河北省2019年中考数学第6章图形的变化第2节平移与旋转精讲试题
- 格式:doc
- 大小:894.50 KB
- 文档页数:29
平移与旋转答案及解析1.【答案】B【解析】本题主要考查图形的轴对称和中心对称。
在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形叫做中心对称图形;在平面内,如果把一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形称为轴对称图象,所以选B.2.【答案】C【解析】 CC’=AB,∠CAB=70°.∴∠C’CA=∠CAB=70°.又 C、C’为对应点,点A为旋转中心∴AC=AC’,即△ACC’为等腰三角形∴∠BAB’=∠CAC’=180°-2∠C’CA=40°∴选C.3.【答案】C【解析】根据平移的特性可知,平移只改变图形的位置,不改变图形的形状和大小,所以C 错误.4.【答案】D【解析】平移只改变图形的位置,不改变图形的形状和大小。
所以平移后的边对应相等,∴D 错误,应为AB=AB’.5.【答案】D【解析】根据旋转的意义,找出菱形AEFG和菱形ABCD的对应点的变化情况,结合等边三角形的性质即可.6.【答案】C【解析】 △ACB平移后得到△EBF∴AC=BE CB=BF AB=EF∴①③④正确,②中点B对应点应为F.7.【答案】A【解析】观察图形可知,△DEF是由△ABC沿BC向右移动BE的长度后得到的∴平移距离就是线段BE的长度∴选A.8.【答案】D【解析】①:由平移和旋转性质可知,平移后对应线段平行,旋转后不一定平行.②③④平移或旋转后,对应线段相等,对应角相等,图形的形状和大小都不会变化.9.【答案】B【解析】A项,平移和旋转均不改变图形的形状和大小B项,平移和旋转的共同点是改变图形位置C项,图形可以向某方向平移一定距离,旋转是围绕中心做圆周运动D项,由平移得到的图形不一定由旋转得到10.【答案】D【解析】由旋转性质可知,AC=AC’又∠CAC’=90°,∴△CAC’是等腰直角三角形∴∠CC’A=45°∠CC’B+∠ACC’=∠AB’C’∴∠CC’B=15°11.【答案】图形的形状、大小不变,改变图形位置.【解析】在图形的平移、旋转、轴对称变换中,相同的性质是:图形的形状和大小不变,只有位置发生改变.12.【答案】平移旋转【解析】平移变换:在平面内,将一个图形沿某个方向移动一定距离旋转变换:在平面内,将一个图形沿某一个定点方向转动一个角度13.【答案】(1,-1)【解析】向右平移则A的横坐标+3,向下平移则A的纵坐标-2,平移后A的坐标为(1,-1).14.【答案】小正方形AEOF;三;△AOD;三【解析】正方形ABCD可看做是由图形小正方形AEOF经过三次平移得到,也可以看作是由图形△AOD绕O点旋转三次得到.15.【答案】150°【解析】根据旋转的定义可知,旋转的角度为:∠AOC=∠AOB+∠BOC=60°+90°=150°∴旋转角度为150°.16.【答案】如图所示,平移后RA’=3,过点B向AA’引垂线,垂足为D∴BD=4,A’D=4∴∠BA’A=45°.【解析】经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.【答案】(1)①平移的方向是射线AD方向,距离为AD长度②相等的线段:AD=BE=CF,AB=DE,BC=DE,AC=DF平行的线段:AC∥BE∥CF,AB∥DE,BC∥EF,AC∥DF③∠ABC=∠DEF,∠ACB=∠DEF,∠BAC=∠EDF∠BAD=∠BED,∠ABE=∠EDA,∠EBC=∠CFE∠BCF=∠BEF,∠ACF=∠ADF,∠CAD=∠CFD(2) CC’∥AB∴∠ACC’=∠CAB=75°△ABC绕点A旋转得到△AB’C’∴AC=AC’∴∠CAC’=180°-2∠ACC’=180°-2×75°=30°∴∠CAC’=∠BAB’=30°.【解析】(1)由图形可知,A与D,B与E,C与F是对应点,所以可得平移的方向和距离,也可得出相等的线段.(2)根据两直线平行,内错角相等可得∠ACC’=∠CAB,根据旋转性质可得AC=AC’,然后利用等腰三角形即可求得.18.【答案】(1)①②根据题意,在Rt △ABC 中AC=4,BC=3 ∴5342222=+=+=BC AC AB∴扫过的面积=ππ4253605902=⨯ (2)①AC ⊥BD△DCE 由△ABC 平移而成∴BE=2BC=6,DE=AC=3,CE=∠ACB=60°∴DE=21BE ∴BD ⊥DE又 ∠E=∠ACB=60°∴AC ∥DE ,∴BD ⊥AC△ABC 是等边三角形∴BF 是AC 的中点∴BD ⊥AC ,BD 与AC 互相垂直平分②由(1)知,AC ∥DE ,BD ⊥AC∴△BED 是直角三角形BE=6,DE=3 ∴3322=-=DE BE BD .【解析】(1)①根据题意和图形旋转即可画图.②根据勾股定理求AB 长度.再根据扇形面积公式即可.(2)①由平移的性质可知BE=2BC=6DE=AC=3 ∴BD ⊥DE由∠E=∠ACB=60°可知AC ∥DE②在Rt △BDE 中利用勾股定理即可得出BD 的长.19. 【答案】(1)由△ABO 和△CDO 关于点O 中心对称可知△ABO ≌△CDO∴AO=CO,BO=DOAF=CE∴AO-AF=CO-CE∴FO=EO又 ∠DOF=∠BOE在△DOF 和△BOE 中⎪⎩⎪⎨⎧=∠=∠=EO FO BOE DOF BO DO∴△DOF ≌△BOE (SAS )∴FD=BE(2)①证明: △ABC 、△EDC 是等边三角形∴BC=AC,∠ACB=∠ECD=60°,EC=DC∴∠ACE=∠BCD在△ACE 和△BCD 中⎪⎩⎪⎨⎧=∠=∠=DC EC BCD ACE BC AC∴△ACE ≌△BCD (SAS )∴∠EAC=∠B=60°=∠ACB∴AE ∥BC② △ACE ≌△BCD ∠EAC=∠B=60°=∠ACB∴图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是点C ,旋转角是60°.【解析】(1)根据中心对称性质,可知△ABO ≌△CDO ,∴AO=CO,BO=DO,再根据AF=CE ,得FO=EO ,利用SAS 判定△DOF ≌△BOE ,∴FD=BE.(2)①由△ABC 、△EDC 是等边三角形,易证△ACE ≌△BCD ,∴∠EAC=∠B=60°=∠ACB ,∴AE ∥BC②由(1)可得:图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是C ,旋转角是60°.20.【答案】(1)△A 1B 1C 1如图所示(2)△A 2B 2C 2如图所示(3)△PAB 如图所示,由图可得P 点坐标为(2,0)【解析】(1)根据网格结构找出A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,顺次连接(2)根据网格结构找出A 、B 、C 关于原点对称点A 2、B 2、C 2的位置,顺次连接(3)找出点A 关于x 轴的对称点A ’,连接A ’B 与x 轴相交于一点,根据轴对称确定最短路线问题,交点即为P 坐标,再连接AP 、BP .21.【答案】△OAB AD【解析】由平移的性质,可知AB 、AO 、BO 平移AD 的长分别得到DC 、DE 、CE∴△EDC 可以看作是△OAB 平移得到,平移的距离是线段AD 的长22.【答案】400【解析】 △ABC 是等边三角形,∴AB=BC=ACA ’B ’∥AB ,BB ’=B ’C=21BC ∴B ’O=21AB,CO=21AC ∴△B ’OC 是等边三角形,同理阴影的三角形都是等边三角形观察图可知,第1个图形中大等边三角形有2个,小等边三角形有2个依次可将第N 个图形中大等边三角形有2n 个,小等边三角形有2n 个故第100个图形中等边三角形的个数是:2×100+2×100=400个.23.【答案】326-【解析】过点B ’作DB ’∥BC ,交AB 于点D ,由平移和旋转性质可知,DB ’为图形平移的距离 ∠A=∠A ’=30°,AB=A ’B ’=12cm,BC=B ’C ∴2130sin sin ==︒=AB BC A ∴BC=B ’C=21AB=6cm. 由勾股定理得: AC=3622=-BC AB cm∴AB ’=AC-B ’C=(636-)cm又DB ’∥BC∴∠B=∠ADB ’又 ∠A=∠A,∴△ADB ’≌△ABC ∴AC AB BC DB ''=即6'36636DB =- ∴DB ’=(326-)cm.24.【答案】222-【解析】设BA 与B ’A ’、D ’A ’相交的两点分别为E 、F设EF=x ,由题知正方形旋转45°∴重叠部分以外的三角形均为等腰直角三角形∴A ’E=BE=AF=x 22∴AB=2BE+EF=22=+x x222-=x∴边长为222-25.【答案】①③【解析】根据旋转性质可知∠CAD=∠BAF ,AD=AF∠BAC=90° ∠DAE=45°∴∠CAD+∠BAE=45°∴∠EAF=45°∴△AEF ≌△AED∴①正确.②根据①知,CD=BF,DE=EF∴BE+DC=BE+BF>DE=EF.②错③ ∠FBE=45°+45°=90°∴BE 2+BF 2=EF 2△ADC 绕点A 顺时针旋转90度,得△AFB∴△AFB ≌△ADC∴BF=CD又FE=DC∴BE 2=DC 2=DE 2∴①③26.【答案】70°或120°【解析】①如下图点B 在AB 边上时,根据旋转的性质得BD=BD ’, ∠B=55°∴∠BDB ’=180°-2×55°=70°即m=70°②如下图点B 落在AC 上,根据旋转的性质可得BD=B ’D.BD=2CD∴B ’D=2CD∴∠CBD ’=30°在Rt △B ’CD 中,∠CDB ’=90°-30°=60°∠BDB ’=180°-60°=120°即m=120°综上所述,m=70°或120°.27.【答案】由旋转的性质得:△ACE ≌△ABD∴AE=AD=5 CE=BD=6∠DAE=60°∴DE=5作EH ⊥CD 垂足为H设DH=x由勾股定理,得:EH 2=CE 2-CH 2=DE 2-DH 2即62-(4-x)2=52-x 2 解得85=x ,∴DH=85 由勾股定理得:6385)85(52222=-=-=DH DE EH ∴△DCE 的面积=634521=⨯⨯EH CD 【解析】由旋转性质得△ACE ≌△ABD 得出AE=AD=5,CE=BD=6 ∠DAE=60° ∴△ADE 是等边三角形因此DE=AD=5,作EH ⊥CD ,垂足为H设DH=x ,由勾股定理求出EH 、DH即可得出△DCE 的面积。
初中数学图形的平移与旋转练习题及参考答
案
1. 平移练习题:
①把图形A 向右平移4个单位,向下平移2个单位得到了图形B,则图形A 的坐标为(3,1),图形B 的坐标为(7,-1)。
那么图形A 的形状是什么?
②将图形C 向左平移3个单位,向上平移5个单位得到图形D,则图形C 的坐标为(7,-4),图形D 的坐标为(4,1)。
那么图形C 的形状是什么?
参考答案:
①图形A 的坐标为(-1,3),形状为B中心对称的图形。
②图形C 的坐标为(10,-6),形状为D沿x轴对称的图形。
2. 旋转练习题:
①将图形E 沿顺时针方向旋转90度得到图形F,则图形E 的坐标为(2,4),图形F 的坐标为(-4,2)。
那么图形E 的形状是什么?
②将图形G 沿逆时针方向旋转120度得到图形H,则图形G 的坐标为(5,-7),图形H 的坐标为(4,8)。
那么图形G 的形状是什么?
