麻醉机的基本原理及其检测技术
- 格式:ppt
- 大小:1.65 MB
- 文档页数:145
麻醉机原理麻醉机是一种医疗设备,用于给患者提供麻醉药物,使其在手术过程中处于无痛或半麻醉状态。
麻醉机的使用可以有效控制患者的疼痛感,保证手术的顺利进行。
那么,麻醉机是如何工作的呢?下面我们来详细了解一下麻醉机的原理。
麻醉机主要由输液系统、气体输送系统、呼吸系统和监测系统等几个部分组成。
输液系统是麻醉机中的一个重要组成部分。
它通过输液泵将麻醉药物输入到患者的体内。
麻醉药物可以分为静脉麻醉药物和吸入麻醉药物两种类型。
静脉麻醉药物主要通过静脉注射进入患者体内,而吸入麻醉药物则通过患者的呼吸道吸入。
气体输送系统也是麻醉机的重要组成部分。
该系统通过氧气和麻醉气体的混合来提供给患者。
氧气是患者必需的气体,它可以保证患者的呼吸功能正常运作。
而麻醉气体则通过混合气体机构与氧气混合后输送到患者体内。
麻醉气体的选择与患者的具体情况有关,常用的麻醉气体有笑气、七氟醚等。
第三,呼吸系统是麻醉机中非常重要的一个部分。
它主要由气道系统和呼吸机组成。
气道系统包括喉罩、气管插管等器械,用于保护患者的呼吸道畅通,并协助患者的呼吸。
而呼吸机则通过控制气流的大小和频率,辅助患者的呼吸。
呼吸机可以根据患者的具体情况来调节,以保证患者的呼吸功能正常。
监测系统是麻醉机中的重要组成部分。
它主要用于监测患者的生理指标,以确保患者在手术过程中的安全。
监测系统可以监测患者的呼吸频率、血氧饱和度、血压等指标。
一旦出现异常情况,监测系统会及时发出警报,提醒医生采取相应的措施。
总体来说,麻醉机的工作原理是通过输液系统、气体输送系统、呼吸系统和监测系统的相互配合,将麻醉药物输送到患者体内,保证患者在手术过程中的无痛或半麻醉状态。
这样可以确保手术的顺利进行,减轻患者的痛苦,同时保证患者的安全。
麻醉机的原理虽然复杂,但是它在现代医疗中扮演着重要的角色。
麻醉机的不断发展和创新,使得手术过程更加安全和舒适。
随着科技的不断进步,相信麻醉机在未来会有更加广泛的应用,为患者提供更好的医疗保障。
麻醉机的原理
麻醉机是一种医疗设备,用于给患者提供麻醉药物和氧气,以维持患者在手术过程中的麻醉状态和呼吸功能。
它是手术室中不可或缺的设备,对手术的成功进行起着至关重要的作用。
那么,麻醉机的原理是什么呢?
首先,麻醉机由气源系统、麻醉气体混合系统、呼吸回路系统和监测系统等部分组成。
气源系统提供氧气和麻醉气体,麻醉气体混合系统将氧气和麻醉气体按照一定比例混合,呼吸回路系统将混合气体输送到患者体内,监测系统监测患者的呼吸和麻醉深度等参数,保证患者在手术过程中得到合适的麻醉和呼吸支持。
其次,麻醉机的原理是基于对患者的麻醉和呼吸支持的需求。
在手术过程中,患者需要得到足够的麻醉药物来保持无痛和无意识状态,同时也需要得到足够的氧气和二氧化碳的排出,以维持正常的呼吸功能。
因此,麻醉机通过气源系统提供氧气和麻醉气体,通过麻醉气体混合系统混合合适的气体比例,通过呼吸回路系统将混合气体输送到患者体内,从而实现对患者麻醉和呼吸的支持。
此外,麻醉机的原理还涉及到对患者麻醉和呼吸参数的监测和
调节。
监测系统通过各种传感器监测患者的呼吸频率、潮气量、呼气末二氧化碳分压和麻醉深度等参数,及时反馈给麻醉医生,以便及时调节麻醉机的操作参数,保证患者在手术过程中得到安全和有效的麻醉和呼吸支持。
总之,麻醉机的原理是基于对患者麻醉和呼吸支持的需求,通过气源系统、麻醉气体混合系统、呼吸回路系统和监测系统等部分的协调工作,实现对患者在手术过程中的麻醉和呼吸的支持。
它是一种高度复杂的医疗设备,需要经过专业的培训和严格的操作,才能确保患者在手术过程中得到安全和有效的麻醉和呼吸支持。
麻醉机基础知识----结构、原理、常见问题、使用、检查麻醉机是用于实施全身麻醉,供氧及进行辅助或控制呼吸的一套装置.要求提供的氧及吸入麻醉药的浓度应精确,稳定和容易控制.所以,优良的麻醉机,对于减少装置故障所造成的麻醉意外及对病人的安全,起着十分重要的作用.随着医学工程技术的发展,随着几十年来人们对麻醉机/呼吸机的不断研究和改进,现代麻醉机除了具有气路部分的基础构件外,还配备了电子,电脑控制和监测等仪器.多功能现代化的麻醉机和高水平的临床医师相结合,必将大大提高麻醉和机械通气治疗的安全性.掌握麻醉机知识是临床麻醉医师的必修课,怎样用好你手中的设备是你麻醉安全的关键.现代麻醉机构造和基本原理一.麻醉机构造麻醉机的分类:按功能结构分全能型,普及型和轻便型;按流量分高流量麻醉机和低流量麻醉机(也可施行高流量麻醉);按年龄分成人用麻醉机和小儿用麻醉机;兼用麻醉机:成人型附有小儿回路及风箱. 麻醉机的主要部件麻醉机包括:供气装置,流量计,蒸发器,通气系统,通气机,监测和报警装置,麻醉残气清除系统,各种附件和接头等. 通气机分类:按动力和控制分:气动气控,气动电控,电动电控;按使用习惯分:定量型,定压型.通气机分四个时相:吸气相:流量发生,压力发生 ;吸转呼相:时间,压力,容量,流量;呼气相:至大气压ZEEP,NEEP,PEEP及CPAP;呼转吸换:时间,压力,容量,触发. 通气方式分:定容式,定容式+Sigh(深呼吸),定压式.PSV:压力支持通气,自主呼吸启动的定压式辅助呼吸,适于哮喘,术后呼吸困难或准备脱离呼吸机时;CPAP:持续气道正压;SIMV:同步间歇指令通气;BIPAP:双水平气道正压;CPPV:持续正压通气. 小儿通气机的特点:潮气量50ml 以下,精确可调,通气机内管道压缩容积小,Y型管部死腔小,提供的气流为持续恒流. 麻醉机回路系统:分类:按重复吸入程度及有无二氧化碳吸收装置分为开放式,半开放式,半紧闭式及紧闭式四种(Eger分类法).