2015高考物理二轮专题辅导训练:专题1 第4讲 力与物体的曲线运动(二)
- 格式:doc
- 大小:222.20 KB
- 文档页数:4
第3讲力与物体的曲线运动(一)——平抛、圆周和天体运动专题提升训练一、选择题(1~10题为单项选择题,11~13题为多项选择题)1.[2015·北京市东城区高三综合练习(二)]如图所示,一冰球以速度v1在水平冰面上向右运动。
运动员沿冰面在垂直v1的方向上快速击打冰球,冰球立即获得沿击打方向的分速度v2。
不计冰面摩擦和空气阻力。
下列图中的虚线能正确反映冰球被击打后运动路径的是( )解析物体所受的合力与速度方向不在同一直线上时物体做曲线运动,合力与速度方向在同一直线上时物体做直线运动,题中冰球受击打后在水平方向上不受力,故做直线运动,选项C、D错误;实际运动的速度为合速度,根据平行四边形定则可知,合速度不可能沿击打的方向,一定沿以两分速度为邻边的平行四边形的对角线的方向,故选项A错误,B正确。
答案 B2.某星体O有两颗卫星M、N,由于M、N间相互作用的万有引力不可忽略,使两卫星M、N与星体O始终共线,且M、N两卫星始终位于星体O的同侧。
当两卫星M、N在如图1所示的圆轨道上环绕星体O运行时,下列说法正确的是( )图1A.卫星M的加速度小于卫星N的加速度B.卫星M的速度小于卫星N的速度C.星体O对卫星N的引力与卫星N做圆周运动的向心力相等D.星体O对卫星N的引力大于卫星N做圆周运动的向心力解析由于卫星M和卫星N绕星体O运动的轨道都是圆轨道,且在星体O的同侧并始终共线,所以角速度相同,由a=ω2r可知,卫星M做圆周运动的加速度大于卫星N做圆周运动的加速度,A 错误;由v =ωr 可知,卫星M 做圆周运动的速度大于卫星N 做圆周运动的速度,B 错误;卫星N 做圆周运动的向心力是由M 、O 对它的万有引力的合力提供的,所以卫星N 做圆周运动的向心力小于星体O 对它的万有引力,C 错误,D 正确。
答案 D3.(2015·天津理综,4)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图2所示。
目录专题一直线运动的规律 (1)专题二力与物体的平衡 (6)专题三牛顿运动定律 (10)专题四曲线运动 (14)专题五万有引力与天体运动 (18)专题六功和能 (22)专题七静电场 (27)专题八直流电路 (31)专题九带电粒子在电磁场中的运动 (36)专题十电磁感应与能量变化 (42)专题十一交流电路和变压器 (47)专题十二振动和波光学 (52)专题十三热学(自选模块) (55)专题十四动量守恒定律原子和原子核 (57)专题一直线运动的规律一、单项选择题1.(仿2013四川,6T)甲、乙两物体在同一直线上做匀变速直线运动,它们的速度图象如图5所示,则下列描述正确的是().A.甲、乙两物体运动方向一定相反B.甲物体的加速度比乙物体的加速度大C.前4 s内甲、乙两物体的位移相同图5D .t =4 s 时,甲、乙两物体的速度相同解析 由v -t 图象可知甲、乙两物体均沿正方向运动,A 错误;图线斜率的大小表示加速度的大小,甲图线的斜率小于乙图线的斜率,故甲物体的加速度比乙物体的加速度小,B 错误;图线与时间轴围成的面积表示位移的大小,由图象可知,前4 s 内甲物体的位移小于乙物体的位移,C 错误;两图线的交点表示两物体的速度相同,故t =4 s 时,甲、乙两物体的速度相同,D 正确. 答案 D2.(仿2012江苏高考,4T)某人将小球以初速度v 0竖直向下抛出,经过一段时间小球与地面碰撞,然后向上弹回.以抛出点为原点,竖直向下为正方向,小球与地面碰撞时间极短,不计空气阻力和碰撞过程中动能损失,则下列图象中能正确描述小球从抛出到弹回的整个过程中速度v 随时间t 的变化规律的是 ( ).解析 从抛出到落地,小球竖直向下做初速度为v 0的匀加速直线运动(方向为正,图线在时间轴上方);之后,小球落地原速率反弹,然后竖直向上做匀减速直线运动(方向为负,图线在时间轴下方).整个运动过程中,加速度为g ,方向竖直向下(正方向),所以斜率始终为正,选项C 图正确.答案 C二、不定项选择题3.(仿2012山东高考,16T)“星跳水立方”节目中,某明星从跳板处由静止往下跳的过程中(运动过程中某明星可视为质点),其速度—时间图象如图6所示,则下列说法正确的是( ). A .跳板距离水面的高度为10 m B .该明星入水前处于失重状态,入水后处于超重状态C .1 s 末该明星的速度方向发生改变D .该明星在整个下跳过程中的平均速度是5 m/s图6解析 由图象面积的意义得跳板距离水面的高度为h =12×10×1 m =5 m ,A错.入水前具有竖直向下的加速度,处于失重状态,入水后具有竖直向上的加速度,处于超重状态,B 项正确.1 s 末速度方向不变,C 项错.由平均速度的定义式得v -=12×10×1.51.5m/s =5 m/s ,D 项正确. 答案 BD4.(仿2013广东高考,20T)一质量为m 的滑块在粗糙水平面上滑行,通过频闪照片分析得知,滑块在最开始2 s 内的位移是最后2 s 内位移的两倍,且已知滑块最开始1 s 内的位移为2.5 m ,由此可求得( ). A .滑块的加速度为5 m/s 2B .滑块的初速度为5 m/sC .滑块运动的总时间为3 sD .滑块运动的总位移为4.5 m解析 根据题意可知,滑块做末速度为零的匀减速直线运动,其逆运动是初速度为零的匀加速直线运动,设其运动的总时间为t ,加速度为a ,设逆运动最初2 s 内位移为x 1,最后2 s 内位移为x 2,由运动学公式有x 1=12a ×22,x 2=12at 2-12a (t -2)2,且x 2=2x 1;2.5=12at 2-12a (t -1)2,联立以上各式并代入数据可解得a =1 m/s 2,t =3 s ,A 错误,C 正确;v 0=at =1×3 m/s =3 m/s ,B错误;x =12at 2=12×1×32 m =4.5 m ,D 正确.答案 CD三、实验题5.(仿2012山东高考,21(1)T)物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数.实验装置如图7所示,一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源的频率为50 Hz.开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运 图7动,在纸带上打出一系列小点.图8(1)上图给出的是实验中获取的一条纸带的一部分,0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个点(图中未标出),计数点间的距离如图8所示.根据图中数据计算得加速度a=________(保留三位有效数字).(2)回答下列两个问题:①为测量动摩擦因数,下列物理量中还应测量的有________.(填入所选物理量前的字母)A.木板的长度l B.木板的质量m1C.滑块的质量m2D.托盘和砝码的总质量m3E.滑块运动的时间t②测量①中所选定的物理量时需要的实验器材是___________________ _____________________________________________________.(3)滑块与木板间的动摩擦因数μ=________(用被测物理量的字母表示,重力加速度为g).与真实值相比,测量的动摩擦因数________(填“偏大”或“偏小”).写出支持你的看法的一个论据:________________________________ ________________________________________.解析(1)用逐差法进行数据处理,取后六个数据,分成两组,根据Δx=aT2,整理得a=[(3.39+3.88+4.37)-(1.89+2.40+2.88)]×10-2(3×5×0.02)2m/s2=0.497m/s2.(2)①根据牛顿第二定律得:m3g-μm2g=(m2+m3)a,所以还需要测量的物理量是滑块质量m2、托盘和砝码的总质量m3.②测量质量的实验器材是天平.(3)由(2)中的表达式得出动摩擦因数为μ=m3g-(m2+m3)am2g.由于纸带与限位孔之间有摩擦或托盘下落时受空气阻力,加速度a的真实值偏小,所以实验测得的动摩擦因数与真实值相比偏大.答案 (1)0.497 m/s 2(0.495 m/s 2~0.497 m/s 2均可)(2)①CD ②天平(3)m 3g -(m 2+m 3)a m 2g偏大 纸带与限位孔间有摩擦 四、计算题6.(仿2011新课标全国高考,24T)一传送带装置如图9所示,其中AB 段是水平的,长度L AB =4 m ,BC段是倾斜的,长度L BC =5 m ,倾角为θ=37°,AB和BC 由B 点通过一段短的圆弧连接(图中未画出圆弧),传送带以v =4 m/s 的恒定速率顺时针运转,已知工件与传送带间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2.现将一个工件(可看做质点)无初速度地放在A 点,求:(1)工件第一次到达B 点所用的时间;(2)工件沿传送带上升的最大高度;(3)工件运动了23 s 后所在的位置.解析 (1)工件刚放在水平传送带上的加速度为a 1.由牛顿第二定律得μmg =ma 1,解得a 1=μg =5 m/s 2.经t 1时间工件与传送带的速度相同,解得t 1=v a 1=0.8 s. 前进的位移为x 1=12a 1t 12=1.6 m.此后工件将与传送带一起匀速运动至B 点,用时t 2=L AB -x 1v =0.6 s.所以工件第一次到达B 点所用的时间t =t 1+t 2=1.4 s.(2)在倾斜传送带上工件的加速度为a 2,由牛顿第二定律得μmg cos θ-mg sin θ=ma 2.解得a 2=-2 m/s 2由速度位移公式得0-v 2=2a 2h m sin θ,解得h m =2.4 m. (3)工件沿传送带向上运动的时间为t 3=2h m v sin θ=2 s. 此后由于工件在传送带的倾斜段运动时的加速度相同,在传送带的水平段运动时的加速度也相同,故工件将在传送带上做往复运动,其周期为T ,则T 图9=2t 1+2t 3=5.6 s.工件从开始运动到第一次返回传送带的水平部分,且速度变为零所需时间t 0=2t 1+t 2+2t 3=6.2 s ,而23 s =t 0+3T .这说明经过23 s 后工件恰好运动到传送带的水平部分,且速度为零.故工件在A 点右侧,到A 点的距离x =L AB -x 1=2.4 m.答案 (1)1.4 s (2)2.4 m (3)在A 点右侧2.4 m专题二 力与物体的平衡一、单项选择题1.(仿2012新课标全国高考,16T)如图6所示,不计质量的光滑小滑轮用细绳悬挂于墙上O 点,跨过滑轮的细绳连接物块a 、b ,a 、b 都处于静止状态,现将物块b 移至c 点后,a 、b 仍保持静止,下列说法中正确的是 ( ). A .b 与水平面间的摩擦力减小B .拉b 的绳子的拉力增大C .悬于墙上的绳所受拉力增大D .a 、b 静止时,图中α、β、θ三角始终相等解析 对滑轮,由于两侧绳的拉力大小相等,等于物块a 的重力,由对称性可知α=β,又因为α=θ,所以D 正确.