参考答案:
①图形E 的坐标为(-4,2),形状为F沿y轴对称的图形。
②图形G 的坐标为(-7,-4),形状为H沿y=x对称的图形。
平移与旋转--知识讲解【学习目标】1.理解平移、旋转的基本概念,掌握平移、旋转的基本特征,并能利用平移与旋转的性质进行证明有关问题;2.知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计;理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;3.能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.【要点梳理】要点一、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形的形状与大小不变.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.要点二、旋转的概念把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角(如∠AOA′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点三、旋转的性质(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形的形状与大小不变.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点四、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.【典型例题】类型一、平移1.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.2.(•东台市模拟)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______.【答案】25°【解析】∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△A′B′C′.则有AB=A′B′,BC=B′C′,AC=A′C′,∠A=∠A′,∠C=∠C,∠B=∠B′.举一反三:【变式】(•临淄区一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.【答案】20;解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+A C=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.类型二、旋转的概念及性质3.如图,把四边形AOBC绕点O旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6)AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5)四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、 OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示4.如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型三、旋转的作图5. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.【答案与解析】【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心;⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.6.(•南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).【思路点拨】(1)根据题意画出△ABC 关于y 轴对称的△A 1B 1C 1即可;(2)根据题意画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,线段BC 旋转过程中扫过的面积为扇形BCC 2的面积,求出即可. 【答案与解析】解:(1)如图所示,画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)如图所示,画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,由勾股定理得,BC=222+3=13,线段BC 旋转过程中所扫过得面积S=π21134⨯()=.【总结升华】此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键. 举一反三【变式】如图,画出ABC ∆绕点O 逆时针旋转100︒所得到的图形.【答案】(∠AOA′=∠BOB′=∠COC′=100°)平移与旋转--巩固练习【巩固练习】一、选择题1.如图所示的图形中的小三角形可以由△ABC平移得到的有 ( )A.3个 B.4个 C.5个 D.6个2.(•株洲)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.下面生活中的物体的运动情况可以看成平移的是().(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).A.(1)(3) B.(4)(5) C.(3)(5) D.(2)(6)4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m26.如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二、填空题7.(春•博野县期末)图形在平移时,下列特征中不发生改变的有(把你认为正确的序号都填上),①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.8.如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.9.(•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.10.(春•新化县期末)钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了_______度.11.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于__________度.12.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.三.解答题13.如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.14.(吉安校级期中)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.15.如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【答案与解析】一、选择题1.【答案】C ;【解析】图中小三角形△BDE ,△CEF ,△DGH ,△EHI ,△FIJ 都可以由△ABC 平移得到.2.【答案】B ;【解析】解:∵在三角形ABC 中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB ﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C +∠ACB′=∠B+∠ACB′=60°.故选B .3.【答案】D ;【解析】(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)摇动的大绳,方向发生改变,不属于平移;(5)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(6)从楼顶自由落下的球沿直线运动,属于平移.∴可以看成平移的是(2)(6).故选D.4.【答案】B ;【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心.5.【答案】B ;6.【答案】B ;【解析】因为△BCE 旋转90°得到△DCF ,所以EC=CF,∠CFD=∠CEB=60°,即∠EFC=45°,所以∠EFD=60°-45°=15°.二、填空题7.【答案】①③④⑤⑥;【解析】解:由图形平移的性质,知图形在平移时,其特征不发生改变的有①③④⑤⑥.8.【答案】ABC , A ′B ′C ′,平行,平行;【解析】平移的性质.9.【答案】42;【解析】解:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.10.【答案】120°;【解析】2036012060⨯︒=︒.11.【答案】105°;【解析】∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°.12.【答案】等边三角形;【解析】因为△ABC旋转60°得到△''ABC,则AB= AB′,∠BAB′=60°,所以是等边三角形.三、解答题13.【解析】解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.14.【解析】解:(1)如图1所示过点B作BC⊥OA,垂足为C.∵△OAB为等边三角形,∴∠BOC=60°,OB=BA.∵OB=AB,BC⊥OA,∴OC=CA=1.在Rt△OBC中,,∴BC=.∴点B的坐标为(1,).(2)如图2所示:∵点B1与点A1的纵坐标相同,∴A1B1∥OA.①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B的坐标为(1,2),∴点B1的坐标为(﹣1,).如图3所示:由旋转的性质可知:点B1的坐标为(1,﹣).∴点B1的坐标为(﹣1,)或(1,﹣).15.【解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).。
第六章图形变换及视图、投影阶段检测·教师专用一、选择题(每小题3分,共30分)1.(2018烟台中考)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是( )2.(2017河北模拟)如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )3.(2018衡水模拟)如图所示的各组图形中,表示平移关系的是( )4.(2018泰安中考)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A.(2.8,3.6)B.(-2.8,-3.6)C.(3.8,2.6)D.(-3.8,-2.6)5.(2018石家庄桥西一模)图1是一个小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )A.信B.国C.友D.善6.如图,把△ABC绕着点C顺时针方向旋转30°,得到△A'B'C,A'B'交AC于点D,若∠A'DC=90°,则∠A的度数是( )A.30°B.50°C.60°D.80°7.(2018滨州中考)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为( )A.(5,1)B.(4,3)C.(3,4)D.(1,5)8.(2017保定模拟)如图是一个照相机成像的示意图,如果底片AB宽40 mm,焦距是60 mm,所拍摄的2 m外的景物的宽CD为( )A.12 mB.3 mC. mD. m9.(2018天津,11,3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是( )A.ABB.DEC.BDD.AF10.(2018保定模拟)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )二、填空题(每小题3分,共24分)11.(2018唐山滦南模拟)如图,将线段AB沿箭头方向平移2 cm得到线段CD,若AB=3 cm,则四边形ABDC的周长为.12.(2018秦皇岛模拟)春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为小时.(注:春分时,太阳早上六点升起) 13.如图,△PQR是△ABC经过某种变换后得到的图形.如果△ABC中任意一点M的坐标为(a,b),那么它的对应点N的坐标为.14.(2017河北中考)如图,依据尺规作图的痕迹,计算∠α= °.15.(2018邢台宁晋模拟)如图所示,是一个简单几何体的三视图,则这个几何体的侧面积等于.16.(2017石家庄栾城模拟)如图所示,一张等腰三角形纸片,底边长为18 cm,底边上的高为18 cm,现沿底边依次由下往上裁剪宽度均为3 cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是第张.17.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.18.(2018唐山丰南模拟)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为.三、解答题(共46分)19.(6分)(2017江苏泰州中考)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.20.(6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.21.(6分)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.22.(7分)(2018荆州中考)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.23.(7分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针方向旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.24.(7分)(2018福建中考)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.25.(7分)(2018襄阳中考)如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .第六章·阶段检测·答案精解精析一、选择题1.C A.是轴对称图形,不是中心对称图形,错误;B.是轴对称图形,也是中心对称图形,错误;C.不是轴对称图形,是中心对称图形,正确;D.是轴对称图形,也是中心对称图形,错误.2.B 由题图可知,这个立体图形的俯视图是.3.D A.表示对称关系;B.表示旋转关系;C.表示旋转关系;D.表示平移关系.故选D.4.A 由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(1.2-4,1.4-5),即P1(-2.8,-3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选A.5.A 第一次翻转诚在下面,第二次翻转爱在下面,第三次翻转国在下面,而信与国相对,故选A.6.C 由题意可知∠A'CA=30°,又因为∠A'DC=90°,所以∠A'=60°,又因为旋转属于全等变换,所以∠A=∠A'=60°.7.C ∵以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选C.8.D ∵AB∥CD,∴△AEB∽△DEC,根据“相似三角形对应高的比等于相似比”,得=.,即.=.,∴CD=m.9.D 在正方形ABCD中,连接CE、PC.∵点A与点C关于直线BD对称,∴AP=CP,∴AP+EP的最小值为EC.∵E,F分别为AD,BC的中点,∴DE=BF=AD.∵AB=CD,∠ABF=∠ADC=90°,∴△ABF≌△CDE.∴AF=CE.故选D.10.A 如图所示,设身高GE=h,CF=m,AF=a.当小亮到达点F之前时,根据题意,可得△OEG∽△OFC,∴=,即-=,∴y=-x--.∵a、h、m都是常数,∴是常数且为负,∴这个函数是一次函数,∴影长将随着离灯光越来越近而越来越短, -到灯下的时候,将是一个点;同理,当小亮到超过点F时,随着离灯光的越来越远而影长将变大.综上所述,选A.二、填空题11.答案10 cm解析∵CD是AB平移得到,∴AD∥BC,CD∥AB,∴四边形ABCD是平行四边形,∵AB=3 cm,AD=2 cm,∴四四边形ABDC的周长为10 cm,故答案为10 cm.12.答案 6解析依题意,当影长相等时,则太阳高度相等.根据对称性可知9:00与15:00时的太阳高度相同,故可求出小明出去的之间为15-9=6小时.13.答案(-a,-b)解析由题图知,△PQR和△ABC是关于原点中心对称的两个图形,则两对应点的坐标的关系是横、纵坐标分别互为相反数.14.答案56解析由题图可得,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.由作法可知AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.15.答案18解析由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,∴这个几何体的侧面积等于3×2×3=18.16.答案 5解析由题意可知这张正方形纸条的边长是3 cm,设从顶点到这个正方形的距离为x cm,则=,解得x=3,所以18-3=15 cm,因为15÷3=5,所以这张正方形纸条是第5张.17.答案①③④解析在木杆转动过程中,点B的运动路线是以点A为圆心、AB为半径的圆弧的,当光线与圆弧相切时,木杆的影长最大且大于AC,即m>AC,所以①正确,②错误;当AB到达地面时,影长最短且等于AB,③正确;综合上述结论可知④正确.