开放系统:无重复吸入活瓣和贮气囊组成.半开放系统 :mapleson系统:无二氧化碳吸收装置的二氧化碳冲洗回路.经常使用的为A,D系统.Mapleson A系统:magil回路:贮气囊起新鲜气体的变流器作用,贮气囊大到足以满足一次深吸气的需要,即稍小于一次最大吸气量,为 2500 ~3000ml,一般2升即足.螺纹管长1米,内径22mm,容积应不小于(最好)等于潮气量,以防肺泡气与新鲜气流在贮气囊混合.自主呼吸时排除二氧化碳效果最好.控制呼吸与流量关系.新鲜气流必须增至每分钟通气量的3倍.Lack回路:同轴,呼气通过内管至呼气阀.Mapleson D 系统:排气阀高压型,贮气囊邻近排气阀.管及贮气囊容积超过病人的潮气量,则管的长度可不影响通气功能.自主呼吸,吸气后部分可能重复吸入含二氧化碳的气体.每分钟通气量的2-3倍.该系统最适宜应用于控制呼吸.Bain系统为mapleson系统改良型.同轴新鲜气流内管.Mapleson F系统(T管系统).半紧闭二氧化碳吸收回路:全麻药吸入浓度和含量较稳定,能保持呼吸道的的湿度和热量,残余气可排除.紧闭式二氧化碳吸收回路:二氧化碳吸收器:100g碱石灰可吸收14-23L二氧化碳,最多达50L .一般情况下,600-700g可至少使用5h,650ml普通罐串联,单罐时利用率为50%,串联为70%. 其他:包括呼吸和排气活瓣, APL阀,螺纹管,贮气囊,面罩,Y型,贮气囊5L,ISO推荐还有0.5,1,1.5,3L等规格. 蒸发器蒸发器的结构方式:按蒸气流量的调节方式分可变旁路型和定流量型;按蒸发方式分气流拂过型和气泡穿过型(鼓泡式).温度补偿方式有:供热源型和流量调节型.回路内的安放位置:回路内(少用)和回路外. 影响蒸发器输出浓度的因素:受温度,载气与药液接触面积,压力,稀释气流与载气流配比,麻醉药容积,振荡,回路内位置等因素的影响. 废气清除系统(AGSS):有主动式和被动式.二, 麻醉呼吸机的基本原理(一)工作原理呼吸机是实施机械通气的工具,用以辅助和控制病人的呼吸,改善病人的氧合与通气,减少呼吸肌作功,支持循环功能等及作为呼吸衰竭的治疗等. 呼吸机必须具备四个基本功能,即向肺充气,吸气向呼气转换,排出肺泡气以及呼气向吸气转换,依次循环往复.因此必须有能提供输送气体的动力,代替人体呼吸肌的工作;能产生一定的呼吸节律,包括呼吸频率和吸呼比,以代替人体呼吸中枢神经支配呼吸节律的功能;能提供合适的潮气量(VT)或分钟通气量(MV),以满足呼吸代谢的需要;供给的气体最好经过加温和湿化,代替人体鼻腔功能,并能供给高于大气中所含的O2量,以提高吸入O2浓度,改善氧合. 动力源:可用压缩气体作动力(气动)或电机作为动力(电动)呼吸频率及吸呼比亦可利用气动气控,电动电控,气动电控等类型,呼与吸气时相的切换,常于吸气时于呼吸环路内达到预定压力后切换为呼气(定压型)或吸气时达到预定容量后切换为呼气(定容型),不过现代呼吸机都兼有以上两种形式. 治疗用的呼吸机,常用于病情较复杂较重的病人,要求功能较齐全,可进行各种呼吸模式,以适应病情变化的需要.而麻醉呼吸机主要用于麻醉手术中的病人,病人大多无重大心肺异常,要求的呼吸机,只要可调通气量,呼吸频率及吸呼比者,能行IPPV,基本上就可使用. 绝大多数较常用麻醉呼吸机系由气囊(或折叠风箱)内外双环气路进行工作,内环气路,气流与病人气道相通,外环气路,气流主用以挤压呼吸囊或风箱,将气囊(或风箱内的新鲜气体压向病人肺泡内,以便进行气体交换,有称驱动气.因其与病人气道不通,可用压缩氧或压缩空气.三.使用麻醉机应当了解的几个问题(一)新鲜气体的供给麻醉机使用的新鲜气体可由压缩气筒或中心供气系统提供. 在使用压缩气筒时应严格按操作规程进行,先缓慢地稍稍开启压缩气筒,让气流冲掉可能积聚于出气口处的尘土等异物.选用规格适宜,功能正常的压力表和压力调节器与气筒出气口衔接,两者的接合必须牢固可靠,无漏气.将压力调节器的输出管与麻醉机输入管相联接.在开启气筒阀门前,应先将麻醉机上的所有针型阀门关闭,然后缓缓开启气筒阀门,这样可防止高压气流猛然冲击压力调节器和麻醉机.停用气体时,应先将气筒阀门关紧,待残留余气从麻醉机内全部排尽后,再将麻醉机上的所有阀门关闭,目的是使麻醉机内部不遗留有残气.卸除压力调节器之前,应先将气筒阀门关紧.高压气简只准在与压力调节器连接以后使用,两者连接应紧密,无漏气. 麻醉机使用的中心供气源,其氧气压必须保持在≥3.5kg/cm2.在中心供气的条件下,还必须备妥压缩氧气筒,以便随时更换使用.应在供气系统的出口部位常规安装压力表,以示中心气源压力水平,如发现压力未能持续恒定在3~4 kg/cm2,必须暂停使用,应更换压缩氧气瓶气源.在更换气源时,必须强调正确的操作规程.在各种气源的主供管路和区域管路上应安装报警系统.主供管路报警系统监测各种医疗气体的中心供应情况和压力变化.在依赖中心供气系统的各治疗区如手术室,麻醉恢复室等,必须设置区域报警系统,当区域供气系统压力低于或高于正常运行压力的20%时,即发出音响和视觉报警.(二)中心供气系统不足的原因主要有:输气管道损坏;人为错误将主供管路或区域关闭阀关闭;主供管路压力调节器的调节不合适;在正常维持运行中次供气源发生障碍;压力调节器功能失灵;自动转换装置失灵;管道阻塞(阻塞物常常是安装中遗留的碎屑);接头连接不紧密或存在裂纹;供气管路脱连接;外来设备压迫导致管道扭曲和阻塞等.中心供气系统的各种气体输出管道接头,需要严格遵循直径指数安全系统(DISS)标准,以防误连接造成气体供应错误.(三)麻醉气体的供给除N2O经由流量计控制直接输入环路与O2混合供病人吸入外,其它都由蒸发器所盛麻醉药液挥发后输出该麻醉药蒸汽.