别50.5≤x <60.560.5≤x <70.570.5≤x <80.580.5≤x <90.590.5≤x <100.5A 学515x84校B学71012174校【分析数据】两组数据的平均数、众数、中位数、方差如下表:特征数平均数众数中位数方差A学校7475y127.36B学校748573144.12根据以上信息,回答下列问题:(1)本次调查是 调查(选填“抽样”或“全面”);(2)统计表中,x= ,y= ;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是 学校(选填“A”或“B”);(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有 人.专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)【1题答案】【答案】A 【解析】【分析】将数据按照从小到大重新排列,再根据众数、中位数、算术平均数的定义计算,最后利用方差的概念计算可得.【详解】解: A 、平均数为245565++++=4.4,故选项正确,符合题意;B 、中位数为5,故选项错误,不符合题意;C 、将这组数据重新排列为2,4,5,5,6,所以这组数据的众数为5,故选项错误,不符合题意;D 、方差为15⨯[(2﹣4.4)2+(4﹣4.4)2+2×(5﹣4.4)2+(6﹣4.4)2]=1.84,故选项错误,不符合题意.故选:A .【点睛】本题主要考查方差,众数,中位数,算术平均数,解题的关键是掌握众数、中位数、算术平均数及方差的定义.(2022·黑龙江齐齐哈尔·统考中考真题)【2题答案】【答案】B 【解析】【分析】由题意知,该组数据的平均数为123451566x x++++++=,且3x +是6的倍数,然后根据题意求解即可.【详解】解:由题意知,该组数据的平均数为123451532666x x x+++++++==+,∴3x +是6的倍数,且x 是1-5中的一个数,解得3x =,则平均数是3.故选B .【点睛】本题考查了平均数与众数.解题的关键在于熟练掌握众数与平均数的定义与求解.(2022·内蒙古赤峰·统考中考真题)【3题答案】【答案】D 【解析】【分析】根据普查、抽查、概率、方差、中位数和众数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、调查某班学生的视力情况适合采用普查的方法,故A 不符合题意;B 、声音在真空中传播的概率是0,故B 不符合题意;C 、甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,21.4s =乙,则乙的射击成绩比甲的射击成绩稳定;故C 不符合题意;D 、8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5;故D 符合题意;故选:D【点睛】本题考查了全面调查与抽样调查,中位数、众数、方差和概率的意义,理解各个概念的内涵是正确判断的前提.(2022·江苏镇江·统考中考真题)【4题答案】【答案】B 【解析】【分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.【详解】解:①第1组数据的平均数为:0001110.56+++++=,当m =n 时,第2组数据的平均数为:010.52m n mm n m ⨯+⨯==+,故①正确;②第1组数据的平均数为:0001110.56+++++=,当m n >时,m +n >2n ,则第2组数据的平均数为:01=0.52m n n nm n m n n⨯+⨯<=++,∴第1组数据的平均数大于第2组数据的平均数;故②错误;③第1组数据的中位数是010.52+=,当m n <时,若m +n 是奇数,则第2组数据的中位数是1;当m n <时,若m +n 是奇数,则第2组数据的中位数是1112+=;即当m n <时,第2组数据的中位数是1,∴当m n <时,第1组数据的中位数小于第2组数据的中位数;故③正确;④第1组数据的方差为()()2200.5310.530.256-⨯+-⨯=,当m n =时,第2组数据的方差为()()2200.510.5m nm n-⨯+-⨯+,0.250.252m mm+=0.25=,∴当m n =时,第2组数据的方差等于第1组数据的方差.故④错误,综上所述,其中正确的是①③;故选:B【点睛】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键.(2022·辽宁抚顺·统考中考真题)【5题答案】【答案】A 【解析】【分析】根据统计图上数据的变化趋势,逐项分析即可得出结论.【详解】解:A 、甲的成绩在6环上下浮动,变化较小,乙的成绩变化大,所以,甲的射击成绩比乙的射击成绩更稳定,此选项正确,符合题意;B、甲射击成绩的众数是6(环),乙射击成绩的众数是9(环),所以,甲射击成绩的众数小于乙射击成绩的众数,此选项错误,不符合题意;C、甲射击成绩的平均数是52+66+72=610⨯⨯⨯(环),乙射击成绩的平均数是3+4+5+6+7+8+93+10=710⨯(环),所以,甲射击成绩的平均数小于乙射击成绩的平均数,此选项错误,不符合题意;D、甲射击成绩的中位数是6(环),乙射击成绩的中位数是7+8=7.52(环),所以,甲射击成绩的中位数小于乙射击成绩的中位数,此选项错误,不符合题意;故选:A【点睛】本题主要考查了数据的稳定性,众数,平均数和中位数,熟练掌握相关知识是解答本题的关键.(2019·湖北恩施·统考中考真题)【6题答案】【答案】A【解析】【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可.【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.(2022·辽宁锦州·中考真题)【7题答案】【答案】D【解析】【分析】根据众数,中位数的定义计算选择即可.【详解】∵99出现的次数最多,7次,∴众数为99;∵中位数是第10个,11个数据的平均数即999898.52+=,故选D.【点睛】本题考查了中位数将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数),众数在一组数据中出现次数最多的数据,熟练掌握定义是解题的关键.(2022·山东济宁·统考中考真题)【8题答案】【答案】D【解析】【分析】根据折线统计图的变化趋势即可判断A,根据折线统计图中的数据以及众数的定义,中位数的定义即可判断B,C,D选项.【详解】A.从2月到6月,阅读课外书的本数有增有降,故该选项不正确,不符合题意;B.从1月到7月,每月阅读课外书本数的最大值为78比最小值28多50,故该选项不正确,不符合题意;C. 每月阅读课外书本数的众数是58,故该选项不正确,不符合题意;D.这组数据为:28,33,45,58,58,72,78,则每月阅读课外书本数的中位数是58,故该选项正确,符合题意;故选D【点睛】本题考查了折线统计图,求极差,求中位数,从统计图获取信息是解题的关键.(2020·四川·统考中考真题)【9题答案】【答案】C【解析】【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C .【点睛】本题考查了加权平均数的求法,是统计和概率部分的简单题型,根据各单价分别乘以所占百分比即可获得平均单价.(2021·内蒙古呼和浩特·统考中考真题)【10题答案】【答案】B 【解析】【分析】①根据三角形中位线、中线的性质,结合平行四边形的判定与性质解题;②由单循环赛对A 队,E 队进行推理即可;③根据正六边形的性质、位似的定义解题;④由平均数定义解题.【详解】解:①如图,AD 是ABC 的中线,EF 是ABC 的中位线,连接ED FD 、,由中位线定义可知,//,//ED AF FD AE∴四边形AEDF 是平行四边形∴对角线AD EF 、互相平分,故①正确;②由单循环比赛可知,每支队伍最多赛5场,A 队已经赛5场,即每支队伍都与A 队比赛过,而E 队只比赛1场,据此可知,E 队没有与B 对比赛过,故②错误;③两个正六边形不一定位似,没有确定位似中心,只能是相似的,故③错误;④小王的捐款数比他所在学习小组中13人捐款的平均数多2元,小王的捐款数不会是最少的,捐款数可能最多,也可正确在第12位,故原命题正确,是真命题,符合题意B 故④正确,其中真命题的个数有①④,2个,故选:B.【点睛】本题考查中位线、中线的性质,简单推理、位似、正六边形的性质、平均数的应用等知识,是基础考点,难度较易,掌握相关知识是解题关键.二、填空题(2019·山东青岛·统考中考真题)【11题答案】【答案】8.5【解析】【分析】由加权平均数公式即可得出结果.【详解】该队员的平均成绩为110(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为8.5.【点睛】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.(2020·四川·统考中考真题)【12题答案】【答案】9.75【解析】【分析】将这组数有小到大排列,因为共有6个数,所以中位数为第3、4个数的平均数.【详解】由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.79.82=9.75.故答案为:9.75.【点睛】本题考查了中位数的定义,根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2019·四川巴中·统考中考真题)【13题答案】【答案】145.