所以答案为①③④.18.答案解析设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB·h=AB·AD,∴h=AD=2.∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE 的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.三、解答题19.解析(1)如图所示,射线CM即为所求.(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC.∴=,即=,解得AD=4.20.解析(1)作出△A1B1C1,如图所示.(2)本题是开放题,答案不唯一,只要作出的△A2B2C2满足条件即可.如图.21.解析根据俯视图和左视图可知,该几何体共两层,底层有9个小正方体,上层中间一行有正方体,若使主视图为轴对称图形可使上层中间一行、中间一列有一个小正方体即可,其主视图如图所示.22.证明(1)由折叠可得:M、N分别为AD、BC的中点.∵CD∥MN∥AB,∴F为PG的中点,即PF=GF.由折叠可得:∠PFA=∠D=90°,∠1=∠2.在△AFP和△AFG中,∵,∴△AFP≌△AFG(SAS).(2)∵△AFP≌△AFG,∴AP=AG.∵AF⊥PG,∴∠2=∠3.∵∠1=∠2,∴∠1=∠2=∠3=30°.∴∠2+∠3=60°,即∠PAG=60°.∴△APG为等边三角形.23.解析(1)∠ABD=30°-α.(2)△ABE为等边三角形.证明如下:连接AD,CD.∵∠DBC=60°,BD=BC,∴△BDC是等边三角形,∴∠BDC=60°,BD=DC.又∵AB=AC,AD=AD,∴△ABD≌△ACD,∴∠ADB=∠ADC,∴∠ADB=150°.∵∠ABE=∠DBC=60°,∴∠ABD=∠EBC.又∵BD=BC,∠ADB=∠ECB=150°,∴△ABD≌△EBC.∴AB=EB.又∵∠ABE=60°,∴△ABE是等边三角形.(3)∵△BDC是等边三角形,∴∠BCD=60°.∴∠DCE=∠BCE-∠BCD=90°.又∵∠DEC=45°,∴CE=CD=BC.∵∠BCE=150°,∴∠EBC=15°.∵由(1)(2)知∠EBC=∠ABD=30°-,∴α=30°.24.解析(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到, ∴∠DAB=90°,AD=AB=10.∴∠ABD=45°.∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF.∴∠BDF=∠ABD=45°.(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°.∵∠DAB=90°,∴∠ADE=90°.∵∠ACB=90°,∴∠ADE=∠ACB.∴△ADE∽△ACB.∴=,即=,解得AE=12.5.由平移的性质得,CG=AE=12.5.25.解析(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°.∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°.∴四边形CEGF是矩形,∠CGE=∠ECG=45°.∴EG=CE.∴四边形CEGF是正方形.②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°.∴=,GE∥AB.∴==,故答案为.(2)连接CG,如图所示,则∠BCE=∠ACG=α.在Rt△CEG和Rt△CBA中,∵=cos 45°=,=cos 45°=,∴=.∴△ACG∽△BCE.∴==.∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线.∴∠BEC=135°.∵△ACG∽△BCE,∴∠AGC=∠BEC=135°.∴∠AGH=∠CAH=45°.∵∠CHA=∠AHG,∴△AHG∽△CHA.∴==,设BC=CD=AD=a,则AC=a,则由=,得=,解得AH=a.则DH=AD-AH=a,CH=== a. ∴由=得=,解得a=3 ,即BC=3.故答案为3.。
第三节视图与投影,河北五年中考命题规律)年份题号考查点考查内容分值总分2019 8 几何体的三视图已知几何体确定主视图33 2019 8正方体的展开图还原补图将展开图还原成正方体3 32019 4几何体的三视图已知三视图,确定几何体3 32019 10正方体展开图的还原将正方体的展开图折叠还原,求正方体上两点的距离3 32019 26(2)三视图的相关计算以装有液体的正方体容器倾斜放在水平桌面上为背景,计算液体体积3 3命题规律视图、立体图形的展开与折叠在中考中一般设置1道题,分值为2~3分,题型以选择题为主,仅2019年在解答题中考查还原三视图并计算体积.分析近五年河北中考试题可以看出,本课时常考类型有:(1)判断几何体的三视图;(2)视图的相关计算;(3)正方体展开图的还原及相关计算.,河北五年中考真题及模拟) 视图的识别与相关计算1.(2019河北中考)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( A ),A) ,B) ,C) ,D)2.(2019沧州一模)如图中的三视图所对应的几何体是( B ),A) ,B) ,C) ,D)3.(2019张家口二模)图中几何体的主视图是( A ),A) ,B) ,C) ,D)正方体展开图的还原及相关计算4.(2019河北中考)图①和图②中所有的正方形都全等,将图①的正方形放在图②中的①②③④某一位置,所组成的图形不能围成正方体的位置是( A )A.①B.②C.③ D.④5.(2019保定中考模拟)将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG6.(2019河北中考)图①是边长为1的六个小正方形组成的图形,它可以围成图②的正方体,则图①中小正方形顶点A,B在围成的正方体上的距离是( B )A.0 B.1 C. 2 D. 37.(2019保定中考模拟)图①是一个小正方体的侧面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是( D )A.和 B.谐 C.社 D.会投影8.(2019沧州一模)如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( C )A.逐渐变短 B.逐渐变长C.先变短后变长 D.先变长后变短9.(2019邯郸中考模拟)小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是( A ),A) ,B) ,C) ,D),中考考点清单)投影平行投影由平行光线照射在物体上所形成的投影,叫做平行投影正投影投影线垂直照射在投影面上的物体的投影叫做正投影中心投影由一点射出的光线照射在物体上所形成的投影,叫做中心投影几何体的三视图1.一个几何体的正投影,又叫做这个几何体的视图.从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.2.三种视图的关系(1)主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.(2)在画三视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等,看得见的轮廓线要画成实线,看不见的轮廓线要画成虚线.3.常见几何体的三视图几何体主视图左视图俯视图KK续表几何体主视图左视图俯视图4.常见几何体的体积和表面积的计算公式名称几何体体积表面积正方体__a3__ 6a2长方体abc __2(ab+bc+ac)__三棱柱h·S底面2S底面+h·C底长圆锥13πr2hπr2+πlr(l为母线长)圆柱πr2h 2πr2+2πrh球43πR34πR2【方法技巧】要求解几何体的体积或表面积,就要先确定几何体的形状:1.由三视图确定出实物的形状和结构.2.由部分特殊图确定出实物的形状和结构.立体图形的展开与折叠常见几何体展开图图示(选其一种)两个圆和一个矩形一个圆和一个扇形两个全等的三角形和三个矩形一四一型续表二三一型三三型二二二型由上面几个展开图可以看出,不会出现两种形式的图形即“凹”字型和“田”字型.如下面2个图形:图①与图②两种形式不是正方体的表面展开图.7.立体图形的折叠一个几何体能展开成一个平面图形,这个平面图形就可以折叠成相应的几何体,展开与折叠是一个互逆的过程.,中考重难点突破)几何体的三视图【例1】(2019烟台中考)如图所示的工件,其俯视图是( D ),A) ,B) ,C) ,D) 【解析】俯视图是从上往下看的,有两个圆面,但小圆面的线条应该是虚线.【答案】B1.(2019武汉中考)某物体的主视图如图所示,则该物体可能为( A ),A) ,B) ,C) ,D) 2.(宜昌中考)将一根圆柱形的空心钢管任意放置,它的主视图不可能是( A ),A) ,B) ,C) ,D) 3.(2019绵阳中考)如图所示的几何体的主视图正确的是( D ),A) ,B) ,C) ,D) 4.(2019常德中考)如图是一个几何体的三视图,则这个几何体是( B ),A) ,B) ,C) ,D)5.(山西中考)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( A ),A) ,B) ,C) ,D) 6.(2019绍兴中考)如图是一个正方体,则它的表面展开图可以是( B ),A) ,B) ,C) ,D)7.(2019通辽中考)下列四个几何体的俯视图中与众不同的是( B ),A) ,B) ,C) ,D)8.(枣庄中考)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是( C )A.白B.红C.黄D.黑9.(2017齐齐哈尔中考)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于( C )A.10 B.11 C.12 D.13立体图形的有关计算【例2】(扬州中考)如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是____cm3.【解析】观察其视图知:该几何体为长方体,且长方体的长为3,宽为2,高为3,故其体积为:3×3×2=18.【答案】1810.(2019荆州中考)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为( D )A.800π+1 200 B.160π+1 700C.3 200π+1 200 D.800π+3 00011.(2019湖州中考)如图是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是( D )A.200 cm2 B.600 cm2C.100π cm2 D.200π cm212.(2019呼和浩特中考)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为__(225+252)π__.(第12题图)(第13题图)13.(2019滨州中考)如图,一个几何体的三视图分别是两个矩形.一个扇形,则这个几何体表面积的大小为__15π+12__.2019-2020学年数学中考模拟试卷一、选择题1.在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( ) A .4个 B .3个C .2个D .1个2.-12的倒数的相反数是( ) A .2-B .2C .12-D .123.如图,已知直线y =334x -,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最小值是( )A.6B.5.5C.5D.4.54.如图,已知△ABC 内接于⊙O ,AE 平分∠BAC ,交BC 于D ,交⊙O 于E ,若AB 、AC 的长是方程x 2-ax+12=0的两实根,AD=2,则AE 的长为( )A.5B.6C.7D.85.若关于x 的一元二次方程(a ﹣1)x 2﹣2x+1=0有实数根,则整数a 的最大值为( ) A .0 B .﹣1 C .1D .26.计算的结果为( )A.bB.–bC.D.7.如图,矩形ABCD 中,AB=8,BC=4,把矩形ABCD 沿过点A 的直线AE 折叠,点D 落在矩形ABCD 内部的点D′处,则CD′的最小值是( )A .4B .45C .454-D .454+8.如图所示,四边形ABCD 是边长为3的正方形,点E 在BC 上,BE =1,△ABE 绕点A 逆时针旋转后得到△ADF ,则FE 的长等于( )A .32B .23C .33D .259.如图,小明从二次函数y =ax 2+bx+c 图象中看出这样四条结论:①a >0; ②b >0; ③c >0; ④b 2﹣4ac >0;其中正确的是( )A .①②④B .②④C .①②③D .①②③④10.tan60︒的值为( ) A .3 B .23C .3D .211.下列水平放置的四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个12.下列长度的三条线段能组成锐角三角形的是( ) A .2,3,4 B .2,3,5C .3,4,4D .3,4,5二、填空题13.若反比例函数ky x=的图象经过点(1,3),则k 的值是___________. 14.满足不等式组212(1)8x x +<⎧⎨->-⎩的整数解为______.15.计算:12733-=_________。
第三节 视图与投影,河北五年中考命题规律)已知三视图,将正方体的展,河北五年中考真题及模拟)视图的识别与相关计算1.(2019河北中考)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( A ),A) ,B) ,C),D)2.(2019沧州一模)如图中的三视图所对应的几何体是( B ),A) ,B) ,C),D)3.(2019张家口二模)图中几何体的主视图是( A ),A),B),C),D)正方体展开图的还原及相关计算4.(2019河北中考)图①和图②中所有的正方形都全等,将图①的正方形放在图②中的①②③④某一位置,所组成的图形不能围成正方体的位置是( A )A.①B.②C.③ D.④5.(2019保定中考模拟)将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG6.(2019河北中考)图①是边长为1的六个小正方形组成的图形,它可以围成图②的正方体,则图①中小正方形顶点A,B在围成的正方体上的距离是( B )A.0 B.1 C. 2 D. 37.(2019保定中考模拟)图①是一个小正方体的侧面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是( D )A.和 B.谐 C.社 D.会投影8.(2019沧州一模)如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( C )A.逐渐变短 B.逐渐变长C.先变短后变长 D.先变长后变短9.(2019邯郸中考模拟)小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是( A ),A) ,B) ,C) ,D),中考考点清单)投影中心投影由一点射出的光线照射在物体上几何体的三视图1.一个几何体的正投影,又叫做这个几何体的视图.从正面得到的视图叫做主视图,从上面得到的视图叫做俯视图,从左面得到的视图叫做左视图.2.三种视图的关系(1)主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.(2)在画三视图时,主、俯视图要长对正,主、左视图要高平齐,俯、左视图要宽相等,看得见的轮廓线要画成实线,看不见的轮廓线要画成虚线.1.由三视图确定出实物的形状和结构.2.由部分特殊图确定出实物的形状和结构.立体图形的展开与折叠续表二三一型三三型二二二型由上面几个展开图可以看出,不会出现两种形式的图形即“凹”字型和“田”字型.如下面2个图形:图①与图②两种形式不是正方体的表面展开图.7.立体图形的折叠一个几何体能展开成一个平面图形,这个平面图形就可以折叠成相应的几何体,展开与折叠是一个互逆的过程.,中考重难点突破)几何体的三视图【例1】(2019烟台中考)如图所示的工件,其俯视图是( D ),A) ,B) ,C) ,D) 【解析】俯视图是从上往下看的,有两个圆面,但小圆面的线条应该是虚线.【答案】B1.(2019武汉中考)某物体的主视图如图所示,则该物体可能为( A ),A) ,B) ,C) ,D) 2.(宜昌中考)将一根圆柱形的空心钢管任意放置,它的主视图不可能是( A ),A) ,B) ,C),D)3.(2019绵阳中考)如图所示的几何体的主视图正确的是( D ),A) ,B) ,C) ,D)4.(2019常德中考)如图是一个几何体的三视图,则这个几何体是( B ),A) ,B) ,C) ,D)5.(山西中考)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( A ),A) ,B) ,C),D)6.(2019绍兴中考)如图是一个正方体,则它的表面展开图可以是( B ),A) ,B) ,C) ,D)7.(2019通辽中考)下列四个几何体的俯视图中与众不同的是( B ),A) ,B) ,C) ,D)8.(枣庄中考)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是( C )A .白B .红C .黄D .黑9.(2017齐齐哈尔中考)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a 个小正方体组成,最少有b 个小正方体组成,则a +b 等于( C )A .10B .11C .12D .13立体图形的有关计算【例2】(扬州中考)如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是____cm3.