并按一定浓度供给病人吸入,故蒸发器可谓麻醉机的核心组成部分,关系到麻醉深浅及病人的安全. 现代麻醉机的蒸发器采用了一些专门的结构,以排除温度,流量,压力等因素的影响,能精确地稀释麻醉药蒸气的浓度.新鲜气流(O2 和N2O)到达蒸发器时分成两部分,一部分80%的气流从旁路直接通过蒸发器,两者于出口处汇合,其间的比例根据两者的不同阻力而定.浓度控制位于旁路通道或蒸发室出口处.转动浓度转盘后可以引起其间阻力的改变,从而使两者汇合的比例发生变化.这类蒸发器都是为特定的吸入麻醉药设计的,不能混用,称为可变旁路蒸发器.为了保持比较恒定的麻醉药气体浓度,现代蒸发器都具有完善的温度补偿,压力补偿和流量控制等装置. 地氟醚蒸发器不采用可变旁路的设计,而用电加热并保持39℃恒温,使蒸发室内的地氟醚蒸气压保持200kPa.新鲜气流不进入蒸发室.根据调节钮的开启位置和传感器测得的新鲜气流量的大小,蒸发室自动释放出一定量的地氟醚蒸气,与新鲜气流混合后输出.蒸发器内有两路气流相互独立,新鲜气流流经固定阻力R1时产生回压,称为工作压力,其大小取决于新鲜气流的流量.压差传感器感受R1处的工作压力,启动电子控制的压力调节阀,调节地氟醚蒸气输出的可变阻力R2,使R2处压力调节至相同于R1处的工作压力,再经浓度控制转盘调节后在出口与新鲜气流汇和输出.简而言之,通过电路将地氟醚蒸气调节至与新鲜气流相同的压力,再经刻度转盘调节浓度后输出.新鲜气流增加,工作压力也相应增加.在特定转盘刻度下,在不同新鲜气流时流经气流的比例不变,从而保证蒸发器输出的恒定.(四)低流量循环紧闭麻醉的呼吸回路低流量循环紧闭麻醉具有麻醉平稳,麻醉用药量少,不污染环境,有利于维持气道湿度等优点.但同时对麻醉装置也提出了较高的要求: 1.麻醉机低压系统和呼吸回路的密闭性能要良好,泄漏不得超过200ml/min. 2.要具有精准的气体流量计,在低流量情况下,送气亦要精确. 3.要有高质量的蒸发器,能在流量很低时(200ml/min)也能准确地输出麻醉药浓度. 4.麻醉呼吸机同样要高质量的,呼吸机送出的潮气量要精确. 5.二氧化碳吸收罐应有足够的容积,至少容纳500g以上的钠石灰. 6.呼吸回路以聚乙烯管为好,因其对麻醉药的吸收量小.(五)安全保障系统为了防止麻醉机输出低氧性气体,麻醉机的安全保障系统及使用麻醉机前的安全检查显得格外重要.一般麻醉机对于O2,N2O等不同气源的接口有不同的轴针及口径以防止接错.现代麻醉机还增加其它一些装置(如流量表联动装置,氧比例装置)以控制气体的输出比例. 即使麻醉机配备了联动装置或氧比例装置,在下述情况中,麻醉机仍将输出低氧性气体,应引起注意. (1)气源错误:流量表联动装置和氧比例装置只能感受和调节其内的气体压力和流量,不能识别氧源的真伪. (2)联动装置或氧比例装置故障:当装置的某部件损坏,出现故障时,可能发生低氧气体的输出. (3)其它气体的加入:目前麻醉机的气体比例装置只限于控制氧化亚氮和氧的比例,并未考虑其它气体的加入.因此,若加入氦,氮或二氧化碳等气体于麻醉气体中,则有可能产生低氧性气体的输出. (4)流量表泄漏:玻璃流量管是麻醉机气路部件中较易破损的部位,若存在轻微的裂痕不易被察觉,使输出气流量发生错误而导致缺氧.因此,准确测定混合气中麻醉气体的浓度可有效预防意外发生.质谱仪可同时测出混合气体内每种气体的浓度,是目前最先进的气体浓度分析仪,基本原理是呼出或吸入的气体被质谱仪内的电子束轰击下离解成离子,离子经加速和静电聚焦成离子束而后进入磁场,由偏转系统使各种离子分散成弧形轨道,每种离子的轨道半径与各自的电荷/质量比值成正比,质量大的半径大,于是不同种类的离子在空间分散开,形成质谱,再经离子收集器分别测量不同气体离子所带电流.电流量大小与气体离子数(即浓度)成正比.放大后经电子处理系统分析,很快显示出数值(mmHg或%)能同时迅速(<100ms,0%-90%,测出每次呼吸中各种气体浓度,可同时监测O2,N2O,CO2,N2及挥发性麻醉药.四.麻醉机的的使用1.潮气量的设置理论上,如系真正完全紧闭式环路,只需补充机体代谢消耗的氧量(4ml/(kg·min))即可.事实上,难免潜在程度不等的漏气,故必须注意使用足够的新鲜气流量.使用麻醉呼吸机时,麻醉与通气两者之间互相影响,由麻醉机提供持续新鲜气流,同时供病人通气和麻醉,其潮气量不单与风箱上下移动度有关,而与许多因素有关.输入环路的潮气量为预设定的风箱上下移动度与吸气相进入环路内的新鲜气流量.正常情况下,因新鲜气流量的改变引起潮气量轻微改变对于成人影响不大,但对小儿则可导致严重后果.因新鲜气流量的增加可能引起小儿过度通气甚至气压伤.麻醉中可通过许多方法评估预置潮气量是否合适,如听诊肺部,观察肺部活动幅度,使用潮气量计,环路内气量计,吸气峰压和CO2监测等.单凭观察风箱移动度容易发生差错.2.通气压力和呼吸频率间歇正压通气的通气压力正常时应1.47kFa(15cmH20)水平,气道峰压应低于2.94kPa(30cmH20).通气频率8~40次/分钟,可根据病人需要,通气效果及代谢状态进行调整,成人常为10~20次/分钟.使用呼气终末正压通气(PEEP)时,通常于呼气末保持的气道正压为0.49~1.47kPa(5~15cmH20).为选择最佳通气压力,可逐渐增加呼气末正压,并根据治疗反应寻找最佳PEEP值,而且随病情变化及时调整,把其对循环的干扰尽可能减少到最低程度. 麻醉中应用高频通气时,一般选用60~100次/分钟的通气频率即可维持满意的肺部气体交换,但以静脉麻醉为宜.当用吸入麻醉时则对吸入麻醉药的输出有较大影响.3麻醉呼吸机使用中的注意事项使用麻醉呼吸机前,需对其性能,参数和附件功能进行严格监测,并定期给予保养,发现异常应及时进行维修. 