由于两侧绳拉力的夹角增大,故悬于墙上的绳所受拉力减小,C 错误.对b ,由F T sin(α+β)=F f 可知,随α、β的增大,b 与水平面间的摩擦力增大,A 错误.答案 D2.(仿2013新课标全国高考Ⅱ,15T)如图7所示,质图6量为m 的木块A 放在质量为M 的三角形斜劈上,现用大小均为F ,方向相反的水平力分别推A 和B ,它们均静止不动,则( ).A .A 与B 之间一定存在摩擦力B .B 与地面之间一定存在摩擦力C .B 对A 的支持力一定小于mgD .地面对B 的支持力的大小一定等于(M +m )g解析 A 受F 、重力、B 对A 的支持力作用,可以三力平衡,A 错;A 与B 构成的整体受大小相等方向相反的两个力F 作用,合力为零,故B 与地面间无摩擦力,B 错;若A 与B 间无摩擦力,B 对A 的支持力为A 的重力与F 的合力,大于mg ,C 错;竖直方向上A 与B 构成的整体受重力与地面支持力,所以地面对B 的支持力的大小一定等于(M +m )g ,D 正确.答案 D二、不定项选择题3.(仿2012浙江高考,14T)如图8所示物块a 、b 、c 叠放在一起,重均为100 N ,小球P 重20 N ,作用在物块b 上的水平力为10 N ,整个系统处于静止状态,以下说法正确的是 ( ).A .a 和b 之间的摩擦力是10 NB .b 和c 之间的摩擦力是10 NC .c 和桌面间的摩擦力是10 ND .c 对桌面的摩擦力方向向左解析 选a 为研究对象知,a 和b 之间的摩擦力为零,A 项错;选三段绳的结点为研究对象知水平绳的拉力F T =G P =20 N ,选b 为研究对象,由平衡条件得bc 之间的摩擦力为10 N ,B 项正确;选abc 整体为研究对象分析由平衡条件得c 和桌面之间的摩擦力为10 N ,c 对桌面的摩擦力方向向右,C 对,D 错.答案 BC4.(仿2012安徽高考,17T)如图9所示,固定半 图8图9球面由两种材料做成,球右侧是光滑的,左侧是粗糙的,O 点为其球心,A 、B 为两个完全相同的小物块(可视为质点),小物块A 静止在球面的左侧,受到的摩擦力大小为F 1,对球面的压力大小为N 1;小物块B 在水平力F 2作用下静止在球的右侧,对球面的压力大小为N 2.已知两小物块与球心连线和水平方向的夹角均为θ,则 ( ).A .F 1∶F 2=sin θ∶1B .F 1∶F 2=cos 2θ∶1C .N 1∶N 2=cos θ∶1D .N 1∶N 2=sin 2θ∶1解析 A 、B 受力如图所示对A :F 1=mg cos θ,N 1=mg sin θ对B :F 2=mg tan θ,N 2=mg sin θ则F 1∶F 2=sin θ∶1,N 1∶N 2=sin 2θ∶1.答案 AD三、实验题5.(仿2012浙江高考,22T)将橡皮筋的一端固定在A 点,另一端拴上两根细绳,每根细绳分别连着一个量程为5 N 、最小刻度为0.1 N 的弹簧测力计,沿着两个不同的方向拉弹簧测力计,当橡皮筋的活动端拉到O 点时,两根细绳相互垂直,如图10所示.这时弹簧测力计的读数可从图中读出.图10 图11(1)由图可读得两个相互垂直的拉力的大小分别为________ N 和______ N.(2)在如图11所示的方格纸上按作图法的要求画出这两个力及它们的合力. 解析 (1)弹簧测力计的最小刻度为0.1 N ,读数时应估读一位,所以读数分别为2.50 N 和4.00 N.(2)取一个小方格的边长表示0.50 N ,作出两个力及它们的合力如图所示.答案 (1)2.50 4.00 (2)见解析四、计算题6.(仿2013山东高考,22T)明理同学很注重锻炼身体,能提起50 kg 的重物.现有一个倾角为15°的粗糙斜面,斜面上放有重物,重物与斜面间的动摩擦因数μ=33≈0.58,求他能沿斜面向上拉动重物质量的最大值.解析 该同学能产生的最大拉力为F ,由题意得F =mg ① 设该同学在斜面上拉动重物M 的力F 与斜面成φ角,重物受力如图所示.由平衡条件知垂直斜面方向F N +F sin φ-Mg cos φ=0② 平行斜面方向F cos φ-μF N -Mg sin θ=0③ 联立②③式得M =F g ·sin φ+μsin φμcos θ+sin θ④ 令μ=tan α⑤联立④⑤式得,M=Fg·cos(α-φ)sin(θ+α)⑥要使质量最大,分子须取最大值,即cos(α-φ)=1,即α=φ⑦此时拉动的重物的质量的最大值为M max=Fg·1sin(θ+α). ⑧由题给数据tan α=33,即α=30°. ⑨联立⑦⑧⑨式代入数值解得,M max=2m=70.7 kg. ⑩答案70.7 kg专题三牛顿运动定律一、单项选择题1.(仿2012新课标全国高考,14T)牛顿的三大运动定律构成了物理学和工程学的基础.它的推出、地球引力的发现和微积分的创立使得牛顿成为过去一千多年中最杰出的科学巨人之一.下列说法中正确的是().A.牛顿第一定律是牛顿第二定律的一种特例B.牛顿第二定律在非惯性系中不成立C.两物体之间的作用力和反作用力是一对平衡力D.为纪念牛顿,人们把“力”定义为基本物理量,其基本单位是“牛顿”解析牛顿第一定律是独立的物理学定律,并不是牛顿第二定律的一种特例,A错误;牛顿第二定律成立的条件是宏观、低速、惯性系,在非惯性系中不成立,B正确;两物体之间的作用力与反作用力是分别作用在两个物体上,并不是一对平衡力,C错误;为纪念牛顿,人们把“力”的单位规定为“牛顿”,力不是基本物理量,D错误.答案 B2.(仿2013安徽高考,14T)质量为M 的光滑圆槽放在光滑水平面上,一水平恒力F 作用在其上促使质量为m的小球静止在圆槽上,如图3所示,则( ). A .小球对圆槽的压力为MF M +mB .小球对圆槽的压力为mF M +mC .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增大D .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小 解析 由整体法可求得系统的加速度a =F M +m ,小球对圆槽的压力F N =m g 2+a 2=mg 2+F 2(M +m )2,当F 增大后,F N 增大,只有选项C 正确. 答案 C3.(仿2013新课标全国高考Ⅱ,14T)如图4所示,一根轻弹簧竖直直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端点O ,将弹簧压缩,弹簧被压缩了x 0时,物块的速度变为零.从物块与弹簧接触开始,物块加速度的大小随下降的位移x 变化的图象可能是下图中的 ( ).解析 物块从接触弹簧到弹簧被压缩到最短,物块受到弹力和重力两个力的作用,物块到达平衡位臵之前,合外力向下,由牛顿第二定律得:mg -kx =ma 1,得:a 1=g -k m x图3 图4物块到达平衡位臵之后,合外力向上,由牛顿第二定律得:kx-mg=ma2,得:a2=km x-g可见,物块到达平衡位臵前后,a-x图象均为直线,且斜率的绝对值相等,物块刚接触弹簧时加速度为重力加速度.由于物块从弹簧上端落下来,故到其速度减为零时,加速度大于重力加速度.设物块到达平衡位臵时弹簧压缩了x1,物块速度减为零时弹簧压缩了x0,这时有:x1=mgk,a2=km x0-g>g,x0>2mgk,所以x1<12x0,图象D正确.答案 D二、不定项选择题4.(仿2013新课标全国高考Ⅰ,21T)如图5所示,物块的质量m=1 kg,初速度v0=10 m/s,在一水平向左的恒力F作用下从O点沿粗糙的水平面向右运动,某时刻后恒力F突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图6所示,g=10 m/s2.下列选项中正确的是().图5图6A.2 s~3 s内物块做匀减速运动B.在t=1 s时刻,恒力F反向C.恒力F大小为10 ND.物块与水平面间的动摩擦因数为0.3解析由运动学公式v2-v02=2ax可知,v2-x图象中前5 m图线的斜率为2a,所以在前5 m内,物块以10 m/s2的加速度做减速运动,减速时间为1 s.5 m~13 m的运动过程中,物块以4 m/s2的加速度做加速运动,加速时间为2 s,即物块在1 s~3 s内做加速运动,A错误,B正确.根据牛顿第二定律可知,在减速的过程中,F+μmg=ma1,加速过程中F-μmg=ma2,代入数据可解得F=7 N ,μ=0.3,所以C 错误,D 正确.答案 BD三、实验题5.(仿2013天津高考,9T)在探究加速度与力、质量的关系实验中,采用如图7所示的实验装置,小车及车中砝码的质量用M 表示,盘及盘中砝码的质量用m 表示,小车的加速度可由小车拖动的纸带打出的点计算出. (1)当M 与m 的大小关系满足________时,才可以认为绳对小车的拉力大小等于盘及盘中砝码的重力.(2)一组同学在做加速度与质量的关系实验时,保持盘及盘中砝码的质量一定,改变小车及车中砝码的质量,测出相应的加速度,采用图象法处理数据.为了比较容易地观测加速度a 与质量M 的关系,应该做a 与________的图象.(3)乙、丙同学用同一装置做实验,画出了各自得到的a-1M 图线如图8所示.两个同学做实验时的哪一个物理量取值不同?解析 (1)只有M 与m 满足M ≫m 才能使绳对小车的拉力近似等于盘及盘中砝码的重力.(2)由于a ∝1M ,所以a -1M 图象应是一条过原点的直线,所以数据处理时,常作出a 与1M 的图象.(3)两小车及车上的砝码的总质量相等时,由图象知乙的加速度大,故乙的拉力F 大(或乙的盘及盘中砝码的质量大).答案 (1)M ≫m (2)1M (3)拉力F四、计算题6.(仿2013安徽高考,22T)放在水平地面上的一物块,受到方向不变的水平推力F 的作用,力F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图9所示.重力加速度g =10 m/s 2.求:图7图8图9(1)物块在运动过程中受到的滑动摩擦力大小;(2)物块在3~6 s 中的加速度大小;(3)物块与地面间的动摩擦因数.解析 (1)由v -t 图象可知,物块在6~9 s 内做匀速运动,则F f =F 3由F -t 图象知,6~9 s 的推力F 3=4 N ,故F f =4 N.(2)由v -t 图象可知,3~6 s 内做匀加速运动,由a =v t -v 0t 得a =2 m/s 2.(3)在3~6 s 内,由牛顿第二定律有F 2-F f =ma 得m =1 kg ,且F f =μF N =μmg .则μ=F f mg =0.4.答案 (1)4 N (2)2 m/s 2 (3)0.4专题四 曲线运动一、单项选择题1.(仿2011江苏高考,3T)如图7所示,一条小船位于200 m 宽的河中央A 点处,从这里向下游100 3 m 处有一危险的急流区,当时水流速度为4 m/s ,为使小船避开危险区沿直线到达对岸,小船在静水中的速度至少为 ( ).图7 A.433 m/s B.833 m/sC.2 m/s D.4 m/s解析小船刚好避开危险区域时,小船合运动方向与水流方向的夹角为30°,当船头垂直合运动方向渡河时,小船在静水中的速度最小,可以求出小船在静水中最小速度为2 m/s,C正确.答案 C2.