【解析】【分析】先根据平均数的定义确定出a 的值,再根据方差公式进行计算即可求出答案.【详解】解:根据题意,得:45385a a ++++=,解得:5a =,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为22222114(45)(55)(55)(35)(85)55⎡⎤⨯-+-+-+-+-=⎣⎦,故答案为145.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.(2019·四川·统考中考真题)【14题答案】【答案】90分.【解析】【分析】根据众数的定义求解可得.【详解】众数是指一组 数据中出现次数最多的数据,90分的有4人,次数最多;故答案为90分.【点睛】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2018·浙江丽水·中考真题)【15题答案】【答案】6.9%【解析】【分析】根据众数的概念判断即可.【详解】这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为6.9%.【点睛】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.(2021·贵州铜仁·统考中考真题)【16题答案】【答案】乙【解析】【分析】分别计算甲乙二人成绩的方差,比较方差,较小的比较稳定即可求解.【详解】解:甲乙二人的平均成绩分别为:678910==85x ++++甲,78889==85x ++++乙,∴二人的方差分别为:()()()()()22222268788898108==25S -+-+-+-+-甲()()()()()22222278888888982==55S -+-+-+-+-乙,∵22S S 乙甲>,乙的成绩比较稳定.故答案为:乙【点睛】本题考查了方差的计算和根据方差判断数据的稳定性,正确求出方差是解题关键.(2019·广西柳州·统考中考真题)【17题答案】【答案】7【解析】【分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【详解】解:∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,---=,∵4088915由方差是0.4得:前面的2个数的为7和8,∴最小的数是7;故答案为7..【点睛】本题考查了方差、平均数、中位数、众数;熟练掌握方差、平均数、中位数、众数的定义是解题的关键.(2017·重庆·中考真题)【18题答案】【答案】183.【解析】【详解】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为183.【点睛】本题考查折线统计图;中位数.三、解答题(2022·江苏南通·统考中考真题)【19题答案】【答案】(1)3750(2)见详解【解析】【分析】(1)根据A县区统计图得不小于三天的比例,根据总数乘以比例即可得到答案;(2)根据平均数、中位数和众数的定义进行比较即可.【小问1详解】解:根据A县区统计图得,该县区八年级学生参加社会实践活动不少于3天的比例为:30%25%15%5%75%+++=,∴该县区八年级学生参加社会实践活动不少于3天的学生约为:⨯=名,500075%3750故答案为:3750;【小问2详解】∵A县区和B县区的平均活动天数均为3.85天,∴A县区和B县区的平均活动天数相同;∵A县区的中位数是3,B县区的中位数是2.5,∴B县区参加社会实践活动小于3天的人数比A县区多,从中位数看,A县区要好;∵A县区的众数是3,B县区的众数是4,∴A县区参加社会实践人数最多的是3天,B县区参加社会实践人数最多的是4天,从众数看,B县区要好.【点睛】本题考查数据统计、平均数、中位数和众数,解题的关键是熟练掌握扇形统计图、平均数、中位数和众数的相关知识.(2022·江苏盐城·统考中考真题)【20题答案】【答案】(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825% (3)答案见解析【解析】【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.【小问1详解】解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样【小问2详解】样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++,样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.【小问3详解】该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.(2022·山东聊城·统考中考真题)【21题答案】【答案】(1)无法判断,计算见解析(2)①8,1.56;②给九年级颁奖(3)九年级获奖率高【解析】【分析】(1)分别求出两个年级的平均数即可;(2)①分别根据众数和方差的定义解答即可;②根据两个年级众数和方差解答即可;(3)根据题意列式计算即可.【小问1详解】解:无法判断,计算如下:由题意得:八年级成绩的平均数是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级成绩的平均数是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判定哪个年级的成绩比较好;【小问2详解】解:①九年级竞赛成绩中8分出现的次数最多,故众数a =8分;九年级竞赛成绩的方差为:()()()()()2222221868978148813986108 1.5650s ⎡⎤=⨯⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,故答案为:8;1.56;②如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.56,又因为两个年级的平均数相同,九年级的成绩的波动小,所以应该给九年级颁奖,故如果分别从众数和方差两个角度来分析,应该给九年级颁奖;【小问3详解】解:八年级的获奖率为:(10+7+11)÷50=56%,九年级的获奖率为:(14+13+6)÷50=66%,∵66%>56%,∴九年级的获奖率高.【点睛】本题主要考查了中位数、众数、方差以及加权平均数,掌握各个概念和计算方法是解题的关键.(2021·广西桂林·统考中考真题)【22题答案】【答案】(1)众数是8个,(2)8x =个;(3)甲投篮成绩更加稳定;(4)推荐乙参加投篮比赛,理由见解析.。
一、选择题(每题3分,共30分)1. 下列哪组数据表示的平均数最大?A. 2, 3, 4, 5B. 1, 2, 3, 4C. 0, 1, 2, 3D. 3, 4, 5, 62. 一组数据的中位数是3,下列哪组数据可能符合条件?A. 1, 2, 3, 4B. 1, 2, 3, 5C. 2, 3, 4, 5D. 3, 4, 5, 63. 下列哪个统计量可以用来描述数据的波动大小?A. 平均数B. 中位数C. 众数D. 极差4. 下列哪个数据集的方差最大?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 0, 2, 4, 6D. 3, 5, 7, 95. 下列哪个数据集的众数是3?A. 1, 2, 3, 3B. 2, 3, 4, 5C. 3, 4, 5, 6D. 4, 5, 6, 76. 下列哪个数据集的标准差最小?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 0, 2, 4, 6D. 3, 5, 7, 97. 下列哪个数据集的极差最大?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 0, 2, 4, 6D. 3, 5, 7, 98. 一组数据为2, 4, 6, 8,下列哪个说法正确?A. 中位数是3B. 众数是4C. 平均数是5D. 极差是19. 下列哪个数据集的方差是0?A. 1, 1, 1, 1B. 2, 2, 2, 2C. 3, 3, 3, 3D. 4, 4, 4, 410. 下列哪个数据集的标准差是0?A. 1, 1, 1, 1B. 2, 2, 2, 2C. 3, 3, 3, 3D. 4, 4, 4, 4二、填空题(每题5分,共25分)11. 一组数据为5, 7, 9,则这组数据的平均数是______。
12. 一组数据的中位数是8,则这组数据中至少有一个数是______。
13. 一组数据的众数是10,则这组数据中至少有______个数是10。
14. 一组数据的极差是12,则这组数据中最大数与最小数的差是______。