呼吸机内设置的解压阀可能出现某些故障,如阀门关闭不严,引导管脱落,活瓣破裂等.阀门关闭不严时,吸气相期间有大量麻醉气体异常地逸入废气清除系统,可导致呼吸机完全失灵.如果解压阀固定在关闭不启位置,则会引起肺气压伤. 气道压力监测是麻醉呼吸机所必需的,可监测通气功能,了解是否有足够正压;监测肺内或环路内压力变化,特别是吸气峰压的变化,吸气峰压增高常见于气管导管扭曲,气管导管开口于隆突附近或进入支气管,螺纹管受压不通,气道插入过粗的气体采样管等. 使用容量监测仪可连续监测呼出气潮气量,分钟通气量或同步监测两参数.宜将报警阚值设置在容量稍高或稍低的限值范围.五.麻醉机使用前安全检查麻醉前应对使用的麻醉机进行全面安全检查,这对于预防麻醉意外尤为重要.目前推荐使用1993年美国食品和药品管理局(FDA)发布的麻醉机安全检查程序.这一检查程序应与所使用麻醉机的用户操作手册结合起来并做出必要的修正与补充.麻醉机使用前应确认一些常规监测设备功能正常,如二氧化碳浓度监测,脉搏氧饱和度监测,呼吸回路氧分析仪,呼吸容量监测以及呼吸环路高,低压监测.还要注意麻醉挥发罐麻药液面的检查,其中以氧浓度检测,低压系统的泄漏试验和循环回路试验最为重要.(一)检查紧急通气装置证实备有功能良好的简易通气装置.(二)检查高压系统 1.氧气筒供氧 (1)打开氧气筒开关,证实至少有半筒(压力约为70kg/cm2或1000psi)的氧气量. (2)关闭氧气筒开关.2.检查中心供氧检查麻醉机管道已与中心供氧连接,压力表所示压力为3.5kg/cm2或50psi .(三)检查低压系统1.低压系统的初始状态 (1)关闭流量控制阀和蒸发器. (2)检查蒸发器内药液充满水平,关紧蒸发器加药口上的帽盖. 2.检查低压系统的逸漏 (1)证实机器总开关和流量控制阀已关闭. (2)在气体共同出口处接上"负压皮球". (3)重复挤压负压皮球直至完全萎陷. (4)证实完全萎陷的负压皮球至少保持10秒. (5)一次开放一个燕发器,重复上述第(3),(4)项操作. (6)卸下负压皮球,接上供给新鲜气体的软管. 低压系统泄漏试验主要检查流量控制阀到共同输出口之间的完整性.根据低压系统中有无止回阀,泄漏试验的方法有所不同.①无止回阀的麻醉机:如北美Drager 的麻醉机及大多数国产麻醉机.正压试验只能用于无止回阀的麻醉机的检查.而负压试验既可用于带止回阀的麻醉机,也可用于无止回阀的麻醉机.正压试验操作简便,但灵敏度稍差,常不能检测出90%. 氧浓度监测是评估麻醉机低压系统功能是否完好的最佳装置和方法,用于监测流量阀以后的气体浓度的变化.能预防氧比例系统局限性的情况中所造成的低氧的发生.2.检查呼吸环路的初始状态 (1)将转向开关转向手控(贮气囊)通气模式. (2)证实呼吸环路完好无损,无阻塞. (3)证实CO2吸收器内已装满吸收性能良好的钠石灰. (4)装上呼吸环路所需要的辅助部件.3.检查呼吸环路有无漏气 (1)关闭所有气体流量表至"零"(或最低).(2)关闭逸气活瓣(APL)和堵闭Y接管. (3)用快速充氧加压呼吸环路至30cmH2O. (4)肯定压力维持在30 cmH2O至少10秒. (5)打开逸气活瓣(APL)降低环路内压力之正常. (6)检查手控和自动机械通气系统和单向阀在Y形接管上接上另一个呼吸囊. 调整合适的通气参数. 氧流量升至250mI/min,其他气流关闭至"零". 转向开关转向自动通气模式. 启动呼吸机,快速充氧至折叠囊和呼吸皮囊内. 证实吸气相折叠囊能输出正确的潮气量,呼气时折叠囊能完全充满. 检查容量监测仪指示容量与通气参数能否保持一致. 检查单向阀工作是否正常. 测试呼吸环路各附件,保证功能正常. 关闭呼吸机,将开关转向手控通气. 继续进行手控通气,确定模拟肺的充气与排气,顺应性感觉恰如其分. 测毕从Y形接管上卸下呼吸囊. (7)检查所有监护仪的定标及其报警上下界限氧浓度监护仪. 脉搏氧饱和度监护仪. CO2浓度监护仪. 通气量监护仪(肺量计). 气道压监护仪. (8)最后检查机器的最终状态 APL阀开放. 蒸发器关闭. 转向开关处于手控位. 所有流量计位于零(或最小量). 确认吸引病人分泌物的吸引器吸引力已足够. 呼吸环路立即可用.。
麻醉机基础知识(结构、原理、常见问题、使用、检查)麻醉机基础知识----结构、原理、常见问题、使用、检查麻醉机是用于实施全身麻醉,供氧及进行辅助或控制呼吸的一套装置.要求提供的氧及吸入麻醉药的浓度应精确,稳定和容易控制.所以,优良的麻醉机,对于减少装置故障所造成的麻醉意外及对病人的安全,起着十分重要的作用.随着医学工程技术的发展,随着几十年来人们对麻醉机/呼吸机的不断研究和改进,现代麻醉机除了具有气路部分的基础构件外,还配备了电子,电脑控制和监测等仪器.多功能现代化的麻醉机和高水平的临床医师相结合,必将大大提高麻醉和机械通气治疗的安全性.掌握麻醉机知识是临床麻醉医师的必修课,怎样用好你手中的设备是你麻醉安全的关键.现代麻醉机构造和基本原理一.麻醉机构造麻醉机的分类:按功能结构分全能型,普及型和轻便型;按流量分高流量麻醉机和低流量麻醉机(也可施行高流量麻醉);按年龄分成人用麻醉机和小儿用麻醉机;兼用麻醉机:成人型附有小儿回路及风箱. 麻醉机的主要部件麻醉机包括:供气装置,流量计,蒸发器,通气系统,通气机,监测和报警装置,麻醉残气清除系统,各种附件和接头等. 通气机分类:按动力和控制分:气动气控,气动电控,电动电控;按使用习惯分:定量型,定压型.通气机分四个时相:吸气相:流量发生,压力发生 ;吸转呼相:时间,压力,容量,流量;呼气相:至大气压ZEEP,NEEP,PEEP及CPAP;呼转吸换:时间,压力,容量,触发. 