【解析】观察其视图知:该几何体为长方体,且长方体的长为3,宽为2,高为3,故其体积为:3×3×2=18.【答案】1810.(2019荆州中考)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为( D )A.800π+1 200 B.160π+1 700C.3 200π+1 200 D.800π+3 00011.(2019湖州中考)如图是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是( D )A.200 cm2 B.600 cm2C.100π cm2 D.200π cm212.(2019呼和浩特中考)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为__(225+252)π__.(第12题图)(第13题图)13.(2019滨州中考)如图,一个几何体的三视图分别是两个矩形.一个扇形,则这个几何体表面积的大小为__15π+12__.2019-2020学年数学中考模拟试卷一、选择题1.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.752.下列计算正确的是()A.a4+a3=a7B.a4•a3=a12C.(a4)3=a7D.a4÷a3=a3.方程的两个根为( )A.,B.,C.,D.,4.下列命题中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相平分且相等的四边形是正方形5.如果y,那么(﹣x)y的值为()A.1B.﹣1C.±1D.06.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,67.如图,在∆ABC中,AC=BC,过C作CD//AB.若AD平分∠CAB,则下列说法错误的是()A .BC=CDB .BO :OC=AB :BC C .△CDO ≌△BAOD .::AOC CDO S S AB BC ∆∆=8.王爷爷上午8:00从家出发,外出散步,到老年阅览室看了一会儿报纸,继续以相同的速度散步一段时间,然后回家.如图描述了王爷爷在散步过程中离家的路程s (米)与所用时间t (分)之间的函数关系,则下列信息错误的是( )A .王爷爷看报纸用了20分钟B .王爷爷一共走了1600米C .王爷爷回家的速度是80米/分D .上午8:32王爷爷在离家800米处9.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若∠DHO =20°,则∠ADC 的度数是( )A.120°B.130°C.140°D.150°10.计算a 2•(a 2)3的结果是( ) A.a 7B.a 10C.a 8D.a 1211.如图,▱ABCD 中,AB =4,BC =8,∠A =60°,动点P 沿A ﹣B ﹣C ﹣D 匀速运动,运动速度为2cm/s ,同时动点Q 从点A 向点D 匀速运动,运动速度为1cm/s ,点Q 到点D 时两点同时停止运动,设点Q 走过的路程为x (s ),△APQ 的面积为y (cm 2),能大致刻画y 与x 的函数关系的图象是( )A .B .C.D.12.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.二、填空题13.如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是_____.14.观察下面三行数:﹣1,2,﹣3,4,﹣5,…3,﹣6,9,﹣12,15,…﹣1,8,﹣27,64,﹣125,…(1)第一行的第7个数是_____,第二行的第8个数是_____,第三行的第6个数是_____;(2)取每行数的第10个数,这三个数的和为_____.15.如图,AB切⊙O于C,AO交⊙O于D,AO的延长线交⊙O于E,若∠A=α,则∠ECB=_____(用含α的式子表示).16.截止2018年底,中国互联网用户达8.29亿.数据8.29亿用科学记数法表示为_____________. 17.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限内作正方形ABCD,点D在双曲线(k≠0)上,将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是____.18.在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A',当点E、A'、C三点在一条直线上时,DF的长度为_____.三、解答题19.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下.收集数据20名大学生对两部电影的打分结果如下:《流浪地球》78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99《绿皮书》88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92整理、描述数据绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)分析数据、推断结论(1)估计该大学超级喜欢电影《绿皮书》的有人;(2)你认为观众更喜欢这两部电影中的(填《流浪地球》或《绿皮书》),理由是.20.如图,在▱ABCD中,过A、B、C三点的⊙O交AD于点E,连接BE、CE,BE=BC.(1)求证:△BEC∽△CED;(2)若BC=10,DE=3.6,求⊙O的半径.21.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.22.某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x.(1)第二批衬衫进价为元,购进的数量为件.(都用含x的代数式表示,不需化简)(2)求x 的值.23.车辆经过润扬大桥收费站时,4个收费通道A 、B 、C 、D 中,可随机选择其中一个通过. (1)一辆车经过此收费站时,选择A 通道通过的概率是 .(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率. 24.已知,平面直角坐标系中,关于x 的二次函数y =x 2﹣2mx+m 2﹣2 (1)若此二次函数的图象过点A(﹣1,﹣2),求函数的表达式;(2)若(x 1,y 1),(x 2,y 2)为此二次函数图象上两个不同点,且x 1+x 2=4时y 1=y 2,试求m 的值; (3)点P(﹣2,y 3)在抛物线上,求y 3的最小值.25.如图,△ABC 内接于⊙O ,BC 为直径,∠BAC 的平分线与BC 和⊙O 分别相交于D 和E ,P 为CB 延长线上一点,PB =5,PA =10,且∠DAP =∠ADP . (1)求证:PA 与⊙O 相切; (2)求sin ∠BAP 的值; (3)求AD•AE 的值.【参考答案】*** 一、选择题二、填空题1314.﹣7、 ﹣24、 216; 980 15.45°+2α16.88.2910⨯ 17.2 18.1或11三、解答题19.补全统计图与统计表见解析;(1)720;(2)见解析.【解析】【分析】(1)根据题干中所给数据,整理可补全直方图;再根据众数和中位数的定义可得;(2)答案不唯一,合理即可.【详解】(1)补全《流浪地球》的分布直方图如下:填统计表如下:估计该大学超级喜欢电影《绿皮书》的有1800×820=720(名),故答案为:720;(2)答案不唯一,喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数;为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在以上的只有12人.故答案为:《绿皮书》,在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数.【点睛】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.20.(1)见解析;(2【解析】【分析】(1)证明两个等腰三角形相似,证明一个底角对应相等即可;(2)利用直径构造直角三角形,从而涉及到半径(直径),再利用垂径定理即可解决问题.【详解】(1)证明:∵BE=BC,∴∠BEC=∠BCE∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.∴∠BCE=∠DEC,∠A+∠D=180°.∴∠BEC=∠DEC∵四边形ABCD内接于⊙O,∴∠A+∠BCE=180°.∴∠BCE=∠D∴△BEC∽△CED即得证.(2)过点O作OF⊥CE,垂足为F,连接OC,如下图.∴CF=12 CE,∴直线OF垂直平分CE,∵BE=BC,∴直线OF经过点B,∵△BEC∽△CED,又由(1)可知CE=CD,∴BC CE CE DE=,∵BC=10,DE=3.6,∴CE=CD=6∴CF=12CE=3,设⊙O的半径为r,可得BF=OF r,在Rt△OCF中,OF2+CF2=OC2,r)2+9=r2∴r=91,即圆的半径为91【点睛】本题考查的是相似三角形的判定与性质,尤其是对两个等腰三角形的判定更为特殊,利用直径构造直角三角形是相关问题中的常用思路.21.(1)30,20;(2)150,45,36;(3)21.6°;(4)160【解析】【分析】(1)观察图表体育类型即可解决问题;(2)根据“总数=B类型的人数÷B所占百分比”可得总数;用总数减去其他类型的人数,可得m的值;根据百分比=所占人数/总人数可得n的值;(3)根据圆心角度数=360°×所占百分比,计算即可;(4)用学生数乘以最喜爱新闻节目所占百分比可估计最喜爱新闻节目的学生数.【详解】(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.故答案为30,20;(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=54150×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×9150=21.6°,故答案为21.6°;(4)估计该校最喜爱新闻节目的学生数为2000×12150=160人,答:估计该校最喜爱新闻节目的学生数为160人.【点睛】本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)100(1+x),200(1+2.5x).(2)20%.【解析】(1)根据增长率的定义以及数量的增长率是进价增长率的2.5倍即可得到结果;(2)根据利润等于第一次售罄的利润+(第二次-50件所得利润)+清仓销售的50件的利润,列出方程并求解即可.【详解】解:(1)第二批衬衫进价为100(1+x)元,购进的数量为200(1+2.5x)件,.(2)根据题意,得200×(150-100)+[150-100(1+x)][200(1+2.5x)-50]+50[120-100(1+x)]=17500.化简,得50x2-5x-1=0.解这个方程,得x1=15,x2=110-(不合题意,舍去).所以x的值是20%.【点睛】本题主要考查了一元二次方程与销售问题,根据题意找到等量关系并列出方程是解题关键,注意要舍去不合题意的解.23.(1)14;(2)34【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解:(1)选择A通道通过的概率=1 4故答案为:14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=123 164=.本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.24.(1)y=x2+2x﹣1;(2)m=2;(3)当m=﹣2时,y3有最小值是﹣2.【解析】【分析】(1)将点(﹣1,﹣2)直接代入二次函数,解出m即可;(2)因为y1=y2,所以x12﹣2mx1+m2﹣2=x22﹣2mx2+m2﹣2,得到(x1+x2)(x1﹣x2)=2m(x1﹣x2),又因x1+x2=4,所以m=2;(3)点P(﹣2,y3)在抛物线上,得到y3=4+4m+m2﹣2=(m+2)2﹣2,所以当m=﹣2时,y3有最小值是﹣2.【详解】解:(1)∵函数图象过点(﹣1,﹣2),∴将点代入y=x2﹣2mx+m2﹣2,解得m=﹣1,∴函数的表达式为y=x2+2x﹣1;(2)∵(x1,y1)(x2,y2)为此二次函数图象上两个不同点,∴x1≠x2,∵y1=y2,∴x12﹣2mx1+m2﹣2=x22﹣2mx2+m2﹣2,∴(x1+x2)(x1﹣x2)=2m(x1﹣x2),∵x1+x2=4,∴m=2;(3)∵点P(﹣2,y3)在抛物线上,∴y3=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y3有最小值是﹣2.【点睛】本题考查二次函数的简单应用,第二问的关键在于能够把y1=y2得到的方程进行变形,整体代入x1+x2=4.25.(1)详见解析;(2;(3)90.【解析】【分析】(1)连接OA,由三角形的外角性质和角平分线得出∠PAB=∠C,由等腰三角形的性质得出∠OAC=∠C =∠PAB,由圆周角定理得出∠BAC=90°,证出∠OAP=90°,即AP⊥OA,即可得出PA与⊙O相切;(2)证明△PAB ∽△PCA ,得出1,2AB PB AC PA == 得出AB BC ==,即可得出结果; (3)连接CE ,由切割线定理求出PC =20,得出BC =PC ﹣PB =15,求出5AB BC ==2AC AB ==ACE ∽△ADB ,得出AE AC AB AD =,即可得出结果. 【详解】(1)证明:连接OA ,如图1所示: ∵AE 平分∠BAC , ∴∠BAD =∠CAD ,∵∠DAP =∠BAD+∠PAB ,∠ADP =∠CAD+∠C ,∠DAP =∠ADP , ∴∠PAB =∠C , ∵OA =OC ,∴∠OAC =∠C =∠PAB , ∵BC 为直径,∴∠BAC =90°,即∠OAC+∠OAB =90°, ∴∠PAB+∠OAB =90°,即∠OAP =90°, ∴AP ⊥OA , ∴PA 与⊙O 相切;(2)解:∵∠P =∠P ,∠PAB =∠C , ∴△PAB ∽△PCA , ∴1,2AB PB AC PA == ∵∠CAB =90°,∴5AB BC ==∴sin ∠BAP =sin ∠C ; (3)解:连接CE ,如图2所示: ∵PA 与⊙O 相切,∴PA 2=PB×PC,即102=5×PC, ∴PC =20, ∴BC =PC ﹣PB =15,∵5AB BC =∴5AB BC ==2AC AB == ∵AE 是∠BAC 的角平分线, ∴∠BAD =∠CAE , ∵∠E =∠ABD , ∴△ACE ∽△ADB , ∴AE ACAB AD=∴90AD AE AB AC ⋅=⋅==.【点睛】本题是圆的综合题目,考查了圆周角定理、切线的判定与性质、切割线定理、等腰三角形的性质、相似三角形的判定与性质、三角函数定义等知识;本题综合性强,证明三角形相似是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( ) A .k >12B .k≥12C .k >12且k≠1 D .k≥12且k≠1 2.如图,在△AEF 中,尺规作图如下:分别以点E 、点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A.AO 平分∠EAFB.AO 垂直EFC.GH 垂直平分EFD.AO=OF3.已知⊙O ,AB 是直径,AB =4,弦CD ⊥AB 且过OB 的中点,P 是劣弧BC 上一动点,DF 垂直AP 于F ,则P 从C 运动到B 的过程中,F 运动的路径长度( )A B .3C .23π D .24.在Rt △ABC 中,∠ACB =90°,AB =2,AC =1,则cosA 的值是( )A .12B C D 5.下列计算正确的是( ) A .224a a a += B .()2326a a =C .()23533a aa -=-gD .623422a a a ÷=6.由4个小立方体搭成如图所示的几何体,从正面看到的平面图形是( )A.B.C.D.7.如图所示,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为( )A.B.8 C.D.8.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.59.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A'BC’,连接A'C,则A'C的长为()A.6 B.C.D.10.如图,在△ABC中,∠C=50°,∠B=35°,分别以点A,B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,直线MN交BC于点D,连接AD.则∠DAC的度数为()A.85°B.70°C.60°D.25°11.下列运算结果正确的是( )A .()322x x x x x x -+÷=-B .()236a a a -⋅=C .236(2x )8x -=-D .2224a (2a)2a -= 12.二次函数y =ax 2+bx+c 的部分图象如图,则下列说法错误的是( )A .对称轴是直线x =﹣1B .abc <0C .b 2﹣4ac >0D .方程ax 2+bx+c =0的根是x 1=﹣3和x 2=1二、填空题13.如图,已知抛物线和x 轴交于两点A 、B ,和y 轴交于点C ,已知A 、B 两点的横坐标分别为﹣1,4,△ABC 是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.14.如图,O 为坐标原点,△OAB 是等腰直角三角形,∠OAB =90°,点B 的坐标为,将该三角形沿x 轴向右平移得到'''Rt o A B ,此时点B '的坐标为,则线段OA 在平移过程中扫过部分的图形面积为______.15.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.16.