MBA联考数学-数据分析(总分240,考试时间90分钟)一、问题求解1. 在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( ).2. 打印一页文件,甲出错的概率为0.04,乙出错的概率为0.05,从两人打印的文件中各取一页,则其中恰有一页有错的概率为( ).3. 如图2.6.1所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有( )种.4. 六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是( ).5. 设随机事件A与B互不相容,且A与B又相互独立,已知PA. =0.3,则P(B-A)为( ).(A) 0B. 0.3C. 0.4D. 0.7E. (E) 以上结论均不正确6. 甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案有( ).A. 36种B. 48种C. 72种D. 96种E. (E) 192种7. 3名老师随机从3男3女共6人中各带2名学生进行实验,其中每名老师各带1名男生和1名女生的概率为( ).8. 对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为( ).A. 120B. 200C. 150D. 100E. (E) 1809. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )种.A. 16B. 36C. 42D. 60E. (E) 7210. 不同的5种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有( )种.A. 12B. 20E. (E) 6011. 从5名团委中选出3名,分别担任团支部书记、宣传委员和组织委员,其中甲、乙二人不能担任宣传委员,则不同的选法共有( )种.A. 24B. 36C. 32D. 30E. (E) 2612. 4个不同的小球放入甲,乙,丙,丁4个盒中,恰有一个空盒的方法有( )种.13. 3位男生,3位女生排成一排,恰好三位女生排在相邻位置的概率是( ).14. 某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为( ).15. 某射手射击1次,击中目标的概率为0.9.他连续射击4次,且各次是否击中相互之间没有影响,则他只有第4次未击中的概率是( ).A. 0.0729B. 0.0792C. 0.2916D. 0.0579E. (E) 0.056916. 甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( ).A. 0.216B. 0.36E. (E) 以上答案都不对17. 将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( ).18. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有( ).A. 72B. 60C. 48D. 52E. (E) 3619. 从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有72种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则等于( ).20. 从2,3,4,5,6,10,111,12这八个数中,取出两个数组成一个最简真分数,共有取法( )种.A. 15B. 18C. 30D. 36E. (E) 4221. 设直线的方程是Ax+By=0,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是( ).A. 20B. 19C. 18D. 16E. (E) 1222. 有数字1,2,3组成五位数,要求这个五位数中1,2,3至少各出现一次,那么这样的五位数共有( )个.A. 60B. 90E. (E) 54023. 10封不同的信,投到3个相同的邮筒中,若一个邮筒里投2封信,另外两个邮筒各投4封信,不同的投法有( )种.24. 将7个人(含甲、乙)分成三个组,一组3人,另两组2人,不同的分组数为a,甲、乙分到同一组的概率为P,则a、p的值分别为( ).25. 设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三角形不过同一点.用f(n)表示这n条直线交点的个数时f(4)的值和当n>4时f(n)的值分别为( ).26. 一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球记2分,取出一个白球记1分,从口袋中取5个球,使总分不小于7分的取法有( )种.A. 180B. 186C. 196D. 206E. (E) 21627. 在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( ).28. 50件运动衫中有45件是白色的,5件是红色的,从中任取3件,至少有1件为红色的概率为( ).29. 4个不同的小球放入甲,乙,丙,丁4个盒中,恰有一个空盒的放法有( )种.30. 4名学生和2名教师排成一排照相,两位教师不能在两端且要相邻的排法有( )种.A. 72B. 108C. 144D. 288E. (E) 以上答案都不正确31. 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是( ).32. 在三角形的每条边上各取三个分点(如图2.6.2所示),以这9个分点为顶点可画出若干个三角形.若从中任意抽取一个三角形,则其三个顶点分别落在原三角形的三条不同边上的概率为( ).33. 有5名男教师,4名女教师,高矮各不相同,现站在一排照相,要求男、女教师分别相邻而坐,女教师必须从矮到高排列,共有( )种排法.34. 若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为( ).35. AB和CD为平面内两条相交直线,AB上有m个点,CD上有n个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是( ).36. 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则log2xy=1的概率为( ).37. 4人报名参加3项比赛,每人报且只报1项,则不同的报法有( )种.A. 43B. 34C. C34D. P34E. (E) 以上结论均不正确38. 某人射击5枪,命中3枪,3枪中恰有2枪连中的概率为( ).39. 将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( ).A. 70B. 140C. 280D. 840E. (E) 1 68040. 5人站成一排,其中A不在左端也不和B相邻的排法种数为( ).A. 48B. 54C. 60D. 66E. (E) 8041. 某种产品有4只次品和6只正品,每只产品均不相同且可区分.今每次取出一只测试,直到4只次品全部测出为止.则最后一只次品恰好在第五次测试时被发现的不同的情况种数是( ).A. 24B. 144C. 576D. 720E. (E) 85642. 接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为( ).(精确到0.01)A. 0.64B. 0.74C. 0.84D. 0.94E. (E) 0.5643. 从0,1,2,3,4每次取出不同的三个数字组成三位数,那么这些三位数的个位数字之和为( ).A. 80B. 90C. 110D. 120E. (E) 15044. 甲、乙两名篮球运动员投蓝的命中率分别为0.80和0.75.今每人各投一球,结果有一球命中.乙未命中的概率为( ).45. 从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )种.A. 210B. 420C. 630D. 840E. (E) 96046. 一射手对同一目标独立的进行4次射击,若至少命中1次的概率是,则该射手的命中率是( ).二、条件充分性判断解题说明:本大题要求判断所给出的条件能否充分支持题干中陈述的结论.阅读条件(1)和(2)后,选择以下相应的选项.A:条件(1)充分,但条件(2)不充分.B:条件(2)充分,但条件(1)不充分.C:条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D:条件(1)充分,条件(2)也充分.E:条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.1. N=24.(1)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有N个;(2)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有N个.2. N=144.(1)四个不同的小球放入编号为1,2,3,4的四个盒中恰有一个空盒的放法为N种.(2)四个不同的小球放入编号为1,2,3,4的四个盒中恰有一个盒中放两个小球的放法为N种.3. 不同的选择方案共有240种.(1)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市;(2)这6人中甲、乙两人不去巴黎游览.4. 不同的分配方案共有36种.(1)4名教师分配到3所中学任教,每所中学至少1名教师;(2)3名教师分配到4所中学任教,每所中学至多1名教师,且教师都必须分出去.5. 有44种站法.(1)五人站成一列,重新站队时,各人都不站在原来的位置上;(2)五人站成一列,甲不站在正中间.6. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了n个新节目.如果将节目插入原节目单中,那么不同插法的种数为.(1)n=2;(2)n=3.7. 在一个小组中有8名女同学和4名男同学,从中任意地挑选N名同学担任交通安全宣传志愿者,那么选到的N名都是女同学的概率是.(1)N=3;(2)N=2.8. 一部4卷的文集,按任意次序放到书架上,.