通气方式分:定容式,定容式+Sigh(深呼吸),定压式.PSV:压力支持通气,自主呼吸启动的定压式辅助呼吸,适于哮喘,术后呼吸困难或准备脱离呼吸机时;CPAP:持续气道正压;SIMV:同步间歇指令通气;BIPAP:双水平气道正压;CPPV:持续正压通气. 小儿通气机的特点:潮气量50ml 以下,精确可调,通气机内管道压缩容积小,Y型管部死腔小,提供的气流为持续恒流. 麻醉机回路系统:分类:按重复吸入程度及有无二氧化碳吸收装置分为开放式,半开放式,半紧闭式及紧闭式四种(Eger分类法).开放系统:无重复吸入活瓣和贮气囊组成.半开放系统 :mapleson系统:无二氧化碳吸收装置的二氧化碳冲洗回路.经常使用的为A,D系统.Mapleson A系统:magil回路:贮气囊起新鲜气体的变流器作用,贮气囊大到足以满足一次深吸气的需要,即稍小于一次最大吸气量,为 2500 ~3000ml,一般2升即足.螺纹管长1米,内径22mm,容积应不小于(最好)等于潮气量,以防肺泡气与新鲜气流在贮气囊混合.自主呼吸时排除二氧化碳效果最好.控制呼吸与流量关系.新鲜气流必须增至每分钟通气量的3倍.Lack回路:同轴,呼气通过内管至呼气阀.Mapleson D 系统:排气阀高压型,贮气囊邻近排气阀.管及贮气囊容积超过病人的潮气量,则管的长度可不影响通气功能.自主呼吸,吸气后部分可能重复吸入含二氧化碳的气体.每分钟通气量的2-3倍.该系统最适宜应用于控制呼吸.Bain系统为mapleson系统改良型.同轴新鲜气流内管.Mapleson F系统(T管系统).半紧闭二氧化碳吸收回路:全麻药吸入浓度和含量较稳定,能保持呼吸道的的湿度和热量,残余气可排除.紧闭式二氧化碳吸收回路:二氧化碳吸收器:100g碱石灰可吸收14-23L二氧化碳,最多达50L .一般情况下,600-700g可至少使用5h,650ml普通罐串联,单罐时利用率为50%,串联为70%. 其他:包括呼吸和排气活瓣, APL阀,螺纹管,贮气囊,面罩,Y型,贮气囊5L,ISO推荐还有0.5,1,1.5,3L等规格. 蒸发器蒸发器的结构方式:按蒸气流量的调节方式分可变旁路型和定流量型;按蒸发方式分气流拂过型和气泡穿过型(鼓泡式).温度补偿方式有: 供热源型和流量调节型.回路内的安放位置:回路内(少用)和回路外. 影响蒸发器输出浓度的因素:受温度,载气与药液接触面积,压力,稀释气流与载气流配比,麻醉药容积,振荡,回路内位置等因素的影响. 废气清除系统(AGSS):有主动式和被动式.二, 麻醉呼吸机的基本原理(一)工作原理呼吸机是实施机械通气的工具,用以辅助和控制病人的呼吸,改善病人的氧合与通气,减少呼吸肌作功,支持循环功能等及作为呼吸衰竭的治疗等. 呼吸机必须具备四个基本功能,即向肺充气,吸气向呼气转换,排出肺泡气以及呼气向吸气转换,依次循环往复.因此必须有能提供输送气体的动力,代替人体呼吸肌的工作;能产生一定的呼吸节律,包括呼吸频率和吸呼比,以代替人体呼吸中枢神经支配呼吸节律的功能;能提供合适的潮气量(VT)或分钟通气量(MV),以满足呼吸代谢的需要;供给的气体最好经过加温和湿化,代替人体鼻腔功能,并能供给高于大气中所含的O2量,以提高吸入O2浓度,改善氧合. 动力源:可用压缩气体作动力(气动)或电机作为动力(电动)呼吸频率及吸呼比亦可利用气动气控,电动电控,气动电控等类型,呼与吸气时相的切换,常于吸气时于呼吸环路内达到预定压力后切换为呼气(定压型)或吸气时达到预定容量后切换为呼气(定容型),不过现代呼吸机都兼有以上两种形式. 治疗用的呼吸机,常用于病情较复杂较重的病人,要求功能较齐全,可进行各种呼吸模式,以适应病情变化的需要.而麻醉呼吸机主要用于麻醉手术中的病人,病人大多无重大心肺异常,要求的呼吸机,只要可调通气量,呼吸频率及吸呼比者,能行IPPV,基本上就可使用. 绝大多数较常用麻醉呼吸机系由气囊(或折叠风箱)内外双环气路进行工作,内环气路,气流与病人气道相通,外环气路,气流主用以挤压呼吸囊或风箱,将气囊(或风箱内的新鲜气体压向病人肺泡内,以便进行气体交换,有称驱动气.因其与病人气道不通,可用压缩氧或压缩空气.三.使用麻醉机应当了解的几个问题(一)新鲜气体的供给麻醉机使用的新鲜气体可由压缩气筒或中心供气系统提供. 在使用压缩气筒时应严格按操作规程进行,先缓慢地稍稍开启压缩气筒,让气流冲掉可能积聚于出气口处的尘土等异物.选用规格适宜,功能正常的压力表和压力调节器与气筒出气口衔接,两者的接合必须牢固可靠,无漏气.将压力调节器的输出管与麻醉机输入管相联接.在开启气筒阀门前,应先将麻醉机上的所有针型阀门关闭,然后缓缓开启气筒阀门,这样可防止高压气流猛然冲击压力调节器和麻醉机.停用气体时,应先将气筒阀门关紧,待残留余气从麻醉机内全部排尽后,再将麻醉机上的所有阀门关闭,目的是使麻醉机内部不遗留有残气.卸除压力调节器之前,应先将气筒阀门关紧.高压气简只准在与压力调节器连接以后使用,两者连接应紧密,无漏气. 麻醉机使用的中心供气源,其氧气压必须保持在≥3.5kg/cm2.在中心供气的条件下,还必须备妥压缩氧气筒,以便随时更换使用.应在供气系统的出口部位常规安装压力表,以示中心气源压力水平,如发现压力未能持续恒定在3~4 kg/cm2,必须暂停使用,应更换压缩氧气瓶气源.在更换气源时,必须强调正确的操作规程.在各种气源的主供管路和区域管路上应安装报警系统.主供管路报警系统监测各种医疗气体的中心供应情况和压力变化.在依赖中心供气系统的各治疗区如手术室,麻醉恢复室等,必须设置区域报警系统,当区域供气系统压力低于或高于正常运行压力的20%时,即发出音响和视觉报警.(二)中心供气系统不足的原因主要有:输气管道损坏;人为错误将主供管路或区域关闭阀关闭;主供管路压力调节器的调节不合适;在正常维持运行中次供气源发生障碍;压力调节器功能失灵;自动转换装置失灵;管道阻塞(阻塞物常常是安装中遗留的碎屑);接头连接不紧密或存在裂纹;供气管路脱连接;外来设备压迫导致管道扭曲和阻塞等.