(仿2012新课标全国高考,15T)如图8所示,在距水平地面H和4H高度处,同时将质量相同的a、b两小球以相同的初速度v0水平抛出,则以下判断正确的是().图8A.a、b两小球同时落地B.两小球落地速度方向相同C.a、b两小球水平位移之比为1∶2D.a、b两小球水平位移之比为1∶4解析a、b两小球均做平抛运动,由于下落时间t=2hg,水平位移x=v02hg,将h a=H,h b=4H代入上述关系式可得A、D错误,C正确;两小球落地时速度方向均与落地点沿轨迹的切线方向一致,所以B错误.答案 C3.(仿2012浙江高考,18T)一水平放置的圆盘,可以绕中心O点旋转,盘上放一个质量为m的铁块(可视为质点),轻质弹簧一端连接铁块,另一端系于O 点,铁块与圆盘间的动摩擦因数为μ,如图9所示.铁块随圆盘一起匀速转动,铁块距中心O点的距离为r,这时弹簧的拉力大小为F,g取10 m/s2,已知铁块受到的最大静摩擦力等于滑动摩擦力,则圆盘的角速度可能是().图9A .ω≥F +μmg mr B .ω≤F -μmg mr C.F -μmg mr <ω<F +μmg mr D.F -μmgmr ≤ω≤F +μmgmr 解析 当铁块匀速转动时,水平方向上铁块受弹簧拉力和静摩擦力的作用,转速较小时,静摩擦力背向圆心,则F -F f =mω2r ,因最大静摩擦力F f m =μmg ,得ω≥F -μmg mr ,选项B 错误;转速较大时,静摩擦力指向圆心,则F +F f =mω2r ,因最大静摩擦力F f m =μmg ,解得ω≤F +μmgmr .综合以上情况可知,角速度ω的取值范围为F -μmg mr ≤ω≤F +μmgmr . 答案 D 4.(仿2013江苏高考,7T)如图10所示,在竖直放置的半圆形容器的中心O 点分别以水平初速度v 1、v 2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A 点和B 点,已知OA 与OB 互相垂直,且OA 与竖直方向成α角,则两个小球初速度之比v 1v 2为( ). A .tan αB .cos αC .tan αtan αD .cos αcos α解析 两小球被抛出后都做平抛运动,设容器半径为R ,两小球运动时间分 图10别为t 1、t 2,对A 球:R sin α=v 1t 1,R cos α=12gt 12;对B 球:R cos α=v 2t 2,R sin α=12gt 22,联立解得:v 1v 2=tan αtan α,C 项正确. 答案 C二、计算题5.(仿2013福建高考,20T)山地滑雪是人们喜爱的一项运动,一滑雪道ABC 的底部是一半径为R 的圆,圆与雪道相切于C 点,C 点的切线水平,C 点与水平雪地间距离为H ,如图11所示,D 是圆的最高点,一运动员从A 点由静止下滑,刚好能经过圆轨道最高点D 旋转一周,再经C 后被水平抛出,当抛出时间为t 时,迎面水平刮来一股强风,最终运动员以速度v 落到了雪地上,已知运动员连同滑雪装备的总质量为m ,重力加速度为g ,不计遭遇强风前的空气阻力和雪道及圆轨道的摩擦阻力,求:(1)A 、C 的高度差为多少时,运动员刚好能过D 点?(2)运动员刚遭遇强风时的速度大小及距地面的高度;(3)强风对运动员所做的功.解析 (1)运动员恰好做完整的圆周运动,则在D 点有:mg =m v D 2R ,从A 运动到D 的过程由动能定理得mg (h -2R )=12m v D 2,联立解得h =5R 2.(2)运动员做平抛运动,运动时间t 时在竖直方向的速度为v y =gt ,从A 到C由动能定理得52mgR =12m v C 2所以运动员刚遭遇强风时的速度大小为v 1=v C 2+v y 2=5gR +g 2t 2,此时运动员下落高度为h 1=12gt 2所以此时运动员距地面高度为h 2=H -h 1=H -12gt 2(3)设强风对运动员所做的功为W ,在运动员的整个运动过程中,由动能定理知W =12m v 2-mg ⎝ ⎛⎭⎪⎫H +52R .图11答案 (1)5R 2 (2)5gR +g 2t 2 H -12gt 2(3)12m v 2-mg ⎝ ⎛⎭⎪⎫H +52R 6.(仿2013重庆高考,8T)如图12所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半,内壁上有一质量为m 的小物块,求: (1)当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;(2)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.解析 (1)设圆锥筒与水平面夹角为θ,当筒不转动时,物块静止在筒壁A 点时受到重力、摩擦力和支持力三力作用而平衡,由平衡条件得摩擦力的大小为:F f =mg sin θ=H H 2+R 2mg 支持力的大小为:F N =mg cos θ=RH 2+R 2 mg . (2)当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A 点只受到重力和支持力的作用,它们的合力提供向心力.设筒转动的角速度为ω,则mg tan θ=m ω2·R 2,由几何关系得:tan θ=H R联立以上各式解得:ω=2gH R .答案 (1)H H 2+R 2mg R H 2+R 2mg (2)2gHR 专题五 万有引力与天体运动图12一、单项选择题1.(仿2012新课标全国高考,21T)设地球是一质量分布均匀的球体,O 为地心.已知质量分布均匀的球壳对壳内物体的引力为零.在下列四个图中,能正确描述x 轴上各点的重力加速度g 的分布情况的是 ( ).解析 在地球内部距圆心为r 处,G M ′m r 2=mg ′,内部质量M ′=ρ·43πr 3,得g ′=4πGr 3,g ′与r 成正比;在地球外部,重力加速度g ′=G M r 2,与1r 2成正比,选项A 正确.答案 A2.(仿2011新课标全国高考,19T)2012年6月18日,“神舟九号”飞船与“天宫一号”目标飞行器成功实现自动交会对接.设地球半径为R ,地球表面重力加速度为g .对接成功后,“神舟九号”和“天宫一号”一起绕地球运行的轨道可视为圆周轨道,轨道离地球表面的高度约为119R ,运行周期为T ,则( ).A .地球质量为⎝ ⎛⎭⎪⎫201924π2GT 2R 2B .对接成功后,“神舟九号”飞船的线速度为40πR 19TC .对接成功后,“神舟九号”飞船里的宇航员受到的重力为零D .对接成功后,“神舟九号”飞船的加速度为g解析 对接成功后,“神舟九号”飞船的绕行轨道半径为2019R ,由GMm ⎝ ⎛⎭⎪⎫20R 192=m ⎝ ⎛⎭⎪⎫2πT 2·2019R ,解得地球质量为M =⎝ ⎛⎭⎪⎫201934π2GT 2R 3,选项A 错误;对接成功后,“神舟九号”飞船的线速度为v =2π·20R 19T =40πR 19T ,选项B 正确;对接成功后,“神舟九号”飞船的加速度小于g ,飞船里的宇航员受到的重力不为零,选项C 、D 错误.答案 B3.(仿2012四川高考,15T)某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R =6 400 km ,取g =10 m/s 2) ( ).A .汽车在地面上速度增加时,它对地面的压力增大B .当汽车离开地球的瞬间速度达到28 440 km/hC .此“航天汽车”环绕地球做圆周运动的最小周期为1 hD .在此“航天汽车”上弹簧测力计无法测量力的大小解析 汽车受到的重力与地面的支持力的合力提供向心力,在速度增加时,向心力增大,重力不变,支持力减小,即汽车对地面的压力减小,选项A 错误.若要使汽车离开地球,必须使汽车的速度达到第一宇宙速度7.9 km/s =28 440 km/h ,选项B 正确.此时汽车的最小周期为T =2πr 3GM =2πR 3gR 2=2πRg =5 024 s =83.7 min ,选项C 错误.在此“航天汽车”上弹簧产生形变仍然产生弹力,选项D 错误.答案 B二、不定项选择题4.(仿2013山东高考,20T)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图2所示,三颗质量相等的星球位于等边三角形的三个顶点上,任意两颗星球的距离均为R ,并绕其中心O 做匀速圆周运动.忽略其他星球对它们的引力作用,引力常量为G ,以下对该三星系统的说法正确的是 ( ).A .每颗星球做圆周运动的半径都等于RB .每颗星球做圆周运动的加速度与三颗星球的质量有关C .每颗星球做圆周运动的周期为T =2πRR 3Gm D .每颗星球做圆周运动的线速度v =2GmR图2。
能力呈现【考情分析】力与曲线运动是力学中非常重要的内容,是高考热点之一.高考中单独考查曲线运动的知识点时,题型为选择题;将曲线运动与功和能、电场和磁场综合时,题型为计算题.【备考策略】考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直平面内圆周运动的理解和应用、天体的运动.在复习中,要将基础知识、基本概念与牛顿运动定律及功能原理相结合,抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型即平抛运动和类平抛运动,掌握竖直平面内的圆周运动并判断完成圆周运动的临界条件.1. (多选)(2013·上海)如图所示,在平静海面上,两艘拖船A 、B 拖着驳船C 运动的示意图.A 、B 的速度分别沿着缆绳CA 、CB 方向,A 、B 、C 不在一条直线上.由于缆绳不可伸长,因此C 的速度在CA、CB方向的投影分别与A、B的速度相等.由此可知C的( )A. 速度大小可以介于A、B的速度大小之间B. 速度大小一定不小于A、B的速度大小C. 速度方向可能在CA和CB的夹角范围外D. 速度方向一定在CA和CB的夹角范围内2. (2013·南京盐城一模)如图所示,球网高出桌面H,网到桌边的距离为L.某人在乒乓球训练中,从左侧处,将球沿垂直于网的方向水平击出,球恰好通过网的上沿落到右侧桌边缘.设乒乓球运动为平抛运动.则( )A. 击球点的高度与网高度之比为2∶1B. 乒乓球在网左右两侧运动时间之比为2∶1C. 乒乓球过网时与落到桌边缘时速率之比为1∶2D. 乒乓球在左、右两侧运动速度变化量之比为1∶23. (2013·江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A. 太阳位于木星运行轨道的中心B. 火星和木星绕太阳运行速度的大小始终相等C. 火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D. 相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积4. (多选)(2013·金陵中学)如图所示,小球m在竖直放置的光滑圆形管道内做圆周运动.下列说法中正确的有( )A. 小球通过最高点的最小速度为B. 小球通过最高点的最小速度为0C. 小球在水平线ab以下管道中运动时,外侧管壁对小球一定有作用力D. 小球在水平线ab以上管道中运动时,内侧管壁对小球一定有作用力能力巩固1. (多选)(2013·全国)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处( )A. 