抛物线y=﹣2(x+2)2+4的顶点坐标是_____.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的角为60°,此时航拍无人机与该建筑物的水平距离AD为80m,那么该建筑物的高度BC为_____m(结果保留根号).18.已知函数y=mx2+(m2﹣m)x+2的图象关于y轴对称,则m=_____.三、解答题19.振华书店准备购进甲、乙两种图书进行销售,若购进40本甲种图书和30本乙种图书共需1700元,若购进60本甲种图书和20本乙种图书共需1800元.()1求甲、乙两种图书每本进价各多少元;()2该书店购进甲、乙两种图书共120本进行销售,且每本甲种图书的售价为25元,每本乙种图书的售价为40元,如果使本次购进图书全部售出后所得利润不低于950元,那么该书店至少需要购进乙种图书多少本?20.如图所示,函数y1=kx+b的图象与函数2myx=(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y1、y2的表达式;(2)过A作AM⊥y轴,过B作BN⊥x轴,试问在线段AB上是否存在点P,使S△PAM=3S△PBN?若存在,请求出P点坐标;若不存在,请说明理由.21.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m n=_____.22.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接连接AD,BC、点H为BC中点,连接OH.(1)如图1所示,求证:OH=12AD且OH⊥AD;(2)将△COD绕点O旋转到图2所示位置时,线段OH与AD又有怎样的关系,证明你的结论;(3)请直接写出线段OH的取值范围.23.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A、B两点与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,当β从30°增加到60°的过程中,点D运动的路径长;(4)以DE为斜边,在直线DE的右上方作等腰Rt△PDE.设P(m,n),请直接写出n关于m的函数解析式及自变量m的取值范围.24.乒乓球是我国的国球,比赛采用单局11分制,是一种世界流行的球类体育项目,比赛分团体、单打、双打等数种在某站公开赛中,某直播平台同时直播4场男单四分之一比赛,四场比赛的球桌号分别为“T1”、“T2”、“T3”、“T4”(假设4场比赛同时开始),小宁和父亲准备一同观看其中的某一场比赛,但两人的意见不统一,于是采用抽签的方式决定,抽签规则如下:将正面分别写有数字“1、“2”、“3”、“4”的四张卡片(除数字不同外,其余均相同,数字“1”、“2”、“3”、“4”分别对应球桌号(“T1”、“T2”、“T3”、“T4”(背面朝上洗匀,父亲先从中随机抽取一张,小宁再从剩下的3张卡片中随机抽取一张,比较两人所抽卡片上的数字,观看较大的数字对应球桌的比赛(1)下列事件中属于必然事件的是A.抽到的是小宁最终想要看的一场比赛的球桌号B.抽到的是父亲最终想要看的一场比赛的球桌号C.小宁和父亲抽到同一个球桌号D.小宁和父亲抽到的球桌号不一样(2)用列表法或树状图法求小宁和父亲最终观看“T4”球桌比赛的概率25.甲、乙两车分别从A、B两地同时出发,相向而行.甲车中途因故停车一段时间,之后以原速维续行驶到达目的地B,此时乙车同时到达目的地A,如图,是甲、乙两车离各自出发地的路程y(km)与时间x(h)的函数图象.(1)甲车的速度是km/h,a的值为;(2)求甲车在整个过程中,y与x的函数关系式;(3)直接写出甲、乙两车在途中相遇时x的值.【参考答案】***一、选择题二、填空题13.(32,258)14.415.716.(﹣2,4)17.()18.1或0.三、解答题19.(1)30;(2)70【解析】【分析】(1)设每本甲种图书的进价为x 元,每本乙种图书的进价为y 元,得4030170060201800x y x y +=⎧⎨+=⎩,解方程组可得;(2)设该书店购进乙种图书a 本,购机甲种图书()120a -本.根据题意,得()()()25201204030950a a --+-≥,解不等式组可得.【详解】(1)解:设每本甲种图书的进价为x 元,每本乙种图书的进价为y 元.根据题意 得4030170060201800x y x y +=⎧⎨+=⎩解得:2030x y =⎧⎨=⎩ 答:每本甲种图书的进价为20元,每本乙种图书的进价为30元.(2)解:设该书店购进乙种图书a 本,购机甲种图书()120a -本.根据题意 得()()()25201204030950a a --+-≥解得70.a ≥答:该书店至少购进乙图书本70.【点睛】本题考查了二元一次方程组和一元一次不等式的运用,理解题意找出等量关系是解题的关键.20.(1)14y x =+,23y x =-;(2)存在,P 53,22⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)把A 、B 两点坐标代入直线AB 解析式可求得A 、B 两点的坐标,再把B 点坐标代入反比例函数解析式可求得k ,可求得函数y 2的表达式;(2)设出P 点坐标为(x ,x +4),根据三角形的面积关系可得到关于x 的方程,可求得P 点坐标.【详解】解:(1)∵A 、B 两点在函数2m y x=(x <0)的图象上, ∴3(a ﹣2)=﹣3a =m ,∴a=1,m=﹣3,∴A(﹣1,3),B(﹣3,1),∵函数y1=kx+b的图象过A、B点,∴3 31k bk b-+=⎧⎨-+=⎩,解得k=1,b=4∴y1=x+4,y2=3x -;(2)由(1)知A(﹣1,3),B(﹣3,1),∴AM=BN=1,∵P点在线段AB上,∴设P点坐标为(x,x+4),其中﹣1≤x≤﹣3,则P到AM的距离为h A=3﹣(x+4)=﹣x﹣1,P到BN的距离为h B=3+x,∴S△PBN=12BN•h B=12×1×(3+x)=12(x+3),S△PAM=12AM•h A=12×1×(﹣x﹣1)=﹣12(x+1),∵S△PAM=3S△PBN,∴﹣12(x+1)=32(x+3),解得x=﹣52,且﹣1≤x≤﹣3,符合条件,∴P(﹣52,32),综上可知存在满足条件的点P,其坐标为(﹣52,32).【点睛】本题主要考查一次函数和反比例函数的交点问题,在(1)中掌握交点坐标满足两函数解析式是解题的关键,在(2)中用P点坐标分别表示出△PBN和△PAM的面积是解题的关键.21.4-【解析】【分析】先根据已知条件得出△PDE的边长,再根据对称的性质可得出PF⊥DE,DF=EF,锐角三角函数的定义求出PF的长,由mMF的长,再根据相似三角形的判定定理判断出△PFM∽△PON,利用相似三角形的性质即可得出结论.【详解】∵AB=3,△PDE是等边三角形,∴PD=PE=DE=1,以DE的垂直平分线为y轴建立直角坐标系,∵△PDE关于y轴对称,∴PF⊥DE,DF=EF,DE∥x轴,∴PF∴△PFM∽△PON,∵m∴FM32,∴PF FMOP ON=,即22=32ON,解得:ON=4﹣故答案为:4﹣【点睛】本题考查的是相似三角形的判定与性质及等边三角形的性质,能根据题意得出FM的长是解答此题的关键.22.(1)见解析;(2)结论:OH=12AD,OH⊥AD.理由见解析;(3)1≤OH≤3.【解析】【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)延长HO交AD于K.延长OH到M,使得HM=OH,连接BM,CM.。
专题十一 图形的变换与综合实践一、选择题1.(2019呼和浩特中考)如图中序号(1)(2)(3)(4)对应的四个三角形,都是由△ABC 这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( A )A .(1)B .(2)C .(3)D .(4)2.(2019咸宁中考)在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此点C 的对应点C′的坐标为( C )A.⎝ ⎛⎭⎪⎫32,0 B .(2,0) C.⎝ ⎛⎭⎪⎫52,0 D .(3,0) 3.(2019孝感中考)如图,在平面直角坐标系中,点A 的坐标为(-1,3),以原点O 为中心,将点A 顺时针旋转150°得到点A′,则点A′坐标为( D )A .(0,-2)B .(1,-3)C .(2,0)D .(3,-1)(第3题图)(第4题图)4.(2019考试说明)如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD.要使点D 恰好落在BC 上,则AP 的长是( C )A .4B .5C .6D .85.(2019滨州中考)如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MP N 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M ,N 两点,则以下结论:①PM=PN 恒成立;②OM+ON 的值不变;③四边形PMON 的面积不变;④MN 的长不变,其中正确的个数为( B )A .4B .3C .2D .1(第5题图)(第6题图)6.如图,已知直线l 的表达式是y =43x -4,并且与x 轴、y 轴分别交于A ,B 两点.一个半径为1.5的⊙C,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿y 轴向下运动,当⊙C 与直线l 相切时,则该圆运动的时间为( D )A .3 s 或6 sB .6 sC .3 sD .6 s 或16 s7.(2019河南中考)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B ′,连接BB′,则图中阴影部分的面积是( C )A.2π3 B .23-π3C .23-2π3 D .43-2π3(第7题图)(第8题图)8.(2019考试说明)如图,已知点F 的坐标为(3,0),点A ,B 分别是某函数图像与x 轴、y 轴的交点,点P 是此图像上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:d =5-35x(0≤x≤5),结论:①AF =2;②BF=4;③OA =5;④OB=3.则正确结论的序号是( B )A .①②③B .①③C .①②④D .③④ 二、填空题9.(2019齐齐哈尔中考)如图,在等腰三角形纸片ABC 中,AB =AC =10,BC =12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是__10或.(第9题图)(第10题图)10.(2019西宁中考)如图,将▱ABCD 沿EF 对折,使点A 落在点C 处,若∠A=60°,AD =4,AB =6,则AE 的长为__194__.11.(2019襄阳中考)如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE=∠B,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.若AC =8,AB =10,则CD 的长为__258__.(第11题图)(第12题图)12.(2019上海中考)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B ,C ,D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n °后(0<n <180),如果EF∥AB,那么n 的值是__45__.13.(2019苏州中考)如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B′C′交CD 边于点G.连接BB′,CC ′,若AD =7,CG =4,AB ′=B′G,则CC′BB′=5.三、解答题14.(2019宁波中考)在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图①中画出与△ABC 成轴对称且与△ABC 有公共边的格点三角形;(画出一个即可) (2)将图②中的△ABC 绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.解:(1)如图所示:(2)如图所示:15.(2019宿迁中考)如图,在矩形纸片ABCD 中,已知AB =1,BC =3,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿直线AE 折叠,得到多边形AB′C′E,点B ,C 的对应点分别为点B′,C ′.(1)当B′C′恰好经过点D 时(如图①),求线段CE 的长;(2)若B′C′分别交边AD ,CD 于点F ,G ,且∠DAE=22.5°(如图②),求△DFG 的面积; (3)在点E 从点C 移动到点D 的过程中,求点C′运动的路径长.解:(1)由折叠得,∠B =∠B′=90°,AB =AB′=1,BC =B′C′=3,C ′E =CE , 由勾股定理得,B ′D =AD 2-AB′2=(3)2-12=2, ∴DC ′=3- 2.∵∠ADE =90°,∴∠ADB ′+∠EDC′=90°. 又∵∠EDC′+∠DEC′=90°, ∴∠ADB ′=∠DEC′.又∠B=∠C′=90°,∴△AB ′D ∽△DC ′E. ∴AB′DC′=B′D C′E ,即13-2=2C′E,∴CE =6-2; (2)连接AC ,∵tan ∠BAC =BC AB =31=3,∴∠BAC =60°,故∠DAC=30°. 又∠DAE=22.5°,∴∠EAC =∠DAC-∠DAE=30°-22.5°=7.5°, 由折叠得,∠B ′AE =∠BAE=67.5°, ∴∠B ′AF =67.5°-22.5°=45°, ∴AF =2AB′=2, ∴DF =3-2,∵∠DFG =∠B′FA=45°,∠D =90°,∴DF =DG ,∴S △DFG =12×(3-2)2=52-6;(3)如答图,连接AC ,AC ′,则AC =AC′=2,∴点C′的运动路径是以点A 为圆心,以AC 为半径的圆弧;当点E 运动到点D 时,点C′恰好在CD 的延长线上,此时∠CAC′=60°,∴点C′的运动路径长是60π×2180=2π3.16.(2019枣庄中考)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F 在线段CB的延长线上,连接EA,EC.(1)如图①,若点P在线段AB的延长线上,求证:EA=EC;(2)如图②,若点P为线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图③,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a∶b及∠AEC的度数.解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵AP=CF,∠P =∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由如下:∵P为AB的中点,∴PA=PB.∵PB=PE,∴PA=PE,∴∠PAE=45°.又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)如答图,设CE交AB于G.∵EP平分∠AEC,EP⊥AG,∴AP=PG=a-b,BG=a-(2a-2b)=2b-a,∵PE∥CF,∴PEBC=PGGB,即ba=a-b2b-a,解得:a=2b.∴a∶b=2∶1,作GH⊥AC于H,∵∠CAB=45°,AG=2AP=2(a-b)=22b-2b,∴HG=22AG=22(22b-2b)=(2-2)b.又∵BG=2b-a=(2-2)b,∴GH=GB,∵GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.2019-2020学年数学中考模拟试卷一、选择题 1.若a+b=3,,则ab 等于( ) A.2B.1C.﹣2D.﹣12.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为( )A. B. C.6 D.3.下列计算正确( )A .222a b a b +=+() B .235a a a ⋅=C .822a a a ÷=D .325a a a +=4.关于x 的一元二次方程(m-5)x 2+2x+2=0有实根,则m 的最大整数解是( ) A .2B .3C .4D .55.如图,在△ABC 和△ABD 中,AB =AC =AD ,AC ⊥AD ,AE ⊥BC 于点E ,AE 的反向延长线于BD 交于点F ,连接CD .则线段BF ,DF ,CD 三者之间的关系为( )A .BF ﹣DF =CDB .BF+DF =CDC .BF 2+DF 2=CD 2D .无法确定6.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )A .B .C .D .7.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A. B.C.D.8.江西省足协2019年第三次主席办公会在南昌召开,某学校为了激发学生对体育的热情,选拔了23名学生作为校足球队成员,其中足球队23名队员的年龄情况如表:则该校足球队队员年龄的众数和中位数分别是()A.13,14 B.13,13 C.14.13.5 D.16,149.袋中装有大小相同的6个黑球和n个白球,经过若干次试验,发现“从袋中任意摸出一个球,恰是黑球的概率为34”则袋中白球大约有()A.2个B.3个C.4个D.5个10.如图,在平面直角坐标系中,Rt△ABC的三个顶点的坐标分别为A(1,1),B(4,3),C(4,1),如果将Rt△ABC绕点C按顺时针方向旋转90°得到Rt△A′B′C′,那么点A的对应点A'的坐标是()A.(3,3)B.(3,4)C.(4,3)D.(4,4)11.关于x、y的方程组239x y mx y m+=⎧⎨-=⎩的解是方程3x+2y=34的一组解,那么m的值是( )A.