中心供气系统的各种气体输出管道接头,需要严格遵循直径指数安全系统(DISS)标准,以防误连接造成气体供应错误.(三)麻醉气体的供给除N2O经由流量计控制直接输入环路与O2混合供病人吸入外,其它都由蒸发器所盛麻醉药液挥发后输出该麻醉药蒸汽.并按一定浓度供给病人吸入,故蒸发器可谓麻醉机的核心组成部分,关系到麻醉深浅及病人的安全. 现代麻醉机的蒸发器采用了一些专门的结构,以排除温度,流量,压力等因素的影响,能精确地稀释麻醉药蒸气的浓度.新鲜气流(O2 和N2O)到达蒸发器时分成两部分,一部分80%的气流从旁路直接通过蒸发器,两者于出口处汇合,其间的比例根据两者的不同阻力而定.浓度控制位于旁路通道或蒸发室出口处.转动浓度转盘后可以引起其间阻力的改变,从而使两者汇合的比例发生变化.这类蒸发器都是为特定的吸入麻醉药设计的,不能混用,称为可变旁路蒸发器.为了保持比较恒定的麻醉药气体浓度,现代蒸发器都具有完善的温度补偿,压力补偿和流量控制等装置. 地氟醚蒸发器不采用可变旁路的设计,而用电加热并保持39℃恒温,使蒸发室内的地氟醚蒸气压保持200kPa.新鲜气流不进入蒸发室.根据调节钮的开启位置和传感器测得的新鲜气流量的大小,蒸发室自动释放出一定量的地氟醚蒸气,与新鲜气流混合后输出.蒸发器内有两路气流相互独立,新鲜气流流经固定阻力R1时产生回压,称为工作压力,其大小取决于新鲜气流的流量.压差传感器感受R1处的工作压力,启动电子控制的压力调节阀,调节地氟醚蒸气输出的可变阻力R2,使R2处压力调节至相同于R1处的工作压力,再经浓度控制转盘调节后在出口与新鲜气流汇和输出.简而言之,通过电路将地氟醚蒸气调节至与新鲜气流相同的压力,再经刻度转盘调节浓度后输出.新鲜气流增加,工作压力也相应增加.在特定转盘刻度下,在不同新鲜气流时流经气流的比例不变,从而保证蒸发器输出的恒定.(四)低流量循环紧闭麻醉的呼吸回路低流量循环紧闭麻醉具有麻醉平稳,麻醉用药量少,不污染环境,有利于维持气道湿度等优点.但同时对麻醉装置也提出了较高的要求: 1.麻醉机低压系统和呼吸回路的密闭性能要良好,泄漏不得超过200ml/min. 2.要具有精准的气体流量计,在低流量情况下,送气亦要精确. 3.要有高质量的蒸发器,能在流量很低时(200ml/min)也能准确地输出麻醉药浓度. 4.麻醉呼吸机同样要高质量的,呼吸机送出的潮气量要精确. 5.二氧化碳吸收罐应有足够的容积,至少容纳500g以上的钠石灰. 6.呼吸回路以聚乙烯管为好,因其对麻醉药的吸收量小.(五)安全保障系统为了防止麻醉机输出低氧性气体,麻醉机的安全保障系统及使用麻醉机前的安全检查显得格外重要.一般麻醉机对于O2,N2O等不同气源的接口有不同的轴针及口径以防止接错.现代麻醉机还增加其它一些装置(如流量表联动装置,氧比例装置)以控制气体的输出比例. 即使麻醉机配备了联动装置或氧比例装置,在下述情况中,麻醉机仍将输出低氧性气体,应引起注意. (1)气源错误:流量表联动装置和氧比例装置只能感受和调节其内的气体压力和流量,不能识别氧源的真伪. (2)联动装置或氧比例装置故障:当装置的某部件损坏,出现故障时,可能发生低氧气体的输出. (3)其它气体的加入:目前麻醉机的气体比例装置只限于控制氧化亚氮和氧的比例,并未考虑其它气体的加入.因此,若加入氦,氮或二氧化碳等气体于麻醉气体中,则有可能产生低氧性气体的输出. (4)流量表泄漏:玻璃流量管是麻醉机气路部件中较易破损的部位,若存在轻微的裂痕不易被察觉,使输出气流量发生错误而导致缺氧.因此,准确测定混合气中麻醉气体的浓度可有效预防意外发生.质谱仪可同时测出混合气体内每种气体的浓度,是目前最先进的气体浓度分析仪,基本原理是呼出或吸入的气体被质谱仪内的电子束轰击下离解成离子,离子经加速和静电聚焦成离子束而后进入磁场,由偏转系统使各种离子分散成弧形轨道,每种离子的轨道半径与各自的电荷/质量比值成正比,质量大的半径大,于是不同种类的离子在空间分散开,形成质谱,再经离子收集器分别测量不同气体离子所带电流.电流量大小与气体离子数(即浓度)成正比.放大后经电子处理系统分析,很快显示出数值(mmHg 或%)能同时迅速(<100ms,0%-90%,测出每次呼吸中各种气体浓度,可同时监测O2,N2O,CO2,N2及挥发性麻醉药.四.麻醉机的的使用1.潮气量的设置理论上,如系真正完全紧闭式环路,只需补充机体代谢消耗的氧量(4ml/(kg·min))即可.事实上,难免潜在程度不等的漏气,故必须注意使用足够的新鲜气流量.使用麻醉呼吸机时,麻醉与通气两者之间互相影响,由麻醉机提供持续新鲜气流,同时供病人通气和麻醉,其潮气量不单与风箱上下移动度有关,而与许多因素有关.输入环路的潮气量为预设定的风箱上下移动度与吸气相进入环路内的新鲜气流量.正常情况下,因新鲜气流量的改变引起潮气量轻微改变对于成人影响不大,但对小儿则可导致严重后果.因新鲜气流量的增加可能引起小儿过度通气甚至气压伤.麻醉中可通过许多方法评估预置潮气量是否合适,如听诊肺部,观察肺部活动幅度,使用潮气量计, 环路内气量计,吸气峰压和CO2监测等.单凭观察风箱移动度容易发生差错.2.通气压力和呼吸频率间歇正压通气的通气压力正常时应1.47kFa(15cmH20)水平,气道峰压应低于2.94kPa(30cmH20).通气频率8~40次/分钟,可根据病人需要,通气效果及代谢状态进行调整, 成人常为10~20次/分钟.使用呼气终末正压通气(PEEP)时,通常于呼气末保持的气道正压为0.49~1.47kPa(5~15cmH20).