路面外侧高、内侧低B. 车速只要低于v c,车辆便会向内侧滑动C. 车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D. 当路面结冰时,与未结冰时相比, v c的值变小2. (多选)(2013·江苏)如图所示,从地面上同一位置抛出两小球A、B,分别落在地面上的M、N点,两球运动的最大高度相同. 空气阻力不计,则( )A. B的加速度比A的大B. B的飞行时间比A的长C. B在最高点的速度比A在最高点的大D. B在落地时的速度比A在落地时的大3. (2013·福建)设太阳质量为M,某行星绕太阳公转周期为T,轨道可视为半径为r的圆.已知引力常量为G,则描述该行星运动的上述物理量满足( )A. GM=2324πrT B. GM=2224πrT C. GM=2234πrT D. GM=324πrT4. (2013·镇江一模)如图所示,质量为m的小物块在光滑的水平面上以v0向右做直线运动,经距离l后,进入半径为R的光滑半圆形轨道,从圆弧的最高点飞出,恰好落在出发点上.已知l=1.6 m,m=0.10kg,R=0.4 m,不计空气阻力,重力加速度取g=10 m/s2.(1) 求小物块运动到圆形轨道最高点时的速度大小以及此时小物块对轨道的压力.(2) 求小物块的初速度大小v0.(3) 若圆形轨道粗糙,则小物块恰能通过圆形轨道最高点.求小物块在这个过程中克服摩擦力所做的功.专题三力与曲线运动【能力摸底】1. BD2. D3. C4. BC【能力提升】例1 A例2 (1) 0.8 m (2) E k=3.25h例3 (1) T0=2π(2) 小球对盒子的右侧面和下侧面有作用力,大小分别为4mg和mg例4 (1) v Av Bv0≤…) 例5 D 例6 A 例7 ABD【能力巩固】1. AC2. CD3. A4. (1) 由平抛运动规律得竖直方向2R=12gt2,水平方向l=vt, 解得v=4 m/s.最高点F N+mg=m2v R,解得F N=3 N.由牛顿第三定律得,小物块对轨道的压力为3N,方向竖直向上.(2) 由动能定理-2mgR=12mv2-12m20v,解得v0m/s.(3) 最高点mg=m2'v R,由动能定理-2mgR-W克=12mv'2-12m20v,解得W克=0.6 J.。
高中物理模块复习匹配完整答案专题-曲线运动2一、单选题1.A、B两个质点分别做匀速圆周运动,若在相等时间内,转过的圆心角之比为θA∶θB=3∶2,它们通过的弧长之比为L A∶L B=4∶3,则()A.它们角速度之比为ωA∶ωB=2∶3B.它们的线速度之比为v A∶v B=3∶4C.它们周期之比为T A∶T B=2∶3D.它们的向心加速度之比为a A∶a B=2∶32.质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动.当小车与滑轮间的细绳和水平方向成夹角θ2时(如图),下列判断正确的是()A.P的速率为vB.P的速率为vcosθ2C.绳的拉力等于mgsinθlD.绳的拉力小于mgsinθ13.如图所示,一小球沿螺旋线自内向外运动,已知其通过的弧长s与运动时间t成正比.关于该质点的运动,下列说法正确的是()A.小球运动的线速度大小不变B.小球运动的角速度不变C.小球运动的加速度越来越大D.小球所受的合外力越来越大4.“天宫一号”围绕地球做匀速圆周运动过程中保持不变的物理量是()A.动能B.向心力C.线速度D.向心加速度5.汽车在水平地面上转弯,地面对车的摩擦力已达到最大值.当汽车的速率加大到原来的二倍时,若使车在地面转弯时仍不打滑,汽车的转弯半径应()A.增大到原来的二倍B.减小到原来的一半C.增大到原来的四倍D.减小到原来的四分之一6.如图甲所示,在一次海上救援行动中,直升机沿水平方向匀速飞行,同时悬索系住伤员匀速上拉,以地面为参考系,伤员从A至B的运动轨迹可能是图乙中的()A.折线ACBB.线段C.曲线AmBD.曲线AnB7.关于匀速圆周运动下列说法正确的是()A.线速度不变B.运动状态不变C.周期不变D.物体处于平衡状态8.在探究平抛运动的规律时,可以选用如图所示的各种装置图,则以下操作合理的是A.选用装置图甲研究平抛物体的竖直分运动时,可多次改变小球距地面的高度,但必须控制每次打击的力度不变B.选用装置图乙并要获得稳定的细水柱显示出平抛运动的轨迹,竖直管上端A一定要低于水面C.选用装置图丙并要获得钢球做平抛运动的轨迹,每次不一定从斜槽上同一位置由静止释放钢球D.选用装置图丙并要获得钢球做平抛运动的轨迹,要以槽口的端点为原点建立坐标9.一物体在水平面内的直角坐标系中运动,x轴方向和y轴方向运动的速度图象如图所示,下列对物体运动情况的判断,错误的是()A.物体一定做曲线运动B.2s末物体的速度大小是5m/sC.物体所受合外力为恒力,方向始终沿x轴方向D.物体所受到的合外力方向随速度方向不断改变10.如图所示,一匀速转动的水平转盘上有两物体A,B随转盘一起运动(无相对滑动).则下列判断正确的是()A.它们的线速度V A>V BB.它们的线速度V A=V BC.它们的角速度ωA=ωBD.它们的角速度ωA>ωB二、多选题11.土星外层上有一个环(如图),为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v与该层到土星中心的距离R之间的关系来判断()A.若v∶R,则该层是土星的一部分B.若v2∶R,则该层是土星的卫星群C.若v∶ ,则该层是土星的一部分D.若v2∶ ,则该层是土星的卫星群12.如图所示,放于竖直面内的光滑金属细圆环半径为R,质量为m的带孔小球穿于环上,同时有一长为R的细绳一端系于球上,另一端系于圆环最低点,绳能承受的最大拉力为2mg。
专题3 力与物体的曲线运动一、计算题1、利用万有引力定律可以测量天体的质量.(1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g,地球半径为R,引力常量为G.若忽略地球自转的影响,求地球的质量.(2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O做匀速圆周运动的两个星球A和B,如图9所示.已知A、B间距离为L,A、B绕O点运动的周期均为T,引力常量为G,求A、B的总质量.(3)测月球的质量若忽略其他星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T1,月球、地球球心间的距离为L1.你还可以利用(1)、(2)中提供的信息,求月球的质量.图92、神舟十号载人飞船进入近地点距地心为r1、远地点距地心为r2的椭圆轨道正常运行.已知地球质量为M,引力常量为G,地球表面处的重力加速度为g,飞船在近地点的速度为v1,飞船的质量为m.若取距地球无穷远处为引力势能零点,则距地心为r、质量为m的物体的引力势能表达式为E p=-,求:(1)地球的半径;(2)飞船在远地点的速度.3、据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v=7.7 km/s绕地球做匀速圆周运动,运动方向与太阳帆板两端M、N的连线垂直,M、N间的距离L=20 m,地磁场的磁感应强度垂直于v,MN所在平面的分量B=1.0×10-5 T,将太阳帆板视为导体.图1(1)求M、N间感应电动势的大小E;(2)在太阳帆板上将一只“1.5 V,0.3 W”的小灯泡与M、N相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R=6.4×103 km,地球表面的重力加速度g=9.8 m/s2,试估算“天宫一号”距离地球表面的高度h(计算结果保留一位有效数字).4、如图28所示,从A点以v0=4 m/s的水平速度抛出一质量m=1 kg的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入光滑圆弧轨道BC,经圆弧轨道后滑上与C点等高、静止在粗糙水平面的长木板上,圆弧轨道C端切线水平,已知长木板的质量M=4 kg,A、B两点距C点的高度分别为H=0.6 m、h=0.15 m,圆弧轨道半径R=0.75 m,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g取10 m/s2.已知sin 37°=0.6,cos 37°=0.8,求:图28(1)小物块运动至B点时的速度大小和方向;(2)小物块滑动至C点时,对圆弧轨道C点的压力;(3)长木板至少为多长,才能保证小物块不滑出长木板.5、某电视台“快乐向前冲”节目中的场地设施如图27所示,AB为水平直轨道,上面安装有电动悬挂器,可以载人运动,水面上漂浮着一个半径为R、角速度为ω,铺有海绵垫的转盘,转盘的轴心离平台的水平距离为L,平台边缘与转盘平面的高度差为H.选手抓住悬挂器,可以在电动机带动下,从A点下方的平台边缘处沿水平方向做初速度为零,加速度为a的匀加速直线运动.选手必须做好判断,在合适的位置释放,才能顺利落在转盘上.设人的质量为m(不计身高大小),人与转盘间的最大静摩擦力为μmg,重力加速度为g.图27(1)假设选手落到转盘上瞬间相对转盘速度立即变为零,为保证他落在任何位置都不会被甩下转盘,转盘的角速度ω应限制在什么范围?(2)若已知H=5 m,L=8 m,a=2 m/s2,g取10 m/s2,且选手从某处C点释放能恰好落到转盘的圆心上,则他是从平台出发后多长时间释放悬挂器的?6、如图8所示,滑板运动员从倾角为53°的斜坡顶端滑下,滑下的过程中他突然发现在斜面底端有一个高h =1.4 m、宽L=1.2 m的长方体障碍物,为了不触及这个障碍物,他必须在距水平地面高度H=3.2 m的A点沿水平方向跳起离开斜面(竖直方向的速度变为零).已知运动员的滑板与斜面间的动摩擦因数μ=0.1,忽略空气阻力,重力加速度g取10 m/s2.(已知sin 53°=0.8,cos 53°=0.6)求:图8(1)运动员在斜面上滑行的加速度的大小;(2)若运动员不触及障碍物,他从斜面上起跳后到落至水平面的过程所经历的时间;(3)运动员为了不触及障碍物,他从A点沿水平方向起跳的最小速度.7、我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.图1(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?8、如图1所示,在竖直平面内有由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为.一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.图19、在真空环境内探测微粒在重力场中能量的简化装置如图19所示.P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h.图19(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系.10、如图16所示,半径为R=1 m内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m=1 kg的小球,在水平恒力F= N的作用下由静止沿光滑水平面从A点运动到B点,A、B两点间的距离x= m,当小球运动到B点时撤去外力F,小球经半圆管道运动到最高点C,此时球对外轨的压力F N=2.6mg,然后垂直打在倾角为θ=45°的斜面上D处(取g=10 m/s2)。