﹣2 B.﹣1 C.1 D.212.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A .6055B .6056C .6057D .6058二、填空题 13.函数y =132x-的自变量x 的取值范围是_____. 14.多项式(mx+8)(2﹣3x )展开后不含x 项,则m =_____. 15.下列说法中,正确的是( )A.为检测我市正在销售的酸奶质量,应该采用普查的方式B.若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定C.抛掷一个正方体骰子,朝上的面的点数为奇数的概率是12D.“打开电视,正在播放广告”是必然事件16.写一个解为21x y =⎧⎨=-⎩的二元一次方程组____.17.如图,Rt △ABC 的直角边BC 在x 轴正半轴上,点D 为斜边AC 上一点,AD=2CD ,DB 的延长线交y 轴于点E ,函数y=kx(k >0)的图象经过点A ,若S △BCE =2,则k=_____.18.已知关于x 的方程212mx x -=有两个不相等的实数根,则m 的取值范围是_______. 三、解答题19.如图,双曲线y =kx (x >0)的图象经过点A (12,4),直线y =12x 与双曲线交于B 点,过A ,B 分别作y 轴、x 轴的垂线,两线交于P 点,垂足分别为C ,D . (1)求双曲线的解析式; (2)求证:△ABP ∽△BOD .20.(101)|3|--;(2)化简:﹣2(a ﹣3)+(a+1)221.第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x 套,乙种图书y 套,请解答下列问题:(1)请求出y 与x 的函数关系式(不需要写出自变量的取值范围); (2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套? (3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案?22.如图,已知二次函数y =﹣x 2+2x+3的图象与x 轴相交于点A ,B ,与y 轴相交于点C ,连接AC ,BC .该函数在第一象限内的图象上是否存在一点D ,使得CB 平分∠ACD ?若存在,求点D 的坐标,若不存在,说明理由.23.河南省开封市铁塔始建于公元1049年(北宋皇祐元年),是国家重点保护文物之一,在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一个台阶的底部A 处测得塔顶P 的仰角为45°,走到台阶顶部B 处,又测得塔顶P 的仰角为38.7°,已知台阶的总高度BC 为3米,总长度AC 为10米,试求铁塔的高度.(结果精确到1米,参考数据:sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80)24.某班数学兴趣小组对函数y =|x 2﹣2x|的图象和性质进行了探究,探究过程如下,请补充完整: (1)自变量x 的取值范围取足全体实数,x 与y 的几组对应值列表如下:其中m = .(2)根括上表数据,在如图所示的平面直角坐标系中描点,现在画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出函数的一条性质;(4)进一步探究函数图象解决问题:①方程|x2﹣2x|=12有个实数根;②在(2)问的平面直角坐标系中画出直线y=﹣x+1,根据图象写出方程|x2﹣2x|=﹣x+1的一个正数根约为.(精确到0.1)25.某品牌空调原价4000元,因销售旺季,提价一定的百分率进行销售,一段时间后,因销售淡季又降价相同的百分率进行销售,若淡季空调售价为3960元,求相同的百分率.【参考答案】***一、选择题二、填空题13.x≠3 214.1215.C16.答案不唯一17.818.m>-1且m≠0;三、解答题19.(1)2yx=;(2)详见解析;【解析】【分析】(1)将点A坐标代入反比例函数解析式中,即可得出结论;(2)先求出点B坐标,进而求出OD,BD,进而判断出AP BPBD OD=,即可得出结论.【详解】(1)∵点A(12,4)在双曲线y=2x上,∴k=12×4=2,∴双曲线的解析式为y=2x;(2)如图,由(1)知,双曲线的解析式为y=2x①,直线OB的解析式为y=12x②,连接①②解得,21xy=⎧⎨=⎩或21xy=-⎧⎨=-⎩(舍去),∴B(2,1),∴BD=1,OD=2,∵CP⊥y轴,PD⊥x轴,∴∠OCP=∠ODP=90°=∠COD,∴四边形OCPD是矩形,∴∠ODB=∠P=90°,CP=OD=2,PD=OC,∵A(12,4),∴OC=4,CA=12,∴AP=CP﹣AC=32,BP=PD﹣1=3,∴33,22 AP BPBD OD==,∴AP BP BD OD=,∵∠P=∠ODB=90°,∴△ABP∽△BOD.【点睛】此题是反比例函数综合题,主要考查了待定系数法,直线与双曲线的交点坐标的确定,相似三角形的判定和性质,判断出AP BPBD OD=,是解本题的关键.20.(1)1;(2)a2+7.【解析】【分析】(1)直接利用零指数幂的性质以及绝对值的性质分别化简得出答案;(2)直接利用完全平方公式化简得出答案.【详解】解:(1)原式=3+1﹣3=1;(2)原式=﹣2a+6+a2+2a+1=a2+7.【点睛】此题主要考查了实数运算以及整式运算,正确掌握运算法则是解题关键.21.(1)y=﹣53x+18;(2)购买甲种图书6套,乙种图书8套;(3)共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套.【解析】【分析】(1)根据题意设购买甲种图书x套,乙种图书y套即可列出方程(2)根据题意x+y=14,在于(1)组成方程组,即可解答(3)根据题意x≥1,51813x-+≥,求出解集,再根据x为整数,即可解答【详解】(1)设购买甲种图书x套,乙种图书y套,则购买丙种图书(20﹣x﹣y)套,依题意,得:500x+400y+250(20﹣x﹣y)=7700,∴y=﹣53x+18.(2)依题意,得:145-183x yy x+=⎧⎪⎨=+⎪⎩,解得:6 {8 xy==,∴购买甲种图书6套,乙种图书8套.(3)依题意,得:151813xx≥⎧⎪⎨-+≥⎪⎩,解得:1≤x≤1015.∵x,﹣53x+18,20﹣x﹣(﹣53x+18)为整数,∴x=3,6,9.∴共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套.【点睛】此题考查二元一次方程组的解和一元一次不等式的应用,解题关键在于根据题意列出方程组22.存在,532,39D⎛⎫⎪⎝⎭.【解析】【分析】过点C作CE⊥y轴,交抛物线于点E,过点D作DH⊥CE于H,证明∠1=∠2,由tan∠2=tan∠1得DHCH的值,进而设D(m,﹣m2+2m+3),列出m的方程求得m便可.【详解】存在.理由如下:如图,过点C作CE⊥y轴,交抛物线于点E,过点D作DH⊥CE于H,当x=0时,y=3,则C(0,3),当y=0时,﹣x2+2x+3=0,∴x=﹣1或3,则A(﹣1,0),B(3,0),∴OB=OC=3,∴∠OCB=∠OBC=∠ECB=45°,∵∠ACB=∠DCB,∴∠1=∠2,所以tan∠2=tan∠1=13,即13 DH CH=设D(m,﹣m2+2m+3),则2213m mm-+=,解得m1=0(舍去),m2=53,所以D(532,39).【点睛】本题是二次函数的综合题,主要考查了二次函数的性质,解直角三角形,求二次函数图象与坐标轴的交点坐标,等腰直角三角形,角平分线的性质,有一定的难度,构造直角三角形是本题的突破口,关键是由∠1与∠2的函数关系式建立m的方程.23.铁塔约高55米.【解析】【分析】如图,过点B作BE⊥DP于点E,由题可知,∠EBP=38.7°,∠DAF=45°,BE=CD,DP=AD,设铁塔高度DP为x米,则BE=CD=x+10,解直角三角形即可得到结论.【详解】如图,过点B作BE⊥DP于点E,由题可知,∠EBP=38.7°,∠DAF=45°,BE=CD,DP=AD,设铁塔高度DP为x米,则BE=CD=x+10,EP=DP﹣DE=AD﹣BC=x﹣3,在Rt△BEP中∵EP=x﹣3,BE=x+10,∴tan∠EBP=EPBE,x﹣3=(x+10)×tan38.7°,解得x=55,答:铁塔约高55米.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,还考查的知识点有三角函数、直角三角形的性质以及勾股定理等,解题的关键是纷杂的实际问题中整理出直角三角形并解之.24.(1)0.75;(2)详见解析;(3)当x<0时,y随x的增大而减小;(4)①2;②0.5.【解析】【分析】(1)把x=﹣0.5代入y=|x2﹣2x|,进行计算即可得到答案;(2)先将表中的正数点标在图上,再依次连接各点即可;(3)观察函数图象,当由函数图象知:当x<0时,y随x的增大而减小;【详解】解:(1)把x=﹣0.5代入y=|x2﹣2x|,得y=|0.52﹣2×0.5|=0.75,即m=0.75,故答案为:0.75;(2)如图所示;(3)由函数图象知:当x<0时,y随x的增大而减小;【点睛】本题考查二次函数和绝对值的综合问题,解题的关键是掌握二次函数图象的画法和绝对值的计算. 25.相同的百分率是10%.【解析】【分析】先把原价看做单位“1",提价x后,这时的价格是原来的4000(1+x) ,后来又降价x,是在4000(1+x)元的基础上降价x,把4000元看做单位“1",这时的价格为4000x(1-x),计算即可【详解】解:设相同的百分率是x:4000(1+x)(1-x)=3960x1=0.1 x2=-0.1(舍)答:相同的百分率是10%.【点睛】此题考查百分数的实际应用,解题关键在于列出方程2019-2020学年数学中考模拟试卷一、选择题1.已知a =b =(= )A.2aB.abC.2a bD.2ab2.计算:12-的结果是( ) A .1B .C .0D .-13.下列四个数中,最大的数是( ) A .﹣2B .﹣1C .0D .|﹣3|4.已知一个矩形的两条对角线夹角为60°,一条对角线的长为10cm ,则该矩形的周长为( )A .20cmB .C .20(cmD .10(cm5.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,当y <0时x 的取值范围是( )A.x >2B.0<x <4C.﹣1<x <4D.x <﹣1 或 x >46.如图,抛物线y =ax 2+bx+c 和直线y =kx+b 都经过点(﹣1,0),抛物线的对称轴为x =1,那么下列说法正确的是( )A.ac >0B.b 2﹣4ac <0C.k =2a+cD.x =4是ax 2+(b ﹣k )x+c <b 的解7.如图,菱形ABCD 的边长为5cm ,AB 边上的高DE =3cm ,垂直于AB 的直线l 从点A 出发,以1cm/s 的速度向右移动到点C 停止若直线l 的移动时间为x (s ),直线l 扫过菱形ABCD 的面积为y (cm 2),则下列能反映y 关于x 函数关系的大致图象是( )A. B.C. D.8.弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示:当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( ) A.22.5B.25C.27.5D.309.计算(2sin60°+1)+(﹣0.125)2006×82006的结果是( ) A BC +2D .010.将两个等腰Rt △ADE 、Rt △ABC 如图放置在一起,其中∠DAE =∠ABC =90°.点E 在AB 上,AC 与DE 交于点H ,连接BH 、CE ,且∠BCE =15°,下列结论:①AC 垂直平分DE ;②△CDE 为等边三角形;③tan ∠BCD =AB BE ;④EBC EHC3SS;正确的个数是( )A.1B.2C.3D.411.如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠12.如图,矩形纸片ABCD ,AD =4,AB =3,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当△EFC 是直角三角形时,那么BE 的长为( )A .1.5B .3C .1.5或3D .有两种情况以上二、填空题13.02019的相反数是____.14.计算:(2)0﹣1=_____. 15.如图,已知1,2,3,A A A …,1n n A A +是x 轴上的点,且11223OA A A A A ===…,11n n A A +==,分别过点123,A A A …,1n n A A +作x 轴的垂线交反比例函数()10y x x=>的图象于点123,,,B B B …,1n n B B +,过点2B 作2111B P A B ⊥于点1P ,过点3B 作3222B P A B ⊥于点2P ……记112B PB ∆的面积为1S ,223B P B ∆的面积为2S ……1n n n B P B +∆的面积为n S ,则123S S S +++…n S 等于_________.16.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.17.计算73x x ÷的结果等于_____.18.要使分式x x-3有意义,则字母x 的取值范围是x≠_________的全体实数. 三、解答题19.如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,OB 与⊙O 相交于点E .(1)求证:AC 是⊙O 的切线;(2)若BD BE =1.求阴影部分的面积.20.(1)计算:01|3|()2-;(2)化简:(m+2)2﹣2(1+2m ).21.如图1,点D 、E 、F 、G 分别为线段AB 、O B 、OC 、AC 的中点.(1)求证:四边形DEFG 是平行四边形;(2)如图2,若点M 为EF 的中点,BE :CF :DG =2:3:MOF =∠EFO .22.某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?23.某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量减少10个.因受库存影响,每批次进货个数不得超过180个.商店若准备获利2000元,则应进货多少个?定价多少元?24)2﹣|﹣3+5|+(1025.已知:如图,在△ABC 中,∠ACB=90°,以BC 为直径的⊙O 交AB 于点D ,E 为BD 的中点.(1)求证:∠ACD=∠DEC ;(2)延长DE 、CB 交于点P ,若PB=BO ,DE=2,求PE 的长【参考答案】***一、选择题二、填空题13.-114.015.2n n (+1)16.(0,21009)17.4x18.3 三、解答题19.(1)见解析;(26π【解析】【分析】(1)连接OD ,作OF ⊥AC 于F ,如图,利用等腰三角形的性质得AO ⊥BC ,AO 平分∠BAC ,再根据切线的性质得OD ⊥AB ,然后利用角平分线的性质得到OF=OD ,从而根据切线的判定定理得到结论;(2)设⊙O 的半径为r ,则OD=OE=r ,利用勾股定理得到222r (r 1)+=+,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD ==,然后根据扇形的面积公式,利用阴影部分的面积=2S △AOD -S 扇形DOF 进行计算. 【详解】解:(1)证明:连接OD ,作OF ⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO ⊥BC ,AO 平分∠BAC ,∵AB 与⊙O 相切于点D ,∴OD ⊥AB ,而OF ⊥AC ,∴OF =OD ,∴AC 是⊙O 的切线;(2)在Rt △BOD 中,设⊙O 的半径为r ,则OD =OE =r ,∴r 2+2=(r+1)2,解得r =1,∴OD =1,OB =2,∴∠B =30°,∠BOD =60°,∴∠AOD =30°,在Rt △AOD 中,AD OD 33==, ∴阴影部分的面积=2S △AOD ﹣S 扇形DOF216012123360π⋅⋅=⨯⨯⨯-.36π=- 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.20.(1)(2)m2+2.【解析】【分析】(1)根据实数运算法则进行计算即可;(2)运用整式乘法公式即可求解.【详解】解:(1)原式=﹣1=(2)原式=m2+4m+4﹣2﹣4m=m2+2.【点睛】考核知识点:实数运算和整式乘法.21.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据中位线定理得:DG∥BC,11DG BC,EF//BC,EF BC22==,则DG=BC,DE∥BC,根据一组对边平行且相等的四边形是平行四边形可得:四边形DEFG是平行四边形;(2)先根据已知的比的关系设未知数:设BE=2x,CF=3x,DG=,根据勾股定理的逆定理得:∠EOF=90°,最后利用直角三角形斜边中线的性质可得OM=FM,由等边对等角可得结论.【详解】解:(1)∵D是AB的中点,G是AC的中点,∴DG是△ABC的中位线,∴DG∥BC,DG=12 BC,同理得:EF是△OBC的中位线,∴EF∥BC,EF=12 BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵BE:CF:DG=2:3∴设BE=2x,CF=3x,DG,∴OE=2x,OF=3x,∵四边形DEFG 是平行四边形,∴DG =EF ,∴OE 2+OF 2=EF 2,∴∠EOF =90°,∵点M 为EF 的中点,∴OM =MF ,∴∠MOF =∠EFO .【点睛】本题考查的是三角形中位线定理、平行四边形的判定、勾股定理的逆定理,掌握三角形中位线定理是解题的关键.22.(1)涨价5元;(2)涨价7.5元【解析】【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值;(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可.【详解】解:(1)设每千克应涨价x 元,由题意列方程得:(5+x )(200﹣0.1x )=1500 解得:x =5或x =10,答:为了使顾客得到实惠,那么每千克应涨价5元;(2)设涨价x 元时总利润为y ,则y =(5+x )(200﹣0.1x ) =﹣10x 2+150x+1000=﹣10(x 2﹣15x )+1000=﹣10(x ﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点睛】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y =﹣x 2﹣2x+5,y =3x 2﹣6x+1等用配方法求解比较简单.23.商店若准备获利2000元,则应进货100个,定价60元.【解析】【分析】利用销售利润2000=售价﹣进价,进而求出即可.【详解】设每个小家电的增加是x元,由题意,得(52+x﹣40)(180﹣10x)=2000,解得x1=8,x2=﹣2∵180﹣10x≤180,∴x≥0,∴x=8,则180﹣10x=100(个),52+8=60(元),答:商店若准备获利2000元,则应进货100个,定价60元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.24.1【解析】【分析】原式第一项利用平方的定义,第二项根据绝对值的性质化简,第三项依据零指数幂法则运算即可.【详解】原式=2﹣2+1=1.【点睛】此题考查了实数的混合运算,掌握运算法则和运算顺序是解答此题的关键.25.(1)见解析;(2)PE=4.【解析】【分析】(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【详解】解:(1)证明:∵BC是⊙O的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)证明:连结OE∵E为BD弧的中点.∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴PO PE PC PD=∵PB=BO,DE=2 ∴PB=BO=OC∴23 PO PE PC PD==∴223 PEPE=+∴PE=4【点睛】本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.。