(1)p为第一卷不出现在两旁的概率;(2)p为第一卷与第二卷不相邻的概率.9. 从1,2,…,9这九个数中,随机抽取N个不同的数,则这N个数的和为偶数的概率是.(1)N=2;(2)N=3.10. 口袋内装有10个不同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么.(1)摸出的5个球所标数字之和小于2的概率是P;(2)摸出的5个球所标数字之和大于3的概率P.11. 将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,则(1)至少出现一次6点向上的概率是P;(2)6点向上一次都不出现的概率是P.12. 在一小时内至多2台机床需要工人照看的概率是0.9728;(1)一台X型号自动机床在一小时内不需要工人照看的概率为0.8;(2)有四台这中型号的自动机床各自独立工作.13. 对某批电子产品进行质量检查,每件检查后放回,在连续检查三次时至少有一次是次品的概率是0.271.(1)该产品的合格率是0.8;(2)该产品的次品率是0.1.14. 一批零件共100个,其中有95件合格品,5件次品,每次任取1个零件装配机器,则P2=P3.(1)第2次取到合格品的概率是P2;(2)第3次取到合格品的概率是P3.15. 若以连续掷两次骰子分别得到的点数m、n作为点Q的坐标,则.(1)点Q落在圆x2+y2=9内的概率是P;(2)点Q落在圆x2+y2=16内的概率是P.16. 已知概率为.(1)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率;(2)从5张100元,4张200元,1张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率.已知概率为.(1)将一骰子连续抛掷四次,它落地时向上的点数依次成等差数列的概率;(2)将一骰子连续抛掷三次.它落地时向上的点数依次成等差数列的概率.17. .(1)在编号为1,2,3,…,n的n张奖卷中,采取不放回方式抽奖,若1号为获奖号码,则在第k次(l≤k≤n)抽签时抽到1号奖卷的概率;(2)在编号为1,2,3,…,n的n张奖卷中,采取要放回方式抽奖,若1号为获奖号码,则在第k次(l≤k≤n)抽签时抽到1号奖卷的概率.18. 有红、白球若干个,可以确定这堆红球、白球共有150个.(1)若每次拿走一个红球和3个白球,拿到没有红球时,还剩下30个白球;(2)若每次拿走一个红球和3个白球,则拿到30次时没有红球了.19. N=28.(1)满足m,n∈N*且m+n<8,则平面上的点(m,n)共有N个;(2)满足m,n∈N*且m+n≤8,则平面上的点(m,n)共有N个.20. P=0.3.(1)在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率P:(2)在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是偶数的概率P.21. 命中率为.(1)一射手对同一目标独立地进行3次射击,已知至少命中一次的概率为,则此射手的命中率;(2)一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率.22. 不同的投信方法34.(1)四封信投入3个不同的信箱,其不同的投信方法;(2)三封信投入4个不同的信箱,其不同的投信方法.23. 72不是6的倍数.(1)n不是3的倍数;(2)n不是2的倍数.24. 至少有两人生日在同一天的概率(1)某班30名同学,一年按365天计算,至少有两人生日在同一天的概率,(2)某班30名同学,一年按365天计算,恰有两人生日在同一天的概率.掷n次均匀硬币出现正面次数多于出现反面次数的概率.(1)n为偶数;(2)n为奇数.25.(1)甲、乙、丙、丁、戊5人站成一排,则甲、乙相邻,甲、丙不相邻的概率为p;(2)甲、乙、丙、丁、戊5人站成一排,则甲、乙、丙3个人连在一起的概率为p.26. .(1)停车场可把12辆车停放在一排上,当有9辆车已停放后而恰有3个空位连在一起,这样的事件发生的概率;(2)停车场可把12辆车停放在一排上,当有8辆车已停放后而恰有4个空位连在一起,这样的事件发生的概率.27.(1)5封信随机投进甲、乙两个空信筒,两个信筒都有信的概率为p;(2)6个运动队中有两个强队,先任意将6个队分为两组(每组3个队)进行比赛,则这两个强队被分到第一组的概率是p.28. 用四种颜色对下列各图的A,B,C,D,E五个区域染色,要求相邻的区域染不同的颜色.则共有72种不同染法.(1)图形如图2.6.3(a)所示; (2)图形如图2.6.3(b)所示.29. 可确定某射击选手一次射击的命中率是2/3.(1)一名射击选手向目标连续射击4次,至少命中一次的概率是80/81;(2)一名射击选手向目标连续射击3次,只有第二次未命中的概率为2/27.30. 某组有学生6人,血型分别为:A型2人,B型1人,以及AB型和O型血的人,则随机抽取两人,两人血型相同的概率.(1)AB型血有2人;(2)O型血有1人.31. .(1)有放回的取棋子.棋子有i种颜色,5颗红色,4颗黄色,3颗白色.两次都取到同一种颜色的概率p.(2)不放回的取棋子.棋子有三种颜色,5颗红色,4颗黄色,3颗白色.两次都取到同一种颜色的概率p.32. .(1)甲每次投篮命中率为,投10次,中2次的概率为p;(2)甲每次投篮命中率为,投10次,中2次以上的概率为p.。
备战2023年中考数学必刷真题考点分类专练(全国通用)专题27数据的分析(共50题)一.选择题(共27小题)1.(2022•随州)小明同学连续5次测验的成绩分别为:97,97,99,101,106(单位:分),则这组数据的众数和平均数分别为()A.97和99B.97和100C.99和100D.97和1012.(2022•眉山)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是()A.7.5,7B.7.5,8C.8,7D.8,83.(2022•湘潭)“冰墩墩”是北京2022年冬季奥运会的吉祥物.该吉祥物以熊猫为原型进行设计创作,将熊猫形象与富有超能量的冰晶外壳相结合,体现了冬季冰雪运动和现代科技特点,冰墩墩玩具也很受欢迎.某玩具店一个星期销售冰墩墩玩具数量如下:星期一星期二星期三星期四星期五星期六星期日玩具数量(件)35475048426068则这个星期该玩具店销售冰墩墩玩具的平均数和中位数分别是()A.48,47B.50,47C.50,48D.48,504.(2022•嘉兴)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.<且S A2>S B2C.>且S A2<S B2D.<且S A2<S B25.(2022•衡阳)为贯彻落实教育部《关于全面加强新时代大中小学劳动教育的意见》精神,把劳动教育纳入人才培养全过程,某校组织学生周末赴劳动教育实践基地开展锄地、除草、剪枝、捉鱼、采摘五项实践活动,已知五个项目参与人数(单位:人)分别是:35,38,39,42,42,则这组数据的众数和中位数分别是()A.38,39B.35,38C.42,39D.42,356.(2022•宁波)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃)36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A.36.5℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃7.(2022•湖州)统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是()A.7B.8C.9D.108.(2022•株洲)某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为()A.63B.65C.66D.699.(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是()A.9.6B.9.7C.9.8D.9.910.(2022•连云港)在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38B.42C.43D.4511.(2022•舟山)A,B两名射击运动员进行了相同次数的射击.下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.>且S A2>S B2B.>且S A2<S B2C.<且S A2>S B2D.<且S A2<S B212.(2022•滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为()A.1.5B.1.4C.1.3D.1.213.(2022•凉山州)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.1014.(2022•成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56B.60C.63D.7215.(2022•泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,3416.(2022•德阳)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,517.(2022•自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差是3D.