专题三 力与物体的曲线运动 第1讲:力学中的曲线运动一、知识梳理1.物体做曲线运动的条件当物体所受合外力的方向跟它的速度方向不共线时,物体做曲线运动.合运动与分运动具有等时性、独立性和等效性.2.平抛运动(1)规律:v x =v 0,v y =gt ,x =v 0t ,y =12gt 2.(2)推论:做平抛(或类平抛)运动的物体①任意时刻速度的反向延长线一定通过此时水平位移的中点;②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ.3.竖直平面内圆周运动的两种临界问题(1)绳固定,物体能通过最高点的条件是(2)杆固定,物体能通过最高点的条件是v >0. (二)规律方法1.竖直平面内圆周运动的最高点和最低点的速度关系通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.2.对于平抛或类平抛运动与圆周运动组合的问题,应用合成与分解的思想分析这两种运动转折点的速度是解题的关键.二、题型、技巧归纳高考题型一 运动的合成与分解【例1】 在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a 的匀加速运动,同时人顶着直杆以速度v 0水平向右匀速移动,经过时间t ,猴子沿杆向上移动的高度为h ,人顶杆沿水平地面移动的距离为x ,如图1所示.关于猴子的运动情况,下列说法中正确的是( )图1A.相对地面的运动轨迹为直线B.相对地面做匀加速直线运动C.t时刻猴子速度的大小为v0+atD.t时间内猴子的位移大小为x2+h2高考预测1 如图2所示,一卫星经过赤道上空时速度方向与赤道平面夹角为60°,速度大小为v=1.55×103m/s.此时发动机点火,给卫星一附加速度Δv,使该卫星变轨进入赤道平面内.发动机给卫星的附加速度Δv的最小值和方向为( )图2A.Δv约为1.3×103m/s,方向东偏南30°B.Δv约为1.3×103m/s,方向正南方向C.Δv约为2.7×103m/s,方向东偏南30°D.Δv约为0.8×103m/s,方向正南方向高考预测2 如下图所示,一小球在光滑的水平面上以速度v0向右运动,运动中要穿过一段有水平向北的风带ab,经过风带时风会给小球一个向北的水平恒力,其余区域无风力,则小球过风带及过后的轨迹正确的是( )规律总结解决运动的合成与分解的一般思路(1)明确合运动或分运动的运动性质.(2)确定合运动是在哪两个方向上的合成或分解.(3)找出各个方向上已知的物理量(速度、位移、加速度等). (4)运用力与速度的关系或矢量的运算法则进行分析求解. 高考题型二 抛体运动问题【例2】 (2016·浙江理综·23)在真空环境内探测微粒在重力场中能量的简化装置如图3所示.P 是个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h 的探测屏AB 竖直放置,离P 点的水平距离为L ,上端A 与P 点的高度差也为h .图3(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系.高考预测3 如图4所示,竖直平面内有一段圆弧MN ,小球从圆心O 处水平抛出.若初速度为v a ,将落在圆弧上的a 点;若初速度为v b ,将落在圆弧上的b 点.已知Oa 、Ob 与竖直方向的夹角分别为α、β,不计空气阻力,则( )图4A.v a v b =sin αsin βB.v a v b =cos βcos αC.v a v b =cos βcos α·sin αsin βD.v a v b =sin αsin β·cos βcos α高考预测4 如图5所示,P 、Q 是固定在竖直平面内的一段内壁光滑弯管的两端,P 、Q 间的水平距离为d .直径略小于弯管内径的小球以速度v 0从P 端水平射入弯管,从Q 端射出,在穿过弯管的整个过程中小球与弯管无挤压.若小球从静止开始由P 端滑入弯管,经时间t 恰好以速度v 0从Q 端射出.重力加速度为g ,不计空气阻力,那么( )图5A.v 0<gdB.v 0=2gdC.t =d g D.t >d g高考题型三 圆周运动问题【例3】 (多选)(2016·浙江理综·20)如图6所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90m 的大圆弧和r =40m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10m/s 2,π=3.14),则赛车( )图6A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45m/sC.在直道上的加速度大小为5.63m/s 2D.通过小圆弧弯道的时间为5.58s高考预测5 (2016·全国甲卷·16)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图7所示.将两球由静止释放.在各自轨迹的最低点( )图7A.P 球的速度一定大于Q 球的速度B.P 球的动能一定小于Q 球的动能C.P 球所受绳的拉力一定大于Q 球所受绳的拉力D.P 球的向心加速度一定小于Q 球的向心加速度高考预测6 如图8所示,一个圆形框架以竖直的直径为转轴匀速转动.在框架上套着两个质量相等的小球A 、B ,小球A 、B 到竖直转轴的距离相等,它们与圆形框架保持相对静止.下列说法正确的是( )图8A.小球A 受到的合力小于小球B 受到的合力B.小球A 与框架间可能没有摩擦力C.小球B 与框架间可能没有摩擦力D.圆形框架以更大的角速度转动,小球B 受到的摩擦力一定增大 规律总结1.解决圆周运动问题要注意以下几点:(1)要进行受力分析,明确向心力的来源,确定圆心以及半径.(2)列出正确的动力学方程F =m v 2r =mr ω2=m ωv =mr 4π2T2.2.竖直平面内圆周运动的最高点和最低点的速度通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.高考题型四 平抛与圆周运动组合问题【例4】 如图9所示,半径R =0.5m 的光滑圆弧轨道ABC 与足够长的粗糙轨道CD 在C 处平滑连接,O 为圆弧轨道ABC 的圆心,B 点为圆弧轨道的最低点,半径OA 、OC 与OB 的夹角分别为53°和37°.将一个质量m =0.5kg 的物体(视为质点)从A 点左侧高为h =0.8m 处的P 点水平抛出,恰从A 点沿切线方向进入圆弧轨道.已知物体与轨道CD 间的动摩擦因数μ=0.8,重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8.求:图9(1)物体水平抛出时的初速度大小v0;(2)物体经过B点时,对圆弧轨道的压力大小F N;(3)物体在轨道CD上运动的距离x.(结果保留三位有效数字)高考预测7 固定在竖直平面内的光滑圆弧轨道ABCD,其A点与圆心等高,D点为轨道的最高点,DB为竖直线,AC为水平线,AE为水平面,如图10所示.今使小球自A点正上方某处由静止释放,且从A点进入圆弧轨道运动,只要适当调节释放点的高度,总能使球通过最高点D,则小球通过D点后( )图10A.一定会落到水平面AE上B.一定会再次落到圆弧轨道上C.可能会再次落到圆弧轨道上D.不能确定高考预测8 如图11所示为固定在竖直平面内的光滑轨道ABCD,其中ABC部分是半径为R的半圆形轨道(AC是圆的直径),CD部分是水平轨道.一个质量为m的小球沿水平方向进入轨道,通过最高点A时速度大小v A=2gR,之后离开A点,最终落在水平轨道上.小球运动过程中所受空气阻力忽略不计,g取10m/s2.求:图11(1)小球落地点与C点间的水平距离;(2)小球落地时的速度方向;(3)小球在A点时轨道对小球的压力.参考答案【例1】 答案 D解析 猴子在水平方向上做匀速直线运动,在竖直方向上做初速度为0的匀加速直线运动,根据运动的合成,知合速度与合加速度不在同一条直线上,所以猴子运动的轨迹为曲线.故A 错误;猴子在水平方向上的加速度为0,在竖直方向上有恒定的加速度,根据运动的合成,知猴子做曲线运动的加速度不变,做匀变速曲线运动.故B 错误;t 时刻猴子在水平方向上的分速度为v 0,在竖直方向上的分速度为at ,所以合速度v =v 20+at2.故C 错误.在t 时间内猴子在水平方向和竖直方向上的位移分别为x 和h ,根据运动的合成,知合位移s =x 2+h 2.故D 正确.高考预测1 答案 B解析 由题意可知,可看成卫星一个分速度方向与赤道平面夹角为60°,速度大小为v =1.55×103m/s.另一速度即为附加速度,根据平行四边形定则,结合几何关系,则当附加速度垂直合速度时,附加速度达到最小值,如图所示.附加速度的方向为正南方向,根据三角知识,大小为:Δv =v sin60°=1.55×103×32m/s≈1.3×103m/s ,故B 正确,A 、C 、D 错误.高考预测2 答案 B解析 小球在光滑的水平面上以v 0向右运动,给小球一个向北的水平恒力,根据曲线运动条件,结合运动轨迹偏向加速度的方向,故B 正确,A 、C 、D 错误.【例2】 答案 (1)3hg(2)Lg4h≤v ≤L g2h(3)L =22h 解析 (1)打在AB 中点的微粒32h =12gt2①解得t =3hg② (2)打在B 点的微粒v 1=L t 1;2h =12gt 21③v 1=Lg4h④ 同理,打在A 点的微粒初速度v 2=L g 2h⑤ 微粒初速度范围Lg4h ≤v ≤L g 2h⑥(3)由能量关系12mv 22+mgh =12mv 21+2mgh⑦代入④⑤式得L =22h . 高考预测3 答案 D解析 对a ,根据R cos α=12gt 21得,t 1=2R cos αg,则v a =R sin αt 1=R sin αg2R cos α, 对b ,根据R cos β=12gt 22得,t 2=2R cos βg,则v b =R sin βt=R sin βg2R cos β,解得v a v b =sin αsin β·cos βcos α. 高考预测4 答案 D解析 设P 、Q 的竖直高度为h ,由题意知,第二次运动重力做功等于小球动能的增加量,由此可知第一次运动竖直方向的末速度大小等于初速度大小,且P 、Q 的竖直高度为h =d2,据平抛运动特点得v 0=dg ,A 、B 选项都错误.小球第一次从P 运动至Q 的时间t 1=dg,第二次运动竖直方向加速度小于重力加速度,所以t >dg,D 选项正确. 