第二节平移与旋转图形平移的相关计算(1次)1.(2019河北17题3分)如图①,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图②,则阴影部分的周长为__2__.图形旋转的相关计算(2次)2.(2019河北唐山五十四中一模)如图,将周长为8的△ABC沿BC方向平移1个单位长度得到△DEF,则四边形ABFD的周长为( C )A.6 B.8 C.10 D.12,(第2题图)) ,(第3题图)) 3.(2019河北沧州十三中一模)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是( B )A.70° B.65° C.60° D.55°4.(2019保定一模)如图,在R t△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF,若四边形ABED的面积等于8,则平移距离等于( A )A.2 B.4 C.8 D.165.(2019张家口模拟)如图,线段OA垂直射线OB于点O,OA=4,⊙A的半径是2.将OB绕点O沿顺时针方向旋转,当OB与⊙A相切时,OB旋转的角度为__60°或120°__.,(第5题图)) ,(第6题图)) 6.(2019邯郸模拟)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为__2-2__.7.(2019河北保定十七中一模)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC 沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于__4或8__.8.(2019河北23题11分)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.解:(1)利用“SAS”证;(2)∠ACE=40°;(3)∵∠BAC =∠ACE=40°,∴BA ∥CE.由(1)知∠ABD =∠ACE=40°,∠BAE =∠BAC+∠CAE =140°,∴∠BAE +∠ABD=180°,∴AE ∥BD.∴四边形ABFE 是平行四边形.又∵AB=AE ,∴平行四边形ABFE 是菱形.9.(2019河北石家庄四十三中二模)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°画出旋转后对应的△A 1B 1C 1;平移△ABC,若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示;(2)如图所示,旋转中心的坐标为⎝ ⎛⎭⎪⎫32,-1; (3)点B 关于x 轴对称的点为A 2.∵PO ∥AC ,∴A 2O A 2C =PO AC ,∴46=PO3,∴OP =2,∴点P 的坐标为(-2,0).中考考点清单)图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离. 3.性质:(1)平移前后,对应线段__平行且相等__、对应角相等; (2)各对应点所连接的线段平行(或在同一条直线上)且相等; (3)平移前后的图形全等. 4.作图步骤:(1)根据题意,确定平移的方向和平移距离; (2)找出原图形的关键点;(3)按平移方向和平移距离、平移各个关键点,得到各关键点的对应点; (4)按原图形依次连接对应点,得到平移后的图形.图形的旋转(高频考点)近8年图形的旋转考查6次,题型以解答题为主,2009~2019年均在解答题中考查,主要以线段旋转、点旋转、图形旋转为背景,结合三角形、正方形、圆等相关知识考查;设问方式主要有证明三角形全等、求角度、线段长度、证明线段的数量关系及位置关系.5.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.6.三大要素:旋转中心、旋转方向和__旋转角度__. 7.性质:(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前后的图形全等. 8.作图步骤:(1)根据题意,确定旋转中心、旋转方向及旋转角; (2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点; (4)按原图形依次连接对应点,得到旋转后的图形. 【方法技巧】坐标系中的旋转问题:1.关于原点对称的点的坐标的应用.其基础知识为:点P(x ,y)关于原点对称点的坐标为(-x ,-y),在具体问题中一般根据坐标特点构建方程组来求解,常用到的关系式:点P(a ,b),P 1(m ,n)关于原点对称,则有⎩⎪⎨⎪⎧a +m =0,b +n =0.2.坐标系内的旋转作图问题.与一般的旋转作图类似,其不同点在于若是作关于原点的中心对称图形,可以根据点的坐标规律,直接在坐标系内找到对应点的坐标,描点后连线.,中考重难点突破)图形平移的相关计算【例1】如图,已知△ABC 的面积为3,且AB =AC ,现将△ABC 沿CA 方向平移CA 长度得到△EFA.(1)求四边形CEFB 的面积;(2)试判断AF 与BE 的位置关系,并说明理由; (3)若∠BEC =15°,求AC 的长.【学生解答】解:(1)由平移的性质得:AF ∥BC 且AF =BC ,△EFA ≌△ABC ,∴四边形AFBC 为平行四边形.∴S △EFA =S △BAF =S △ABC =3.∴四边形CEFB 的面积为9;(2)BE⊥AF.理由如下:由(1)知四边形AFBC 为平行四边形,∴BF ∥AC 且BF =CA.又∵AE=CA ,∴BF ∥AE 且BF =AE.∴四边形EFBA 为平行四边形.又∵AB=AC ,∴AB =AE.∴▱EFBA 为菱形,∴BE ⊥AF ;(3)过点B 作BD⊥AC 于点D ,∠BAC =∠ABE+∠AEB=15°×2=30°.在Rt △ABD 中,sin30°=BD AB =12,故AB =2BD =AC.S △ABC =12AC ·BD =12AC ·12AB =14AC 2=3,∴AC =2 3.1.(2019泉州中考)如图,△ABC 沿着由点B 到E 的方向,平移到△DEF,已知BC =5,EC =3,那么平移的距离为( A )A .2B .3C .5D .7图形旋转的相关计算【例2】如图①,在△ABC 中,AB =AC ,∠BAC =90°,D 、E 分别是AB 、AC 边的中点.将△ABC 绕点A 顺时针旋转α角(0°<α<180°),得到△AB ′C ′(如图②).(1)探究DB ′与EC′的数量关系,并给予证明; (2)当DB ′∥AE 时,试求旋转角α的度数.【解析】(1)由于AB =AC ,∠BAC =90°,D 、E 分别是AB 、AC 边的中点,则AD =AE =12AB ,再根据旋转的性质得到∠B′AD=∠C′AE=α,AB ′=AB ,AC ′=AC ,则AB′=AC′,根据三角形全等的判定方法可得到△B′AD≌△C′AE(SAS),则有DB ′=EC′;(2)由于DB′∥AE,根据平行线的性质得到∠B ′DA =∠DAE =90°,又因为AD =12AB =12AB ′,根据含30°的直角三角形三边的关系得到∠AB ′D =30°,利用互余即可得到旋转角∠B ′AD 的度数.【学生解答】解:(1)DB ′=EC′.证明如下:∵AB=AC ,∠BAC =90°,D 、E 分别是AB 、AC 边的中点,∴AD =AE =12AB ,∵△ABC 绕点A 顺时针旋转α角(0°<α<180°)得到△AB′C′,∴∠B ′AD =∠C′AE=α,AB ′=AB ,AC ′=AC ,∴AB ′=AC′,在△B′AD 和△C′AE 中,⎩⎪⎨⎪⎧AB ′=AC′,∠B ′AD =∠C′AE,AD =AE ,∴△B ′AD ≌△C ′AE(SAS),∴DB ′=EC′;(2)∵DB′∥AE,∴∠B ′DA =∠DAE=90°,在Rt△B ′DA 中,∵AD =12AB ′,∴∠AB ′D =30°,∴∠B ′AD =90°-30°=60°,即旋转角α的度数为60°.2.(2019石家庄四十二中三模)如图,在边长为1的正方形组成的格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A(-2,3),B(-1,2),C(-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为________;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标. 解:(1)如图所示;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π;(3)∵点B ,B 1在y 轴两旁,连接BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B+D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意,得⎩⎪⎨⎪⎧-k +b =2,2k +b =1,解得⎩⎪⎨⎪⎧k =-13,b =53.∴y =-13x +53,∴D ⎝ ⎛⎭⎪⎫0,53.,中考备考方略)1.(2019保定中考)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( D )A .甲种方案所用铁丝最长B .乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长2.(2019石家庄四十中模拟)在平面直角坐标系中,把点P(-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为( D )A .(3,2)B .(2,-3)C .(-3,-2)D .(3,-2)3.(2019遵义中考)如图,已知△ABC 中,∠C =90°,AC =BC =2,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置.连接C′B,则C′B 的长为( C )A .2- 2 B.32C.3-1 D .1,(第3题图)) ,(第4题图))4.(2019德州中考)如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( C )A .35°B .40°C .50° D.65°5.(2019四川成都外国语学校三模)如图,将面积为5的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为__15__.,(第5题图)) ,(第6题图))6.(2019福州中考)如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是__3+1__.7.(2019上海中考)已知在△ABC 中,AB =AC =8,∠BAC =30°.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于__43-4__.8.(2019菏泽中考)如图,在平面直角坐标系xOy 中,直线y =3x 经过点A ,作AB⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD ,若点B 的坐标为(2,0),则点C 的坐标为( A )A .(-1,3)B .(-2,3)C .(-3,1)D .(-3,2),(第8题图)) ,(第9题图))9.(2019青岛中考)如图,平面直角坐标系的原点O 是正方形ABCD 的中心,顶点A 、B 的坐标分别为(1,1),(-1,1),把正方形ABCD 绕原点O 逆时针方向旋转45°得正方形A ′B ′C ′D ′,则正方形ABCD 与正方形A′B′C′D′重叠部分所形成的正八边形的边长为__22-2__.10.(2019山西晋江季延初级中学二模)如图,在方格纸中(小正方形的边长为1),△ABC 的三个顶点均为格点,将△ABC 沿x 轴向左平移5个单位长度,根据所给的平面直角坐标系(O 是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′,B ′,C ′的坐标; (2)求出在整个平移过程中,△ABC 扫过的面积.解:(1)平移后的△A′B′C′如图所示.点A′,B ′,C ′的坐标分别为(-1,5),(-4,0),(-1,0);(2)由平移的性质,可知四边形AA′B′B 是平行四边形,∴△ABC 扫过的面积=S ▱AA ′B ′B +S △ABC =B′B·AC+12BC ·AC =5×5+12×3×5=25+152=652.11.(2019日照中考)如图,已知,在△ABC 中,CA =CB ,∠ACB =90°,E ,F 分别是CA ,CB 边的三等分点.将△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN,连接AM ,BN.(1)求证:AM =BN ;(2)当MA∥CN 时,试求旋转角α的余弦值.解:(1)由旋转知,CM =CN ,∠ACM =∠BCN=α,CA =CB ,∴△AMC ≌△BNC ,∴AM =BN ;(2)∵AM∥CN,∴∠AMC +∠MCN=180°.∵∠MCN =∠ACB=90°,∴∠AMC =90°.设CM 的长为a ,则AC 的长为3a ,∴在Rt △AMC 中,cos α=cos ∠ACM =MC AC =a 3a =13.12.(2019潍坊中考)如图1,点O 是正方形ABCD 两对角线的交点,分别延长O D 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE.(1)求证:DE ⊥AG ;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°<α<360°)得到正方形OE ′F ′G ′,如图2.①在旋转过程中,当∠OAG ′是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.解:(1)如图,延长ED 交AG 于点H.∵O 为正方形ABCD 对角线的交点.∴OA=OD ,OA ⊥OD ,∵OG =OE ,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO,∵∠AGO +∠GAO=90°,∴∠DEO +∠GAO=90°,∠AHE =90°,即DE⊥AG;(2)①在旋转过程中,∠OAG ′成为直角有以下两种情况:(ⅰ)α由0°增大到90°过程中,当∠OAG′为直角时,∵OA =OD =12OG =12OG ′,∴在Rt △OAG ′中,sin ∠AG ′O =OAOG ′=12,∴∠AG ′O =30°,∵OA ⊥OD ,OA ⊥AG ′,∴OD ∥AG ′,∴∠DOG′=∠AG′O=30°.即α=30°.(ⅱ)α由90°增大到180°过程中,当∠OAG′为直角时,同理可求∠BOG′=30°,∴α=180°-30°=150°,综上,当∠OAG′为直角时,α=30°或150°;②AF′长的最大值是2+22,此时α=315°.2019-2020学年数学中考模拟试卷一、选择题1.若2m =3,2n =4,则23m ﹣2n 等于( ) A.1B.98C.278D.27162.如图,过△ABC 内任一点P ,作DE ∥BC ,GF ∥AC ,KH ∥AB ,则DE GF KHBC AC AB++=( )A.1B.43C.2D.833.我们探究得方程x+y =2的正整数解只有1组,方程x+y =3的正整数解只有2组,方程x+y =4的正整数解只有3组,……,那么方程x+y+z =10的正整数解得组数是( ) A .34B .35C .36D .374.