众数是1418.(2022•南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖.关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差19.(2022•黑龙江)一组数据13,10,10,11,16的中位数和平均数分别是()A.11,13B.11,12C.13,12D.10,1220.(2022•岳阳)某村通过直播带货对产出的稻虾米进行线上销售,连续7天的销量(单位:袋)分别为:105,103,105,110,108,105,108,这组数据的众数和中位数分别是()A.105,108B.105,105C.108,105D.108,10821.(2022•内江)某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.3122.(2022•遵义)下表是2022年1月﹣5月遵义市PM2.5(空气中直径小于等于2.5微米的颗粒)的平均值,这组数据的众数是()月份1月2月3月4月5月2423242522PM2.5(单位:μg/m3)A.22B.23C.24D.2523.(2022•恩施州)为了解某小区居民的用水情况,随机抽查了若干户家庭的某月用水量,统计结果如下表所示:月用水量(吨)3456户数4682关于这若干户家庭的该月用水量的数据统计分析,下列说法正确的()A.众数是5B.平均数是7C.中位数是5D.方差是124.(2022•长沙)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4.则这组数据的众数和中位数分别是()A.3,4B.4,3C.3,3D.4,425.(2022•绥化)学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是()A.该组数据的中位数为98B.该组数据的方差为0.7C.该组数据的平均数为98D.该组数据的众数为96和9826.(2022•大庆)小明同学对数据12、22、36、4■,52进行统计分析,发现其中一个两位数的个位数字被墨水污染已无法看清,则下列统计量与被污染数字无关的是()A.平均数B.标准差C.方差D.中位数27.(2022•海南)在一次视力检查中,某班7名学生右眼视力的检查结果为:4.2、4.3、4.5、4.6、4.8、4.8、5.0,这组数据的中位数和众数分别是()A.5.0,4.6B.4.6,5.0C.4.8,4.6D.4.6,4.8二.填空题(共16小题)28.(2022•包头)某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:候选人通识知识专业知识实践能力甲809085乙808590根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是.(填“甲”或“乙”)29.(2022•威海)某小组6名学生的平均身高为acm,规定超过acm的部分记为正数,不足acm的部分记为负数,他们的身高与平均身高的差值情况记录如下表:学生序号123456身高差值(cm)+2x+3﹣1﹣4﹣1据此判断,2号学生的身高为cm.30.(2022•鄂州)为了落实“双减”,增强学生体质,阳光学校篮球兴趣小组开展投篮比赛活动.6名选手投中篮圈的个数分别为2,3,3,4,3,5,则这组数据的众数是.31.(2022•黔东南州)某中学在一次田径运动会上,参加女子跳高的7名运动员的成绩如下(单位:m):1.20,1.25,1.10,1.15,1.35,1.30,1.30.这组数据的中位数是.32.(2022•永州)“闪电足球队”参加市中小学生足球比赛,在五场小组赛中,该足球队的进球数分别为:2,0,1,2,3,则此组数据的众数是.33.(2022•泰州)学校要从王静、李玉两同学中选拔1人参加运动会志愿者工作,选拔项目为普通话、体育知识和旅游知识,并将成绩依次按4:3:3记分.两人的各项选拔成绩如表所示,则最终胜出的同学是.普通话体育知识旅游知识王静809070李玉90807034.(2022•宿迁)已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是.35.(2022•常德)今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85,88,92,90,则她的最后得分是分.36.(2022•山西)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).37.(2022•武汉)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是.尺码/cm2424.52525.526销售量/双13104238.(2022•邵阳)某班50名同学的身高(单位:cm)如下表所示:身高155156157158159160161162163164165166167168人数351221043126812则该班同学的身高的众数为.39.(2022•温州)某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树株.40.(2022•扬州)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2S乙2.(填“>”“<”或“=”)41.(2022•丽水)在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9.则这组数据的平均数是.42.(2022•德阳)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制).某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是分.43.(2022•遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是.三.解答题(共7小题)44.(2022•贺州)为了落实“双减”政策,提倡课内高效学习,课外时间归还学生.“鸿志”班为了激发学生学习热情,提高学习成绩,采用分组学习方案,每7人分为一小组.经过半个学期的学习,在模拟测试中,某小组7人的成绩分别为98,94,92,88,95,98,100(单位:分).(1)该小组学生成绩的中位数是,众数是;(2)若成绩95分(含95分)以上评为优秀,求该小组成员成绩的平均分和优秀率(百分率保留整数).45.(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:123456789103.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0芒果树叶的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差3.74m4.00.0424芒果树叶的长宽比1.912.0n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m=,n=;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.46.(2022•玉林)为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分):87 99 86 89 91 91 95 96 87 9791 97 96 86 96 89 100 91 99 97整理数据:成绩(分)8687899195969799100学生人数(人)222a13b21分析数据:平均数众数中位数93c d解决问题:(1)直接写出上面表格中的a,b,c,d的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率;(3)请估计该校1500名学生中成绩达到95分及以上的学生人数.47.(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60850B60≤t<901675C90≤t<12040105D t≥12036150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.48.(2022•株洲)某校组织了一次“校徽设计“竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:专业评委给分(单位:分)①88②87③94④91⑤90(专业评委给分统计表)记“专业评委给分”的平均数为.(1)求该作品在民主测评中得到“不赞成”的票数;(2)对于该作品,问的值是多少?(3)记“民主测评得分”为,“综合得分”为S,若规定:①=“赞成”的票数×3分+“不赞成”的票数×(﹣1)分;②S=0.7+0.3.求该作品的“综合得分”S的值.49.(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:候选人文化水平艺术水平组织能力甲80分87分82分乙80分96分76分(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?50.(2022•重庆)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).。
一、选择题
1.在构建精算模型时,以下哪项不是必须考虑的因素?