【例3】 答案 AB解析 在弯道上做匀速圆周运动时,根据径向静摩擦力提供向心力得,kmg =m v 2mr,当弯道半径一定时,在弯道上的最大速率是一定的,且在大弯道上的最大速率大于小弯道上的最大速率,故要想时间最短,可在绕过小圆弧弯道后加速,选项A 正确;在大圆弧弯道上的速率为v m R =kgR =2.25×10×90m/s =45 m/s ,选项B 正确;直道的长度为x =L 2-R -r2=503m ,在小弯道上的最大速率为:v m r =kgr =2.25×10×40m/s =30 m/s ,在直道上的加速度大小为a =v 2m R -v 2m r2x=452-3022×503m/s 2≈6.50 m/s 2,选项C 错误;由几何关系可知,小圆弧轨道的长度为2πr 3,通过小圆弧弯道的时间为t =2πr3v m r =2×3.14×403×30s≈2.80s,选项D 错误.高考预测5 答案 C解析 小球从水平位置摆动至最低点,由动能定理得,mgL =12mv 2,解得v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;因为E k =mgL ,又m P >m Q ,则两小球的动能大小无法比较,选项B 错误;对小球在最低点受力分析得,F T -mg =m v 2L ,可得F T =3mg ,选项C 正确;由a =v 2L=2g 可知,两球的向心加速度相等,选项D 错误.高考预测6 答案 C解析 由于合力提供向心力,依据向心力表达式F =mr ω2,已知两球质量、半径和角速度都相同,可知向心力相同,即合力相同,故A 错误;小球A 受到的重力和弹力的合力不可能垂直指向OO ′轴,故一定存在摩擦力,而B 球的重力和弹力的合力可能垂直指向OO ′轴,故B 球所受摩擦力可能为零,故B 错误,C 正确;由于不知道B 是否受到摩擦力,故而无法判定圆形框架以更大的角速度转动,小球B 受到的摩擦力的变化情况,故D 错误.【例4】 答案 (1)3m/s (2)34N (3)1.09m 解析 (1)由平抛运动规律知:v 2y =2gh 竖直分速度v y =2gh =4m/s 初速度v 0=v y tan37°=3m/s.(2)从P 点至B 点的过程,由机械能守恒有mg (h +R -R cos53°)=12mv 2B -12mv 2经过B 点时,由向心力公式有F N ′-mg =m v 2BR代入数据解得F N ′=34N由牛顿第三定律知,物体对轨道的压力大小为F N =34N.(3)因μmg cos37°>mg sin37°,物体沿轨道CD 向上做匀减速运动,速度减为零后不会下滑. 从B 点到上滑至最高点的过程,由动能定理有-mgR (1-cos37°)-(mg sin37°+μmg cos37°)x =0-12mv 2B代入数据可解得x =135124m≈1.09m.高考预测7 答案 A解析 如果小球恰能通过最高点D ,根据mg =m v 2DR,得v D =gR ,知小球在最高点的最小速度为gR . 根据R =12gt 2得:t =2R g.则平抛运动的水平位移为:x =gR ·2Rg=2R .知小球一定落在水平面AE 上.故A 正确,B 、C 、D 错误.高考预测8 答案 (1)4R (2)与水平方向的夹角为45° (3)3mg ,方向竖直向下解析 (1)小球离开A 点后做平抛运动根据平抛运动规律有2R =12gt 2 解得小球运动时间t =2R gx =v A t解得小球落地点与C 点间的水平距离x =4R(2)设小球落地时的速度方向与水平方向的夹角为θ tan θ=gt v A解得θ=45°(3)设小球在A 点时轨道对小球的压力为F N 根据牛顿第二定律F N +mg =m v 2A R解得:F N =3mg ,方向竖直向下.。
第4讲曲线运动1.物体做曲线运动的条件.当物体所受合外力的方向跟它的速度方向不在同一条直线上时,物体做曲线运动.2.运动的合成与分解的运算法则:平行四边形定则.3.做平抛运动的物体,平抛运动的时间完全由下落高度决定.4.平抛(或类平抛)运动的推论.(1)任意时刻速度的反向延长线一定通过此时水平位移的中点.(2)设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ.5.做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变.6.水平面内圆周运动临界问题.(1)水平面内做圆周运动的物体其向心力可能由弹力、摩擦力等力提供,常涉及绳的张紧与松弛、接触面分离等临界状态.(2)常见临界条件:绳子松弛的临界条件是绳的张力F T=0;接触面滑动的临界条件是拉力F=F f max;接触面分离的临界条件是接触面间的弹力F N=0.7.竖直平面内圆周运动的两种临界问题.(1)绳模型:半径为R的圆形轨道,物体能通过最高点的条件是v≥gR.(2)杆模型:物体能通过最高点的条件是v≥0.1.(2020·全国卷Ⅰ)如图,一同学表演荡秋千.已知秋千的两根绳长均为10 m ,该同学和秋千踏板的总质量约为50 kg.绳的质量忽略不计,当该同学荡到秋千支架的正下方时,速度大小为8 m/s ,此时每根绳子平均承受的拉力约为( )A .200 NB .400 NC .600 ND .800 N解析:最低点由2T -mg =mv 2r,知T =410 N ,即每根绳子拉力约为400 N ,故B 正确.答案:B2.(2020·全国卷Ⅱ)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h .若摩托车经过a 点时的动能为E 1,它会落到坑内c 点.c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点.E 2E 1等于( )A .20B .18C .9.0D .3.0解析:有题意可知当在a 点动能为E 1时,有E 1=12mv 21,根据平抛运动规律有h =12gt 21,h=v 1t 1,当在a 点时动能为E 2时,有E 2=12mv 22,根据平抛运动规律有12h =12gt 22,3h =v 2t 2,联立以上各式可解得E 2E 1=18,故B 正确.答案:B3. (2019·全国卷Ⅱ)(多选)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离.某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直方向的速度,其v-t 图象如图(b)所示,t 1和t 2是他落在倾斜雪道上的时刻.则( )A .第二次滑翔过程中在竖直方向上的位移比第一次的小B.第二次滑翔过程中在水平方向上的位移比第一次的大C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大解析:根据v-t图线与横轴所围图形的面积表示位移,可知第二次滑翔过程中在竖直方向上的位移比第一次的大,选项A错误;根据v-t图线的斜率表示加速度,综合分析可知,第二次滑翔过程中在竖直方向上的平均加速度比第一次的小,选项C错误;第二次滑翔过程中在竖直方向的位移比第一次的大,又运动员每次滑翔过程中竖直位移与水平位移的比值相同(等于倾斜雪道与水平面夹角的正切值),故第二次滑翔过程中在水平方向上的位移比第一次的大,选项B正确;竖直方向上的速度大小为v1时,根据v-t图线的斜率表示加速度可知,第二次滑翔过程中在竖直方向上的加速度比第一次的小,由牛顿第二定律有mg-F阻=ma,可知第二次滑翔过程中在竖直方向上所受阻力比第一次的大,选项D正确.答案:BD考点一运动的合成与分解1.运动合成与分解的一般思路.(1)明确合运动或分运动的运动性质.(2)明确是在哪两个方向上的合成或分解.(3)找出各个方向上已知的物理量(速度、位移、加速度).(4)运用力与速度的关系或矢量的运算法则进行分析求解.2.关联速度分解问题.对于用绳、杆相牵连的物体,在运动过程中,两物体的速度通常不同,但两物体沿绳或杆方向的速度分量大小相等.(1)常用的解答思路:先确定合运动的方向,然后分析合运动所产生的实际效果,以确定两个分速度的方向(作出分速度与合速度的矢量关系的平行四边形).(2)常见的模型.3.小船过河的时间t =dv 垂,其中v 垂为小船在静水中的速度沿垂直于河岸方向的分速度.如图所示,甲、乙两船在同一河岸边A 、B 两处,两船船头方向与河岸均成θ角,且恰好对准对岸边C 点.若两船同时开始渡河,经过一段时间t ,同时到达对岸,乙船恰好到达正对岸的D 点.若河宽d 、河水流速均恒定,两船在静水中的划行速率恒定,不影响各自的航行,下列判断正确的是( )A .两船在静水中的划行速率不同B .甲船渡河的路程有可能比乙船渡河的路程小C .两船同时到达D 点 D .河水流速为d tan θt解析:由题意可知,两船渡河的时间相等,两船沿垂直河岸方向的分速度v 1相等,由v 1=v sin θ知两船在静水中的划行速率v 相等,故A 项错误;乙船沿BD 到达D 点,故河水流速v 水方向沿AB 方向,且v 水=v cos θ,甲船不可能到达正对岸,甲船渡河的路程较大,故B 项错误;由于甲船沿垂直河岸的位移d =v sin θ·t ,沿AB 方向的位移大小x =(v cos θ+v 水)t ,解得x =2d tan θ=AB ,故两船同时到达D 点,故C 项正确;根据速度的合成与分解v水=v cos θ,而v sin θ=d t,解得v 水=dt tan θ,故D 项错误.答案:C考向 小船渡河问题1.端午节赛龙舟是中华民族的传统,若某龙舟在比赛前划向比赛点的途中要渡过72 m 宽两岸平直的河,龙舟在静水中划行的速率为4 m/s ,河水的流速3 m/s ,下列说法中正确的是( )A .该龙舟以最短时间渡河通过的位移为96 mB .该龙舟渡河的最大速率为8 m/sC .该龙舟渡河所用时间最少为18 sD.该龙舟不可能沿垂直河岸的航线抵达对岸解析:该龙舟以最短时间渡河,t min=dv1=724s=18 s,沿河岸方向的位移:x=v2t min=54 m;通过的位移为x′=d2+x2=722+542 m=90 m,故A项错误,C项正确;当船速与水流速度同向时合速度最大,最大速度为4 m/s+3 m/s=7 m/s,故B项错误;因龙舟的静水速度大于水流速度,可知该龙舟能够垂直河岸到达正对岸,故D项错误.答案:C考向关联速度问题2.质量为m的物体P置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着P与小车,P与滑轮间的细绳平行于斜面,小车以速率v水平向右做匀速直线运动.当小车与滑轮间的细绳和水平方向成夹角θ2时(如图所示),下列判断正确的是( )A.P的速率为vB.P的速率为v cos θ2C.绳的拉力等于mg sin θ1D.绳的拉力小于mg sin θ1解析:将小车速度沿绳子和垂直绳子方向分解为v1、v2,P的速率等于v1=v cos θ2,A 错误,B正确;小车向右做匀速直线运动,θ2减小,P的速率增大,绳的拉力大于mg sin θ1,C、D错误.答案:B考向运动的合成实例3.如图所示,在灭火抢救过程中,消防队员有时要借助消防车上的梯子爬到高处进行救人或灭火作业.为了节省救援时间,人沿梯子匀加速向上运动的同时消防车匀速后退,则关于消防队员的运动,下列说法正确的是( )A.消防队员做匀加速直线运动B.消防队员做匀变速曲线运动C.消防队员做变加速曲线运动D.消防队员水平方向的速度保持不变解析:根据运动的合成,知合速度的方向与合加速度的方向不在同一条直线上,其加速度的方向大小不变,所以消防员做匀变速曲线运动,故A、C错误,B正确.