为选择最佳通气压力,可逐渐增加呼气末正压,并根据治疗反应寻找最佳PEEP 值,而且随病情变化及时调整,把其对循环的干扰尽可能减少到最低程度. 麻醉中应用高频通气时,一般选用60~100次/分钟的通气频率即可维持满意的肺部气体交换,但以静脉麻醉为宜.当用吸入麻醉时则对吸入麻醉药的输出有较大影响.3麻醉呼吸机使用中的注意事项使用麻醉呼吸机前,需对其性能,参数和附件功能进行严格监测,并定期给予保养,发现异常应及时进行维修. 呼吸机内设置的解压阀可能出现某些故障,如阀门关闭不严, 引导管脱落,活瓣破裂等.阀门关闭不严时,吸气相期间有大量麻醉气体异常地逸入废气清除系统,可导致呼吸机完全失灵.如果解压阀固定在关闭不启位置,则会引起肺气压伤. 气道压力监测是麻醉呼吸机所必需的,可监测通气功能,了解是否有足够正压;监测肺内或环路内压力变化,特别是吸气峰压的变化,吸气峰压增高常见于气管导管扭曲,气管导管开口于隆突附近或进入支气管,螺纹管受压不通,气道插入过粗的气体采样管等. 使用容量监测仪可连续监测呼出气潮气量,分钟通气量或同步监测两参数.宜将报警阚值设置在容量稍高或稍低的限值范围.五.麻醉机使用前安全检查麻醉前应对使用的麻醉机进行全面安全检查,这对于预防麻醉意外尤为重要.目前推荐使用1993年美国食品和药品管理局(FDA)发布的麻醉机安全检查程序.这一检查程序应与所使用麻醉机的用户操作手册结合起来并做出必要的修正与补充.麻醉机使用前应确认一些常规监测设备功能正常,如二氧化碳浓度监测,脉搏氧饱和度监测,呼吸回路氧分析仪,呼吸容量监测以及呼吸环路高,低压监测.还要注意麻醉挥发罐麻药液面的检查,其中以氧浓度检测,低压系统的泄漏试验和循环回路试验最为重要.(一)检查紧急通气装置证实备有功能良好的简易通气装置.(二)检查高压系统 1.氧气筒供氧 (1)打开氧气筒开关,证实至少有半筒(压力约为70kg/cm2或1000psi)的氧气量. (2)关闭氧气筒开关.2.检查中心供氧检查麻醉机管道已与中心供氧连接,压力表所示压力为3.5kg/cm2或50psi .(三)检查低压系统1.低压系统的初始状态 (1)关闭流量控制阀和蒸发器. (2)检查蒸发器内药液充满水平,关紧蒸发器加药口上的帽盖. 2.检查低压系统的逸漏 (1)证实机器总开关和流量控制阀已关闭. (2)在气体共同出口处接上"负压皮球". (3)重复挤压负压皮球直至完全萎陷. (4)证实完全萎陷的负压皮球至少保持10秒. (5)一次开放一个燕发器,重复上述第(3),(4)项操作. (6)卸下负压皮球,接上供给新鲜气体的软管. 低压系统泄漏试验主要检查流量控制阀到共同输出口之间的完整性.根据低压系统中有无止回阀,泄漏试验的方法有所不同.①无止回阀的麻醉机:如北美Drager 的麻醉机及大多数国产麻醉机.正压试验只能用于无止回阀的麻醉机的检查.而负压试验既可用于带止回阀的麻醉机,也可用于无止回阀的麻醉机.正压试验操作简便,但灵敏度稍差,常不能检测出90%. 氧浓度监测是评估麻醉机低压系统功能是否完好的最佳装置和方法,用于监测流量阀以后的气体浓度的变化.能预防氧比例系统局限性的情况中所造成的低氧的发生.2.检查呼吸环路的初始状态 (1)将转向开关转向手控(贮气囊)通气模式. (2)证实呼吸环路完好无损,无阻塞. (3)证实CO2吸收器内已装满吸收性能良好的钠石灰. (4)装上呼吸环路所需要的辅助部件.3.检查呼吸环路有无漏气 (1)关闭所有气体流量表至"零"(或最低).(2)关闭逸气活瓣(APL)和堵闭Y接管. (3)用快速充氧加压呼吸环路至30cmH2O. (4)肯定压力维持在30 cmH2O至少10秒. (5)打开逸气活瓣(APL)降低环路内压力之正常. (6)检查手控和自动机械通气系统和单向阀在Y形接管上接上另一个呼吸囊. 调整合适的通气参数. 氧流量升至250mI/min,其他气流关闭至"零". 转向开关转向自动通气模式. 启动呼吸机,快速充氧至折叠囊和呼吸皮囊内. 证实吸气相折叠囊能输出正确的潮气量,呼气时折叠囊能完全充满. 检查容量监测仪指示容量与通气参数能否保持一致. 检查单向阀工作是否正常. 测试呼吸环路各附件,保证功能正常. 关闭呼吸机,将开关转向手控通气. 继续进行手控通气,确定模拟肺的充气与排气,顺应性感觉恰如其分. 测毕从Y形接管上卸下呼吸囊. (7)检查所有监护仪的定标及其报警上下界限氧浓度监护仪. 脉搏氧饱和度监护仪. CO2浓度监护仪. 通气量监护仪(肺量计). 气道压监护仪. (8)最后检查机器的最终状态 APL阀开放. 蒸发器关闭. 转向开关处于手控位. 所有流量计位于零(或最小量). 确认吸引病人分泌物的吸引器吸引力已足够. 呼吸环路立即可用.。
最重要的麻醉设备:麻醉机原理汇总最重要的麻醉设备麻醉机(anesthesia machine)麻醉机是不可缺少的最重要的麻醉设备。
功能是向病人提供氧气、吸入麻醉药及进行呼吸管理。
麻醉机的发展:由简单的气路设备到复杂的以计算机为基础的控制器、显示器、报警器,即麻醉工作站。
优良麻醉机的特点:有防止缺氧的安全装置及必要的报警系统;有浓度精确的专用蒸器;备有适于麻醉时管理呼吸的通气机;生命体征监测仪;符合国际标准的各连接部件和麻醉通气系统;麻醉残气清除系统。
第一节麻醉机的基本结构高压系统:接受贮气筒压力,0.4MPa~15MPa。
中压系统:接受减压阀或中心供气系统压力后输出到流量控制器或快速充氧阀0.3~0.4MPa。
低压系统:由流量计至共同气体出口,略大于标准大气压(0.101325MPa)一、高压系统组成:挂轭、止回阀、压力表、减压阀轴针安全指示系统1.挂轭:支持固定小型贮气筒,保持气体的密封性及保证气体单方向进入麻醉机。
2.止回阀:只许气体进入机器,在未连接贮气筒时防止气体外流,而且使气体不能进入空的贮气筒。