A.数据的准确性和完整性(正确答案)的反面,即数据的错误和缺失
B.模型的复杂性与解释性之间的平衡
C.模型的美观程度
D.业务需求与模型目标的对齐
2.数据分析过程中,以下哪个步骤是用来验证模型有效性的?
A.数据收集
B.数据预处理
C.模型训练
D.模型测试与验证(正确答案)
3.在进行时间序列分析时,以下哪种方法常用于趋势和季节性分解?
A.聚类分析
B.决策树
C.STL分解(正确答案)
D.关联规则挖掘
4.下列哪项不是数据清洗的常见任务?
A.处理缺失值
B.异常值检测与处理
C.数据格式化
D.数据可视化(正确答案属于数据分析的后续步骤,非清洗任务)
5.在回归分析中,如果残差图显示出明显的模式,这可能表明:
A.模型拟合得很好
B.模型存在偏差,可能需要更复杂的模型(正确答案)
C.数据集太小
D.无需进一步分析
6.以下哪种方法常用于特征选择,以减少模型的复杂性和提高泛化能力?
A.主成分分析(PCA)(正确答案)
B.线性回归
C.K-means聚类
D.时间序列平滑
7.在评估分类模型的性能时,以下哪个指标同时考虑了模型的准确率和召回率?
A.F1分数(正确答案)
B.准确率
C.召回率
D.ROC曲线下的面积(AUC)
8.在进行A/B测试时,以下哪个步骤不是必需的?
A.确定测试目标和指标
B.随机分配用户到实验组和对照组
C.确保实验组和对照组的用户数量相等(正确答案:不是必需,重要的是随机分配)
D.分析测试结果并做出决策。
数据分析考试真题一、单选题(题数:30,共45.0分)1复利现值系数是()(1.5分)0.0分•A、(F/ A,i,n)•B、(F/P,i,n)•C、(A/ P,i,n)•D、(P/F,i,n)正确答案:D我的答案:答案解析:2流动比率怎么计算()(1.5分)0.0分•A、(流动资产合计-存货)/流动负债合计•B、货币资金/流动负债•C、流动自残合计/总负债•D、流动资产合计/流动负债合计正确答案:D我的答案:3变异系数越大,表示风险程度(1.5分)1.5分•A、大•B、小•C、不变•D、等于零正确答案:A我的答案:A答案解析:4在敏感性分析过程中,()因素是较敏感的因素。
(1.5分)0.0分•A、临界点较高者•B、敏感度系数较低者•C、敏感度系数较高者•D、不易分析得出正确答案:C我的答案:答案解析:5盈亏平衡分析中,产量盈亏平衡点是指(1.5分)1.5分•A、销售收入等于总成本费用•B、销售收入大于总成本费用•C、销售收入小于总成本费用•D、销售收入略大于总成本费用正确答案:A我的答案:A答案解析:6某家长为了使孩子在第3-6年上大学的4年中,每年年初得到10000元助学基金,他应在2年前在银行存入多少钱?(年利率按5%计算)(1.5分)0.0分•A、33771•B、30291•C、32163•D、45256正确答案:A我的答案:答案解析:7无限期支付的年金是(1.5分)1.5分•A、永续年金•B、普通年金•C、预付年金•D、递延年金正确答案:A我的答案:A答案解析:8对独立项目的比较,可以采用(1.5分)0.0分•A、排列顺序法•B、年总费用法•C、增量收益分析法•D、只需要对投资项目的经济效益指标进行评价即可正确答案:D我的答案:答案解析:9下列关于投资项目营业现金流量预计的各种作法中,不正确的是()。
(1.5分)0.0分•A、营业现金流量等于税后净利加上折旧•B、营业现金流量等于营业收入减去付现成本再减去所得税•C、营业现金流量等于税后收入减去税后成本再加上折旧引起的税负减少额•D、营业现金流量等于营业收入减去营业成本再减去所得税正确答案:D我的答案:答案解析:10某项目购置固定资产50万元,可使用10年,无残值。
CDA数据分析考试真题一、单选题1.统计图中的散点图主要用来( A )。
A.观察变量之间的相关关系B.用来表示总体各部分所占的比例C.主要用来表示次数分布D.主要用来反映分类数据的频数分布2.抽样误差是指( D )A.在调查过程中由于观察、测量等差错所引起的误差B.人为原因所造成的误差C.在调查中违反随机原则出现的系统误差D.随机抽样而产生的代表性误差3.检查异常值常用的统计图形:( B )A、条形图B、箱体图C、帕累托图D、线图4.线性回归里的残差分析不可能用于诊断( D )A、残差独立性B、变量分布C、异常值侦察D、最大迭代次数5.因子分析的主要作用:( A )A、对变量进行降维B、对变量进行判别C、对变量进行聚类D、以上都不对6.关于K-means 聚类过程正确的是:( A )A、使用的是迭代的方法B、均适用于对变量和个案的聚类C、对变量进行聚类D、以上都不对7.东北人养了一只鸡和一头猪。
一天鸡问猪:"主人呢?"猪说:"出去买蘑菇了。
"鸡听了撒丫子就跑。
猪说:"你跑什么?"鸡叫道:“有本事主人买粉条的时候你小子别跑!"以上对话体现了数据分析方法中的( A )A. 关联B. 聚类C. 分类D. 自然语言处理8.已知甲班学生“统计学”的平均成绩为86分,标准差是12.8分,乙班学生“统计学”的平均成绩是90分,标准差是10.3分,下列表述正确的是( A )A. 乙班平均成绩的代表性高于甲班B. 甲班平均成绩的代表性高于乙班C. 甲、乙两班平均成绩的代表性相同D. 甲、乙两班平均成绩的代表性无法比较9.根据样本资料估计得出人均消费支出Y对人均收入X的回归模型,表明人均收入每增加1%,人均消费支出将增加( B )A. 0.2%B. 0.75%C. 2%D. 7.5%10.某企业根据对顾客随机抽样的信息得到对该企业产品表示满意的顾客比率的95%置信度的置信区间是(56%,64%)。