将消防员的运动分解为水平方向和竖直方向,知水平方向上的最终的速度为消防车匀速后退的速度和消防队员沿梯子方向速度在水平方向上的分速度的合速度,因为沿梯子方向的速度在水平方向上的分速度在变化,所以消防队员水平方向的速度在变化,故D 错误.答案:B考点二 平抛运动规律1.平抛运动的基本规律.2.平抛运动中的两个重要推论.(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图甲所示.(2)做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其速度方向与水平方向的夹角为θ,位移与水平方向的夹角为α,则tan θ=2tan α,如图乙所示.(2020·江苏卷)(多选)如图所示,小球A 、B 分别从2l和l 的高度水平抛出后落地,上述过程中A 、B 的水平位移分别为l 和2l .忽略空气阻力,则( )A .A 和B 的位移大小相等 B .A 的运动时间是B 的2倍C .A 的初速度是B 的12D .A 的末速度比B 的大解析:位移为初位置到末位置的有向线段,如题图所示可得s A =l 2+(2l )2=5l ,s B =l 2+(2l )2=5l ,A 和B 的位移大小相等,A 正确;平抛运动的时间由高度决定,即t A =2×2lg=2×2lg,t B =2×lg=2lg,则A 的运动时间是B 的2倍,B 错误;平抛运动,在水平方向上做匀速直线运动,则v xA =l t A=gl2,v xB =2lt B=2gl ,则A 的初速度是B的122,C 错误;小球A 、B 在竖直方向上的速度分别为v yA =2gl ,v yB =2gl ,所以可得v A=17gl 2,v B =2gl =16gl2,即v A >v B ,D 正确. 答案:AD考向 平抛运动的应用1.如图所示是运动员将网球在边界A 处正上方B 点水平向右击出,恰好过网C 的上边沿落在D 点的示意图,不计空气阻力,已知AB =h 1,网高h 2=59h 1,AC =x ,重力加速度为g ,下列说法中正确的是( )A .落点D 距离网的水平距离为13xB .网球的初速度大小为xg h 1C .若击球高度低于2027h 1,无论球的初速度多大,球都不可能落在对方界内D .若保持击球高度不变,球的初速度v 0只要不大于x 2gh 1h 1,一定落在对方界内 解析:因为h 1-h 2=49h 1,由t =2h g 可知t AC t AD =23,由x =v 0t 可知x AC x AD =23,则x AD =32x ,D 距网的水平距离为12x ,所以A 错误;网球从A 到D ,h 1=12gt 2AD ,32x =v 0t AD ,得v 0=34x2gh 1,所以B 错误;当击球高度为一临界值h ′,此时球刚好过网又刚好压界,则有h ′-h 2=12gt 21,x=v 0t 1,h ′=12gt 22,2x =v 0t 2,解得h ′=2027h 1,若击球高度小于该临界值,速度大会出界,速度小会触网,所以C 正确;若保持击球高度不变,要想球落在对方界内,则有h 1=12gt 21,2x=v max t 1,则平抛的最大速度v max =x h 12gh 1;h 1-h 2=12gt 22,x =v min t 2,则平抛运动的最小速度v min =34·x h 12gh 1,即34·x h 12gh 1<v <xh 12gh 1,所以D 错误. 答案:C考向 与斜面相关的平抛运动2.2022年冬奥会将在北京举行,滑雪是冬奥会的比赛项目之一.如图所示,某运动员(可视为质点)从雪坡上先后以初速度之比v 1∶v 2=3∶4沿水平方向飞出,均落在雪坡上,不计空气阻力,则运动员从飞出到落到雪坡上的整个过程中( )A .运动员先后落在雪坡上的速度方向不相同B .运动员先后在空中飞行的时间之比为9∶16C .运动员先后落到雪坡上的速度之比为3∶4D .运动员先后下落的高度之比为3∶4解析:设运动员的速度和水平方向的夹角为α,则tan α=v y v 0=gtv 0,而位移和水平方向的夹角tan θ=12gt 2v 0t =gt2v 0,因此可得tan α=2tan θ;运动员先后落在雪坡上时位移的偏向角相同,根据平抛运动速度的偏向角的正切等于位移的偏向角的正切的2倍可知,速度的偏向角相同,即运动员落到雪坡上的速度方向相同,选项A 错误;根据tan θ=12gt 2v 0t =gt2v 0,可得t =2v 0tan θg,由于v 1∶v 2=3∶4,可知t 1∶t 2=3∶4,根据v y =gt 可知竖直速度之比为v 1y ∶v 2y =3∶4,因速度偏向角相等,则落到雪坡上的速度之比v ′1∶v ′2=3∶4,根据h =12gt2可知运动员先后下落的高度之比为h 1∶h 2=t 21∶t 22=9∶16,则选项C 正确,A 、B 、D 错误.答案:C考向 平抛运动重要推论的应用3.一个小球从一斜面顶端分别以v 10、v 20、v 30水平抛出,分别落在斜面上1、2、3点,如图所示,落到斜面时竖直分速度分别是v 1y 、v 2y 、v 3y ,则( )A.v 1y v 10>v 2y v 20>v 3y v 30B.v 1y v 10<v 2y v 20<v 3yv 30 C.v 1y v 10=v 2y v 20=v 3yv 30D .条件不足,无法比较解析:设小球落到斜面上时速度方向与水平方向的夹角为α,由tan α=v y v 0=gt v 0=gt 2v 0t=2yx=2tan θ,所以v 1y v 10=v 2y v 20=v 3yv 30,选项C 正确. 答案:C考向 逆向思维和对称方法的应用4.如图所示,水平面上有一足够长的斜面,在斜面上的某点将一小球以速度v 0斜向上抛出,抛出时速度方向与斜面的夹角为θ,经过一段时间后,小球沿水平方向击中斜面,不计空气阻力.若减小小球抛出时的速度v 0,仍使小球水平击中斜面,则应该( )A .保持夹角θ不变B .适当增大夹角θC .适当减小夹角θD .无论怎样调整夹角θ,小球都不可能水平击中斜面解析:小球斜向上抛出水平击中斜面,可以看成从斜面上平抛后击中斜面的逆运动,小球从斜面抛出落在斜面上,斜面倾角即为平抛运动的位移与水平面的夹角,只要小球仍落在斜面上,位移偏向角不变,根据速度偏向角与位移偏向角的关系可知,速度偏向角也不变,所以减小斜抛的速度v 0后,若使小球仍能水平击中斜面,应保持夹角θ不变,故选项A 正确,B 、C 、D 错误.答案:A考向 类平抛运动5.如图所示的光滑斜面长为l ,宽为b ,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P 水平射入,恰好从底端Q 点离开斜面,则( )A .P →Q 所用的时间t =22lg sin θB .P →Q 所用的时间t =2lgC .初速度v 0=b g sin θ2l D .初速度v 0=bg 2l解析:物体的加速度为a =g sin θ.根据l =12at 2,得t =2lg sin θ,故A 、B 两项错误;初速度v 0=b t =bg sin θ2l,故C 项正确,D 项错误. 答案:C6.如图所示,在两条平行的虚线内存在着宽度为L 、场强为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .求:(1)粒子在电场中运动的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打到屏上的点P 到O 点的距离Y .解析:(1)粒子在垂直于电场线的方向上做匀速直线运动,粒子在电场中运动的时间为t =L v 0.(2)设粒子射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为a =Eq m.v y =at =qELmv 0,故粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)设粒子在电场中的偏转距离为y ,则:y =12at 2=12·qEL2mv 20,又Y =y +L tan α,解得:Y =3qEL22mv 20.答案:(1)L v 0 (2)qEL mv 20 (3)3qEL22mv 20考点三 圆周运动问题1.解决圆周运动问题的关键.(1)几何关系分析:分析圆周运动的轨道平面、圆心、半径等. (2)运动分析:分析圆周运动的线速度、角速度、周期等.(3)受力分析:做好受力分析,利用力的合成与分解知识,表示出物体做圆周运动时,外界所提供的向心力.2.圆周运动的两类模型. (1)水平方向上的圆周运动模型.图例受力情况临界状态①竖直方向:受重力和支持力,二力平衡,合力为零②水平方向:受静摩擦力的作用,且静摩擦力提供物体做圆周运动的向心力. 关系式为:F f =mv 2R当F 向=F f max 时,物块达到临界状态(2)竖直方向上的圆周运动模型. 项目 绳模型杆模型图例最高点受力重力mg 、弹力F 弹向下或等于零重力mg 、弹力F 弹向下、向上或等于零最高点向心力mg +F 弹=m v 2rmg +F 弹=m v 2r 或mg -F 弹=m v 2r恰好过最高点F 弹=0,v =gr ,在最高点速度不能为零mg =F 弹,v =0,在最高点速度可为零(2020·北京质检)(多选)如图所示,甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR解析:甲图中,由mg =m v 2R 可知,当轨道车以一定的速度v =gR 通过轨道最高点时,座椅给人向上的力为零,A 错误;乙图中,由F -mg =m v 2R 可知,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力F =mg +m v 2R ,B 正确;丙图中,由F -mg =m v 2R 可知,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力F =mg +m v 2R,C 正确;由于过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,丁图中,轨道车过最高点的最小速度可以为零,D 错误.答案:BC考向 竖直方向上的圆周运动1.(多选)2013年,我国航天员在“天宫一号”为青少年进行太空授课,运行中的“天宫一号”处于完全失重状态.在“天宫一号”中,长为L 的细线一端固定,另一端系一个小球,拉直细线,让小球在B 点以垂直于细线的速度v 0开始做圆周运动,如图所示.设“天宫一号”卫星轨道处的重力加速度为g ′,在小球运动的过程中,下列说法正确的是( )A .小球做匀速圆周运动B .细线拉力的大小不断变化C .只要v 0>0,小球就能通过A 点D .只有v 0≥5g ′L ,小球才能通过A 点解析:在“天宫一号”中,小球处于完全失重状态,让小球在B 点以垂直于细线的速度v 0开始做圆周运动,则小球做匀速圆周运动,细线的拉力提供向心力,大小不变,方向时刻变化,选项A 正确,B 错误;只要v 0>0,小球就能通过A 点,选项C 正确,D 错误.答案:AC考向 水平方向上的圆周运动2.如图所示,两个相同的小木块A 和B (均可看作为质点),质量均为m .