3.减压阀:可将贮气筒的高压降低到0.3~0.4MPa,并使麻醉机使用更稳定的压力。
4.轴针安全指示系统用于防止不同气体的贮气筒安装差错。
各种贮气筒与麻醉机连接处的阀门接口上有两个大小不同、距离不等的轴孔。
麻醉机进气接口上有两个大小不同、距离不等的轴针,只有轴孔和轴针符合时,才能相互连接。
二、中压系统管道入口连接器、压力表、管道、气体压力出口、氧压中断安全装置、快速氧阀、减压阀、流量控制阀三、低压系统包括流量计、蒸发器控制阀、反压安全装置、低压管、共同气体出口、蒸发器等。
第二节供气系统一、气源液化气体或压缩气体21°C时,气体绝对压强超过0.28MPa70°C时,气体绝对压强超过0.72MPa液化气在37.8°C时,蒸汽压超过0.27MPa二、贮气筒气瓶,是贮存压缩氧气、二氧化碳、压缩空气和麻醉气体的密闭容器。
麻醉机的原理
麻醉机是医疗设备中的一种,用于给患者进行全身麻醉。
其工作原理是通过将麻醉药物和氧气混合后,送入患者的肺部,让其通过呼吸道进入体内。
麻醉机的主要组成部分包括:麻醉药物供应系统、氧气供应系统、呼吸回路、吸入阀和呼出阀等。
在使用前,医护人员需要将麻醉药物和氧气按照一定比例混合,并设置好吸入和呼出的流量。
在使用时,患者通过面罩或气管插管等方式,将混合后的氧气和麻醉药物吸入体内。
麻醉药物会在患者体内发挥作用,使其失去意识、疼痛感觉和自主呼吸能力,达到全身麻醉的效果。
同时,呼吸回路会将患者呼出的二氧化碳排出体外,保证体内氧气充足,并且可以通过呼出阀调整混合气体的浓度。
总之,麻醉机通过精准调整麻醉药物和氧气的比例和流速,确保患者得到良好的麻醉效果,同时保证其呼吸道通畅和氧气供应充足。
- 1 -。
现代麻醉机、呼吸机、监测仪的基本原理王景阳第二军医大学附属长海医院麻醉科现代麻醉机都组合有呼吸机与监测仪,现将有关基本原理分别叙述于下:一、麻醉机的基本原理1工作原理麻醉机的功能主要是用以输出麻醉气体,使病人处于麻醉状态下接受手术,因而首先要有供气装置,所供气体为O2、空气或N2O。
过去大多用贮气筒贮存的压缩O2或空气以及液体状态的N2O 供应。
现今多数城市大医院均建有中心供气系统,以提供上述三种气体。
临床麻醉中应用都需经过降压,保证恒定的低压和安全。
通常降压至3kg/cm2,输入麻醉机到呼吸环路还需经流量计减少气流量至每分钟的毫升数才能用于病人。
因环路内设有单向活门,故吸入或呼出气体按一定方向运行,呼吸环路之间又设有钠石灰罐。
于是在麻醉机环路内可进行正常呼吸,吸入氧或麻醉气体,呼出气体内的CO2流经钠石灰罐时被吸收。
2.麻醉气体的供给除N2O经由流量计控制直接输入环路与O2混合供病人吸入外,其它都由蒸发器所盛麻醉药液挥发后输出该麻醉药蒸汽。
并按一定浓度供给病人吸入,故蒸发器可谓麻醉机的核心组成部分,关系到麻醉深浅及病人的安全。
最简单的麻醉蒸发器是在盛有吸入麻醉药容器的上方空间通过一定量的O2、空气或N2O+O2混合气(有称稀释气体diluent gas),一小部分气体经过调节阀流入蒸发室,带走饱和麻醉蒸气(有称载气carrier gas),稀释气流与载气流在输出口汇合处混和成为含有一定百分比浓度麻醉蒸气的气流,进入呼吸环路供病人吸入。
气体流经蒸发室带出麻醉药蒸气所使用的方式有:⑴气流拂过型(flow-over),载气从麻醉药液面拂过,带走麻醉药蒸气分子。
多数麻醉机所用蒸发器均属此型(有称充气型plenum),气流主动进入蒸发室,室内为正压。
⑵气流抽吸型(Draw-over),与上不同的是借病人吸气的力量带出麻醉药蒸气,因而蒸发室内为负压。
气流通过所受阻力必须很低(如空气麻醉机)。
⑶鼓泡型(Bubble through),载气穿透麻醉药液使成无数小气泡,从而增加挥发面积。
第34章麻醉机麻醉机是用于实施全身麻醉、供氧及进行辅助或控制呼吸。
要求提供的氧及吸入麻醉药浓度应精确、稳定和容易控制。
现代麻醉机除了具有气路部分的基本构件外,还配备了电子、电脑控制和监测等仪器设备,因此,对操作和管理的要求较高。
高水平的麻醉医师和多功能现代麻醉机相结合,是当今麻醉的发展趋势,必将大大减少机械故障所致的意外事故发生。
麻醉机按功能多少、结构繁简可分为:①全能型: 结构复杂、功能齐全, 具有电子或电脑控制的呼吸管理系统、监测仪器、报警系统,有的还有自动记录系统。
②普及型: 结构及功能较前项简单,但仍具备基本和重要的结构和部件,如氧化亚氮自动截断装置等安全系统以及装备结构和功能简单的麻醉呼吸机。
③轻便型: 具备麻醉机的基本功能,但结构简单、轻便、搬动灵活或携带方便。
麻醉机按流量高低可分为: ①高流量麻醉机: 氧及氧化亚氮最低流量大多在0.5L/min以上,故只能进行较高流量麻醉。
②低流量麻醉机: 氧及氧化亚氮的最低流量可达0.02~0.03L/min,既可用于低流量麻醉,亦可施行高流量麻醉。
麻醉机按使用对象年龄可分为: ①成人用麻醉机; ②小儿用麻醉机; ③兼用型麻醉机: 成人麻醉机附有小儿呼吸回路和小儿呼吸机风箱。
第1节麻醉机的结构和原理麻醉机包括供气装置、流量计、蒸发器、通气系统、麻醉呼吸机、监测和报警装置、麻醉残气清除系统和各种附件与接头等(图34-1)。
图34-1现代麻醉机的结构一、供气装置(一) 气源现代麻醉机一般有氧、氧化亚氮以及空气的管道进气接口,通气硬质皮管与中心供气系统或压缩气筒连接。
此外,还配备相应的接口,直接与小压缩气筒联接,以供紧急时备用。
1. 压缩气筒压缩气筒亦称贮气筒或气瓶,是贮存压缩氧气、二氧化碳、压缩空气和氧化亚氮等气体的密闭容器。
压缩气筒均由能抗物理因素和化学因素影响、耐高温的全钢制成,筒壁至少厚0.94cm。
压缩气筒应有一定的膨胀性,但不应超过10%。