下列正确的表述是( A )A.总体比率的95%置信度的置信区间为(56%,64%)B.总体真实比率有95%的可能落在(56%,64%)中C.区间(56%,64%)有95%的概率包含了总体真实比率D.由100次抽样构造的100个置信区间中,约有95个覆盖了总体真实比率。
数据分析考试真题一、单选题(题数:30,共 45.0 分)1复利现值系数是()(1.5分)0.0分•A、(F/ A,i,n)•B、(F/P,i,n)•C、(A/ P,i,n)•D、(P/F,i,n)正确答案:D 我的答案:答案解析:2流动比率怎么计算()(1.5分)0.0分•A、(流动资产合计-存货)/流动负债合计•B、货币资金/流动负债•C、流动自残合计/总负债•D、流动资产合计/流动负债合计正确答案:D 我的答案:3变异系数越大,表示风险程度(1.5分)1.5分•A、大•B、小•C、不变•D、等于零正确答案:A 我的答案:A答案解析:4在敏感性分析过程中,( ) 因素是较敏感的因素。
(1.5分)0.0分•A、临界点较高者•B、敏感度系数较低者•C、敏感度系数较高者•D、不易分析得出正确答案:C 我的答案:答案解析:5盈亏平衡分析中,产量盈亏平衡点是指(1.5分)1.5分•A、销售收入等于总成本费用•B、销售收入大于总成本费用•C、销售收入小于总成本费用•D、销售收入略大于总成本费用正确答案:A 我的答案:A答案解析:6某家长为了使孩子在第3-6年上大学的4年中,每年年初得到10000元助学基金,他应在2年前在银行存入多少钱?(年利率按5%计算)(1.5分)0.0分•A、33771•B、30291•C、32163•D、45256正确答案:A 我的答案:答案解析:7无限期支付的年金是(1.5分)1.5分•A、永续年金•B、普通年金•C、预付年金•D、递延年金正确答案:A 我的答案:A答案解析:8对独立项目的比较,可以采用(1.5分)0.0分•A、排列顺序法•B、年总费用法•C、增量收益分析法•D、只需要对投资项目的经济效益指标进行评价即可正确答案:D 我的答案:答案解析:9下列关于投资项目营业现金流量预计的各种作法中,不正确的是()。
(1.5分)0.0分•A、营业现金流量等于税后净利加上折旧•B、营业现金流量等于营业收入减去付现成本再减去所得税•C、营业现金流量等于税后收入减去税后成本再加上折旧引起的税负减少额•D、营业现金流量等于营业收入减去营业成本再减去所得税正确答案:D 我的答案:答案解析:10某项目购置固定资产50万元,可使用10年,无残值。
假定采用直线法折旧,投入使用每年的销售收入为20万元,同时每年总成本(含折旧费用)为15万元,则第三年净现金流量为()(1.5分)0.0分•A、15万元•B、20万元•C、10万元•D、5万元正确答案:C 我的答案:答案解析:11假定电视机的需求是富有弹性的,需求弹性Ed=2,当P=500元时销量Q=100台,如果电视机价格下降10%,此时的销量为多少?总收益为?()(1.5分)0.0分•A、120,54000•B、110,44000•C、80,54000•D、120 ,44000正确答案:A 我的答案:12在投资决策经济指标体系中,根据指标是否考虑资金的时间价值,可以分为()(1.5分)0.0分•A、现金指标和投资指标•B、获利指标和净现金•C、静态指标和动态指标•D、现金指标和动态指标正确答案:C 我的答案:13下列选项中,( ) 不属于利息支出。
(1.5分)0.0分•A、短期借款利息•B、建设期利息•C、长期借款利息•D、用于流动资金的借款利息正确答案:B 我的答案:答案解析:14动态分析方法将不同时间内资金的流入和流出换算成同一时点的价值,为不同方案和不同项目的比较提供了( ) 的基础。
(1.5分)0.0分•A、不同等•B、同等•C、类似•D、完全不同正确答案:B 我的答案:答案解析:15已知某化工建设项目设计年生产能力为5万吨,预计年固定总成本为800万元,产品销售价格1500元/吨,产品销售税金及附加为销售收入的10%,产品变动成本1150元/吨,则该项目用生产能力利用率表示的盈亏平衡点是()(1.5分)0.0分•A、100%•B、40%•C、80%•D、55%正确答案:C 我的答案:答案解析:16有一项年金,前3年无流入,后5年每年初流入500元,年利率为10%,则其现值为()元。
(1.5分)0.0分•A、1994.59•B、1565.68•C、1813.48•D、1423.21正确答案:B 我的答案:答案解析:17平均年限折旧法年折旧率为()(1.5分)0.0分•A、尚可使用年限/预计使用寿命的年数总和•B、(1-预计残值率)/预计使用寿命(年)•C、1/预计使用寿命(年)•D、现在使用年限/预计使用寿命的年数总和正确答案:B 我的答案:18关于资金的时间价值不正确的说法是(1.5分)0.0分•A、资金的时间价值是指同一资金在不同时点上价值量的差额•B、资金的时间价值是没有风险,而且不存在通货膨胀条件下的社会平均资本利润率•C、资金本身可以实现自行增值•D、资金的时间价值的大小用相对值表示,即利率正确答案:C 我的答案:答案解析:19项目建设完成后在生产经营过程中发生的现金流入和流出量是(1.5分)0.0分•A、期初现金流量•B、净现金流量•C、经营现金流量•D、终结现金流量正确答案:C 我的答案:答案解析:20经营成本与总成本费用大小关系是(1.5分)0.0分•A、经营成本等于总成本费用•B、经营成本大于总成本费用•C、经营成本小于总成本费用•D、无法确定它们之间的关系正确答案:C 我的答案:答案解析:21()项目是所投资项目与其它项目没有任何关联,以新增生产能力为目的的投资。