用长为L 的轻绳连接,置于水平圆盘的同一半径上,A 与竖直轴的距离为L ,此时绳子恰好伸直无弹力,木块与圆盘间的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A.木块A、B所受的摩擦力始终相等B.木块B所受摩擦力总等于木块A所受摩擦力的两倍C.ω=kgL是绳子开始产生弹力的临界角速度D.若ω=2kg3L,则木块A、B将要相对圆盘发生滑动解析:当角速度较小时,A、B均靠静摩擦力提供向心力,由于B转动的半径较大,则B 先达到最大静摩擦力,角速度继续增大,则绳子出现拉力,当A的静摩擦力达到最大时,角速度增大,A、B开始发生相对滑动,可知B的静摩擦力方向一直指向圆心,在绳子出现张力前,A、B的角速度相等,半径之比为1∶2,则静摩擦力之比为1∶2,当绳子出现张力后,A、B的静摩擦力之比不是1∶2,故A、B错误.当摩擦力刚好提供B做圆周运动的向心力时,绳子开始产生拉力,则kmg=mω2·2L,解得ω=kg2L,故C错误;当A的摩擦力达到最大时,A、B开始滑动,对A有:kmg-T=mLω′2,对B有:T+kmg=m·2Lω′2,解得ω′=2kg 3L,故D正确.答案:D考点四平抛运动与圆周运动综合问题1.解题方法:运动的合成与分解.2.解题流程.如图所示,从A点以v0=4 m/s的水平速度抛出一质量为m=1 kg的小物块(可视为质点),当物块运动至B点时,恰好沿切线方向进入固定的光滑圆弧轨道BC,经圆弧轨道后滑上与C点等高、静止在粗糙水平面的长木板上,圆弧轨道C端切线水平.已知长木板的质量M=4 kg,A、B两点距C点的高度分别为H=0.5 m,h=0.15 m,R=0.75 m,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g取10 m/s2,求:(1)小物块运动至B 点时的速度大小和方向与水平面夹角的正切值; (2)小物块滑至C 点时,对圆弧轨道C 点的压力大小; (3)长木板至少为多长,才能保证小物块不滑出长木板? 解析:(1)物块从A 到B 做平抛运动, 有H -h =12gt 2,设到达B 点时竖直分速度为v y , 则v y =gt ,v =v 20+v 2y ,代入数据解得v =23 m/s , 方向与水平面的夹角为θ, 则tan θ=v yv 0=74. (2)从A 至C 点,由动能定理得mgH =12mv 22-12mv 20.设C 点受到的支持力为F N ,则有F N -mg =m v 22R,代入数据解得v 2=26 m/s ,F N ≈44.7 N.根据牛顿第三定律可知,物块对圆弧轨道C 点的压力大小为44.7 N. (3)由题意可知小物块对长木板的摩擦力F f =μ1mg =5 N ,长木板与地面间的最大静摩擦力近似等于滑动摩擦力F ′f =μ2(M +m )g =10 N ,因F f <F ′f ,所以小物块在长木板上滑动时,长木板静止不动. 小物块在长木板上做匀减速运动, 其加速度a =μ1g =5 m/s 2. 若到长木板右端时速度刚好为0, 则长木板长度至少为l =v 222a =2610m =2.6 m. 答案:(1)23 m/s74(2)44.7 N (3)2.6 m考向 平抛接圆周1.(多选)一位同学玩飞镖游戏,已知飞镖距圆盘为L ,对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘且过盘心O 点的水平轴匀速转动.若飞镖恰好击中A 点,下列说法正确的是( )A .从飞镖抛出到恰好击中A 点,A 点一定转动到最低点位置B .从飞镖抛出到恰好击中A 点的时间为Lv 0C .圆盘的半径为gL 24v 20D .圆盘转动的角速度为2k πv 0L(k =1,2,3,…)解析:从飞镖抛出到恰好击中A 点,A 点转到了最低点位置,选项A 正确;飞镖水平抛出,在水平方向做匀速直线运动,因此t =Lv 0,选项B 正确;飞镖击中A 点时,A 恰好在最下方,有2r =12gt 2,解得r =gL24v 20,选项C 正确;飞镖击中A 点,则A 点转过的角度满足θ=ωt=π+2k π(k =0,1,2,…),故ω=(2k +1)πv 0L(k =0,1,2,…),选项D 错误.答案:ABC考向 圆周接平抛2.如图所示,四分之一圆弧AB 和半圆弧BC 组成的光滑轨道固定在竖直平面内,A 、C 两端点等高,直径BC 竖直,圆弧AB 的半径为R ,圆弧BC 的半径为R2.一质量为m 的小球从A 点上方的D 点由静止释放,恰好沿A 点切线方向进入并沿轨道运动,不计空气阻力,重力加速度大小为g .(1)要使小球能运动到C 点,D 、A 两点间的高度差h 至少为多大? (2)改变h ,小球通过C 点后落到圆弧AB 上的最小动能为多少? 解析:(1)设小球刚好通过C 点的速度为v ,则mg =m v 2R2.小球从D 点到C 点的过程中机械能守恒,有mgh =12mv 2,联立解得h =R4.(2)设小球通过C 点的速度为v 0,落到圆弧AB 上时,水平位移为x ,下落高度为y ,由平抛运动的规律可知x =v 0t ,y =12gt 2,从C 点抛出到落到圆弧AB 上,由动能定理得mgy =E k -12mv 20.又x 2+y 2=R 2,联立可得:E k =14mg (R2y+3y ).式中当R 2y =3y ,即y =33R 时,E k 有最小值,E kmin =32mgR . 答案:(1)R 4 (2)32mgR。
第4讲 力与物体的曲线运动(二) ——电场和磁场中的曲线运动
1.
图1-4-1
(2014·山东卷,18)如图1-4-1,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v 0等于( ) A.s 2 2qE mh B.s 2
qE mh C.s 4 2qE mh D.s 4
qE mh
解析 两粒子都做类平抛运动,轨迹恰好相切,由对称性可知,切点为矩形的几
何中心,则有h 2=12qE m t 2,s 2=v 0t ,可得,v 0=s 2qE
mh ,正确选项为B. 答案 B 2.(2014·新课标全国卷Ⅰ,16)如图1-4-2所示,MN 为铝质薄平板,
图1-4-2
铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力,铝板上方和下方的磁感应强度大小之比为( )
A .2 B. 2 C .1 D.2
2
解析 设粒子在铝板上方和下方的速率及轨道半径分别为v 1、v 2及R 1、R 2.
由牛顿第二定律及洛伦兹力公式得:q v 1B 上=m v 21
R 1
①
q v 2B 下=m v 22
R 2
②
由题意知:R 1=2R 2③ 12m v 21=2×12m v 22④
联立①②③④得:B 上B 下=2
2
,选项D 正确.
答案 D 3.(2014·新课标全国卷Ⅱ,20)
图1-4-3
图1-4-3为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( ) A .电子与正电子的偏转方向一定不同
B .电子与正电子在磁场中运动轨迹的半径一定相同
C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子
D .粒子的动能越大,它在磁场中运动轨迹的半径越小
解析 由于电子和正电子带电性相反,若入射速度方向相同时,受力方向相反,则偏转方向一定相反,选项A 正确;由于电子和正电子的入射速度大小未知,根
据r =m v
qB 可知,运动半径不一定相同,选项B 错误;虽然质子和正电子带电量及
电性相同,但是两者的质量和速度大小未知,由r =m v
qB 知,根据运动轨迹无法判断
粒子是质子还是正电子,选项C 正确;由E k =12m v 2,则r =m v qB =2mE k
qB ,可知粒子的动能越大,它在磁场中运动轨迹的半径越大,选项D 错误. 答案 AC 4.(2014·山东卷,24)如图1-4-4甲所示,间距为d 、垂直于纸面的两平行板P 、Q 间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示.t =0时刻,一质量为m 、带电量为+q 的粒子(不计重力),以初速度v 0由Q 板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当B 0和T B 取某些特定值时,可使t =0时刻入射的粒子经Δt 时间恰能垂直打在P 板上(不考虑粒子反弹).上述m 、q 、d 、v 0为已知量.
图1-4-4
(1)若Δt =1
2T B ,求B 0;
(2)若Δt =3
2T B ,求粒子在磁场中运动时加速度的大小;
(3)若B 0=4m v 0
qd ,为使粒子仍能垂直打在P 板上,求T B .
解析 (1)设粒子做圆周运动的半径为R 1,由牛顿第二定律得
q v 0B 0=m v 20
R 1
①
据题意由几何关系得 R 1=d ②
联立①②式得
B 0=m v 0qd ③
(2)设粒子做圆周运动的半径为R 2,加速度大小为a ,由圆周运动公式得
a =v 20R 2
④
据题意由几何关系得 3R 2=d ⑤
联立④⑤式得 a =3v 20d ⑥
(3)设粒子做圆周运动的半径为R ,周期为T ,由圆周运动公式得
T =2πR v 0
⑦
由牛顿第二定律得
q v 0B 0=m v 20
R ⑧
由题意知B 0=4m v 0
qd ,代入⑧式得 d =4R ⑨
粒子在1个T B 内的运动轨迹如图所示,
O 1、O 2为圆心,O 1O 2连线与水平方向的夹角为θ,在每个T B 内,只有A 、B 两个
位置才有可能垂直击中P 板,且均要求0<θ<π
2,由题意可知 π2+θ2πT =T B
2⑩
设经历完整T B 的个数为n (n =0,1,2,3……) 若在A 点击中P 板,据题意由几何关系得 R +2(R +R sin θ)n =d ⑪ 当n =0时,无解⑫
当n =1时,联立⑨⑪式得 θ=π6(或sin θ=12)⑬ 联立⑦⑨⑩⑬式得
T B =πd 3v 0
⑭
当n ≥2时,不满足0<θ<π
2的要求⑮
若在B 点击中P 板,据题意由几何关系得 R +2R sin θ+2(R +R sin θ)n =d ⑯ 当n =0时,无解⑰
当n =1时,联立⑨⑯式得
θ=arcsin 14(或sin θ=1
4)⑱ 联立⑦⑨⑩⑱式得
T B =(π2+arcsin 14)d 2v 0
⑲
当n ≥2时,不满足0<θ<90°的要求⑳
答案 (1)m v 0qd (2)3v 2
d (3)见解析
主要题型:选择题、计算题 知识热点 (1)单独命题
①带电粒子在电场中的受力分析与运动分析. ②带电粒子在有界匀强磁场中的圆周运动问题. (2)交汇命题
①结合匀变速曲线运动规律、动能定理进行考查. ②带电粒子在电场、磁场、重力场中的运动分析. 物理方法
(1)运动的合成与分解方法(如类平抛运动的处理方法) (2)对称法 (3)数形结合法(利用几何关系) (4)模型法(类平抛运动模型、匀速圆周运动模型) (5)逆向思维法 命题趋势
(1)以生产与生活中的带电粒子在电场中的运动为背景,突出表现物理知识在实际生活中的应用.
(2)以生产、科技中带电粒子运动问题为命题背景,突出由受力推知运动或由运动分析受力的建模方法.。