(1.5分)0.0分•A、完整建设项目投资•B、重置投资•C、净投资•D、固定资产更新改造投资正确答案:C 我的答案:答案解析:22完全竞争市场中,利润最大化厂商实现利润最大化的均衡条件为()(1.5分)0.0分•A、平均总成本AC=平均可变成本AVC•B、边际收益MR=边际成本MC•C、平均成本AC=边际成本MC•D、边际收益MR=平均成本AC 正确答案:B 我的答案:23某城市想要估计下岗职工中女性所占的比例,随机地抽取了100名下岗职工,其中65人为女性职工。
试以95%的置信水平估计该城市下岗职工中女性比例的置信区间为()(已知95%置信水平下Za/2=1.96,已知总体服从正态分布)(1.5分)0.0分•A、(54.65%,74.35%)•B、(53.65%,74.35%)(55.65%,75.35%)•D、(55.65%,74.35%)正确答案:D 我的答案:24某项目第0年至第5年的净现金流量为:-8650万元,1000万元,1200万元,1300万元,1020万元,1000万元,此后项目的净现金流稳定在900万元,该项目WACC为12%,请计算项目的净现值为(1.5分)0.0分•A、620万元-403.84万元•C、-859.81万元•D、-420.75万元正确答案:B 我的答案:答案解析:25优先股和普通股的区别在于,优先股可以()(1.5分)0.0分•A、选举权•B、优先分配股利•C、公司剩余资产的所有权•D、被选举权正确答案:B 我的答案:26在投资方法组合决策中,若资金总量受到限制,则应采用哪种方法进行项目比选()(1.5分)0.0分•A、项目的净现值•B、项目的净现值率结合净现值•C、项目的投资总额结合净现值•D、项目的投资回收期结合净现值正确答案:B 我的答案:27净资产收益率数据什么指标()(1.5分)0.0分•A、偿债能力状况•B、发展能力状况•C、资产营运状况•D、财务效益状况正确答案:D 我的答案:28一个投资方案年销售收入500万元,年总成本380万元,其中折旧150万元,除折旧外无其他非付现成本。
如果所得税税率为40%,则该方案年营业现金净流量为(1.5分)0.0分•A、72万元•B、120万元•C、222万元•D、234.5万元正确答案:C 我的答案:答案解析:29等年值法需要将参与比较的方案的收益现值按约定计算期折算为均匀序列的(1.5分)0.0分•A、永续年金•B、预付年金•C、普通年金•D、递延年金正确答案:C 我的答案:答案解析:30某企业每年年末在银行存入年金60万元作为更新改造基金,年利息为8%,7年后可得更新改造基金总额折算为现值()万元。
(1.5分)0.0分344.80•B、502.30•C、312.38•D、638.22正确答案:C 我的答案:答案解析:二、多选题(题数:20,共 40.0 分)1下列属于无形资产的是()(2.0分)0.0分土地•B、专利权•C、著作权•D、办公费正确答案:BC 我的答案:2项目的经济效益评价指标中,非贴现指标包括(2.0分)0.0分•A、投资报酬率•B、静态投资回收期•C、内部收益率•D、净现值正确答案:AB 我的答案:答案解析:3风险识别的方法有()(2.0分)0.0分•A、保险调查法•B、财务表格分析法•C、战略梳理法•D、生产流程分析法正确答案:ABD 我的答案:4下面关于风险的说法正确的有(2.0分)0.0分•A、投资项目的活动既有可能获得预期的利益,也有可能蒙受意料不到的损失或损害。
•B、风险是负面的影响,影响越大损失越大。
•C、风险是预期收益与实际结果之间的差异。
•D、风险肯定带有不确定性,但具有不确定性的事件不一定就是风险。
正确答案:ABCD 我的答案:答案解析:5间接费用包括()(2.0分)0.0分•A、职工工资•B、职工教育费•C、培训费•D、住房公积金正确答案:ABD 我的答案:6会计信息的使用者包括()(2.0分)0.0分•A、企业所有者•B、债权人•C、社会公众•D、政府正确答案:ABCD 我的答案:7定性预测法包括(2.0分)0.0分•A、需求类推预测法•B、市场因素推算法•C、专家意见法•D、德尔菲法正确答案:ABCD 我的答案:答案解析:8市场调查收集资料的基本方法有(2.0分)0.0分•A、访问法•B、观察法•C、实验法•D、态度测量表法正确答案:ABCD 我的答案:答案解析:9在项目决策分析与评价中,流动负债主要考虑的是()(2.0分)0.0分•A、现金•B、应付账款•C、预收账款•D、应收账款正确答案:BC 我的答案:答案解析:10顾客细分的方式有哪些?()(2.0分)0.0分•A、外在属性•B、内在属性•C、客户爱好分类•D、消费行为分类正确答案:ABD 我的答案:答案解析:11对于计算期不等的项目(方案)比选,可采纳的决策方法有( )(2.0分)0.0分•A、最小公倍数法•B、内部收益率法•C、等年值法•D、获利指数法正确答案:AC 我的答案:答案解析:12增量现金流要注意以下哪些问题()(2.0分)0.0分•A、机会成本•B、沉没成本•C、附加效应•D、项目投资引起的营运资本的变化正确答案:ABCD 我的答案:13对计算期相同的互斥项目比选,可以应用的方法有(2.0分)0.0分•A、排列顺序法•B、增量收益分析法总费用现值法•D、重置链法正确答案:ABC 我的答案:答案解析:14按产品开发的新颖程度进行分类,有哪四种战略可供选择()(2.0分)0.0分•A、全新型新产品开发战略换代型新产品开发战略•C、改进型新产品开发战略•D、仿制型新产品开发战略正确答案:ABCD 我的答案:15常见的折现率确定方法有()(2.0分)0.0分•A、以银行贴现率或银行贷款利率为折现率•B、以企业的平均资本成本为折现率•C、以公司每股股利为折现率•D、以行业基准收益率为折现率。