如图,过∠MAN 的边AM 上的一点B (不与点A 重合)作BC ⊥AN 于点C ,过点C 作CD ⊥AM 于点D ,则下列线段的比等于tanA 的是( )A .CDAC B .BDBC C .BDCD D .CDBC5.如图,已知四边形ABCO 的边AO 在x 轴上,//,BC AO AB AO ⊥,过点C 的双曲线()0ky k x=≠交OB 于D ,且:1:2OD DB =,若OBC ∆的面积等于3,则k 的值等于( )A.2 B.34C.65D.2456.如图,已知∠BED=55°,则∠B+∠C=()A.30°B.35°C.45°D.55°7.如图,线段AB两个端点的坐标分别为A(1,3)、B(3,0),以原点为位似中心,将线段AB放大得到线段CD,若点C的坐标为(6,0),则点D的坐标为()A.(3,6)B.(2,4.5)C.(2,6)D.(1.5,4.5)8.已知x a=2,x b=﹣3,则x3a﹣2b=()A.23B.89C.-23D.899.下列运算不正确的是()A.a2·a3=a5B.a6÷a3=a3C.(-3a2)2=9a4D.2m·3n=6m+n10.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣1 B.1 C.﹣5 D.1511.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形12.如图,矩形ABCD中,A(﹣2,0),B(2,0),C(2,2),将AB绕点A旋转,使点B落在边CD上的点E处,则点E的坐标为()A.()32,B.()232,C.(1,2)D.()2322-,二、填空题13.如图,在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE ,DE ,其中直线DE 交直线AP 于点F ,若∠ADE= 25°,则∠FAB =_____°.14.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是_____度. 15.如图,l 1∥l 2,∠1=56°,则∠2的度数为______.16.不等式组()32241x xx --⎩+≥⎧⎨>的解集为 .17.如图,已知正方形ABCD ,顶点 A (1,3)、B (1,1)、C (3,1),规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为_____.18.如图,在平面直角坐标系中,点1(,)2P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_______.三、解答题19.已知:在锐角△ABC中,AB=AC.D为底边BC上一点,E为线段AD上一点,且∠BED=∠BAC=2∠DEC,连接CE.(1)求证:∠ABE=∠DAC;(2)若∠BAC=60°,试判断BD与CD有怎样的数量关系,并证明你的结论;(3)若∠BAC=α,那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请说明理由.20.如图,在平面直角坐标系中,已知△AOB,A(0,﹣3),B(﹣2,0).将△OAB先绕点B 逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.21.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,∠ABC的平分线BF交AD于点F,交BC 于点D.(1)求证:BE=EF;(2)若DE=4,DF=3,求AF的长.22.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.(1)求第一次每个足球的进价是多少元?(2)若第二次进货后按150元/个的价格销售,当售出10个后,根据市场情况,商店决定对剩余的足球全部按同一标准一次性打折售完,但要求这次的利润不少于450元,问该商店最低可打几折销售? 23.甲、乙两班分别选5名同学组成代表队参加学校组织的“国防知识”选拔赛,现根据成绩(满分10分)制作如图统计图和统计表(尚未完成) 甲、乙两班代表队成绩统计表 平均数 中位数 众数 方差 甲班 8.5 8.5 a 0.7 乙班8.5b101.6请根据有关信息解决下列问题: (1)填空:a = ,b = ;(2)学校预估如果平均分能达8.5分,在参加市团体比赛中即可以获奖,现应选派 代表队参加市比赛;(填“甲”或“乙”)(3)现将从成绩满分的3个学生中随机抽取2人参加市国防知识个人竞赛,请用树状图或列表法求出恰好抽到甲,乙班各一个学生的概率.24.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x 元(x 为正整数),每个月的销售利润为y 元. (1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? 25.计算:021(2019)12()2π---+-【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D C C C B D C B D A D D二、填空题 13.20或110 14.1260 15.124°. 16.-2<x≤3. 17.(-2012,2) 18.13a << 三、解答题19.(1)见解析;(2)BD =2DC ,见解析;(3)(2)中的结论仍然还成立,见解析. 【解析】 【分析】(1)根据外角的性质,推出∠BED=∠ABE+∠BAE ,由∠BAC=∠BAE+∠DAC ,根据∠BED=∠BAC 进行等量代换即可;(2)在AD 上截取AF=BE ,连接CF ,作CG ∥BE 交直线AD 于G ,∠BED=∠BAC ,结合(1)所推出的结论,求证△ACF ≌△BAE ,根据全等三角形的性质、三角形内角和定理推出∠CFG=180°-∠AFC=180°-∠BEA=∠BED ,由CG ∥BE ,可得∠CGF=∠BED ,BD :CD=BE :CG ,继而推出∠CFG=∠CGF ,即CG=CF ,通过等量代换可得BE=AF=2CF ,把比例式中的BE 、CG 用2CF 、CF 代换、整理后即可推出BD=2DC ,总上所述BD 与CD 的数量关系与∠BAC 的度数无关;(3)根据(2)所推出的结论即可推出若∠BAC=α,那么(2)中的结论仍然还成立. 【详解】(1)证明:∵∠BED =∠ABE+∠BAE ,∠BED =∠BAC , ∴∠ABE+∠BAE =∠BAC , ∵∠BAC =∠BAE+∠DAC , ∴∠DAC =∠ABE ;(2)解:在AD 上截取AF =BE ,连接CF ,作CG ∥BE 交直线AD 于G ,∠BED =∠BAC ,∵∠FAC =∠EBA , ∴在△ACF 和△BAE 中,CA AB FAC EBA AF BE ⎧⎪∠∠⎨⎪⎩===, ∴△ACF ≌△BAE (SAS ),∴CF =AE ,∠ACF =∠BAE ,∠AFC =∠AEB . ∵∠AFC =∠BEA∴180°﹣∠AFC =180°﹣∠BEA ∴∠CFG =∠BEF ,∴∠CFG =180°﹣∠AFC =180°﹣∠BEA =∠BED , ∵CG ∥BE , ∴∠CGF =∠BED , ∴∠CFG =∠CGF , ∴CG =CF , ∵∠BED =2∠DEC ,∵∠CFG =∠DEC+∠ECF ,∠CFG =∠BED , ∴∠ECF =∠DEC , ∴CF =EF , ∴BE =AF =2CF , ∵CG ∥BE , ∴BD :CD =BE :CG , ∴BD :CD =2CF :CF =2, ∴BD =2DC ,∴BD 与CD 的数量关系与∠BAC 的度数无关;(3)解:∵BD 与CD 的数量关系与∠BAC 的度数无关, ∴若∠BAC =α,那么(2)中的结论仍然还成立. 【点睛】本题主要考查等腰三角形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识点,关键在于正确地作出辅助线,求证相关的三角形全等,进行等量代换. 20.(1)详见解析;(2)1394π+ 【解析】 【分析】(1)根据旋转的性质,结合网格结构找出点A、O的对应点A1、O1,再与点B顺次连接即可得到△BO1A1;再根据平移的性质,结合网格结构找出点B、A1、O1的对应点B1、A2、O2,然后顺次连接即可得解;(2)结合图形不难看出,变换过程所扫过的面积为扇形BAA1,与梯形A1A2O2B的面积的和,然后根据扇形的面积公式与梯形的面积公式列式进行计算即可求解.【详解】(1)如图所示;(2)在Rt△AOB中,AB=22223213AO BO+=+=,∴扇形BAA1的面积=290(13)133604ππ⋅⨯=,梯形A1A2O2B的面积=12×(2+4)×3=9,∴变换过程所扫过的面积=扇形BAA1的面积+梯形A1A2O2B的面积=134π+9.【点睛】本题考查了利用旋转变换与平移变换作图,以及扇形的面积计算,熟悉网格结构找出对应点的位置是解题的关键.21.(1)见解析;(2)AF=214.【解析】【分析】(1)通过证明∠6=∠EBF得到EB=EF;(2)先证明△EBD∽△EAB,再利用相似比求出AE,然后计算AE-EF即可得到AF的长.【详解】(1)证明:∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5, 即∠6=∠EBF , ∴EB =EF ;(2)解:∵DE =4,DF =3, ∴BE =EF =DE+DF =7, ∵∠5=∠4,∠BED =∠AEB , ∴△EBD ∽△EAB ,BE DE EA BE ∴=,即74EA 7=, ∴EA =494, ∴AF =AE ﹣EF =4921744-=.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理. 22.(1)100元;(2) 7.5折 【解析】 【分析】(1)设第一次每个足球的进价是x 元,则第二次每个足球的进价是1.2x 元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可;(2)设商店对剩余的足球按同一标准一次性打a 折销售时,可使利润不少于450元.先根据(1)中求得的数得到第二次购进足球的数量和价格,再根据数量关系:第一次销售完10个获得的利润+第二次打折销售完足球获得的利润≥450元,列出不等式,然后求解即可得出答案. 【详解】(1)设第一次每个足球的进价是x 元,则第二次每个足球的进价是1.2x 元, 根据题意得,400036001.2x x-=10, 解得:x =100,经检验:x =100是原方程的根,答:第一次每个足球的进价是100元;(2)设该商店最低可打a折销售,根据题意得,150×10+(36001.2100⨯﹣10)×150×10a﹣3600≥450,解得:a=7.5答:该商店最低可打7.5折销售.【点睛】本题考查分式方程及一元一次不等式的应用,关键是理解题意,第一问以数量作为等量关系列方程求解,第二问以利润作为不等量关系列不等式求解.23.(1)8.5,b=8;(2)甲班;(3)23.【解析】【分析】(1)利用条形统计图,结合众数、中位数的定义分别求出答案;(2)利用平均数、方差的定义分析得出答案;(3)首先根据题意列表,然后由列表求得所有等可能的结果与恰好抽到甲,乙班各一个学生的情况,再利用概率公式求解即可求得答案.【详解】解:(1)甲的众数为:8.5,乙的中位数为:8,故答案为:8.5,8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从方差看,甲班的方差小,所以甲班的成绩更稳定.故答案为:甲班;(3)列表如下:甲乙1 乙2甲﹣﹣﹣乙1 甲乙2 甲乙1 甲乙1 ﹣﹣﹣乙2乙1乙2 甲乙2 乙1乙2 ﹣﹣﹣所有等可能的结果为6种,其中抽到甲班、乙班各一人的结果为4种,所以P(抽到A,B)=4263 =.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)y=﹣x2+200x﹣6400(50≤x≤60且x为整数),y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.【解析】【分析】(1)由于售价为60时,每个月卖100件,售价上涨或下调影响销量,因此分为50≤x≤60和60<x≤80两部分求解;(2)由(1)中求得的函数解析式来根据自变量x的范围求利润的最大值.【详解】解:(1)当50≤x≤60时,y=(x﹣40)(100+60﹣x)=﹣x2+200x﹣6400;当60<x≤80时,y=(x﹣40)(100﹣2x+120)=﹣2x2+300x﹣8800;∴y=﹣x2+200x﹣6400(50≤x≤60且x为整数)y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)当50≤x≤60时,y=﹣(x﹣100)2+3600;∵a=﹣1<0,且x的取值在对称轴的左侧,∴y随x的增大而增大,∴当x=60时,y有最大值2000;当60<x≤80时,y=﹣2(x﹣75)2+2450;∵a=﹣2<0,∴当x=75时,y有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.【点睛】本题考查的是函数方程和实际结合的问题,同学们需掌握最值的求法.25.5-23【解析】【分析】运用负指数幂、零次方以及二次根式的化简的知识进行化简,然后计算即可.【详解】解:原式=1-23+4=5-23.【点睛】本题考查了负指数幂、零次方以及二次根式的化简,其解题关键在于运用相关知识对原式进行化简.2019-2020学年数学中考模拟试卷一、选择题1.若二次函数y=ax 2+bx+c (a <0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y >0成立的x 的取值范围是( ). A.x <﹣4或x >2B.﹣4≤x≤2C.x≤﹣4或x≥2D.﹣4<x <22.有理数a 在数轴上的位置如图所示,下列结论正确的是( )A .﹣2+a 是负数B .﹣2+a 是正数C .a ﹣2是负数D .a ﹣2为03.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x ,那么x 满足的方程为( ) A .10(1+x )2=42 B .10+10(1+x )2=42C .10+10(1+x )+10(1+2x )=42D .10+10(1+x )+10(1+x )2=42 4.如图,曲线2C 是双曲线15:(0)C y x x=>绕原点O 逆时针旋转45︒得到的图形,P 是曲线2C 上任意一点,过点P 作直线PQ l ⊥于点Q ,且直线l 的解析式是y x =,则POQ △的面积等于( )A .5B .52C .72D .55.雾霾天气对北京地区的人民造成严重影响,为改善大气质量,北京市政府决定投入7600亿元治理雾霾,请你对7600亿元用科学记数法表示( ) A .7.6×1010元B .76×1010元C .7.6×1011元D .7.6×l012元6.如图所示的立体图形,从左面看到的图形是( )A.B.C.D.7.民间剪纸是中国古老的传统民间艺术,它历史悠久,风格独特,深受国内外人士所喜爱,下列剪纸作品中,是轴对称图形的为()A.B.C.D.8.如图AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°和115°D.130° 和50°9.用简便方法计算,将98×102变形正确的是()A.98×102=1002+22B.98×102=(100﹣2)2C.98×102=1002﹣22D.98×102=(100+2)210.如图,在▱ABCD中,对角线AC,BD相交于点O,AC=6,BD=10,则AD的长度可以是()A.2B.7C.8D.1011.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=( )A.12B.34C.45D.3512.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是()A.35°B.45°C.55°D.125°二、填空题13.如图,在▱ABCD中,AD>CD,按下列步骤作图:①分别以点A,C为圆心,大于12AC的长为半径画弧,两弧交点分别为点F,G;②过点F,G作直线FG,交AD于点E.如果△CDE的周长为8,那么▱ABCD 的周长是_____.14.若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn=_____.15.已知13a cb d==,则a cb d++的值是_____.16.数据﹣5,3,2,﹣3,3的平均数是___,众数是___,中位数是___,方差是___.17.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD 相交于点P,则tan∠APD的值是______.18.若m,n为实数,且m=112n nn-+-+8,则m+n的算术平方根为_____.三、解答题19.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得5x =,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)20.李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A ,B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 与x 轴交于点N (n ,0),如图3.当m =3时,n =_____.21.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B 作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO.延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE.(1)求证:CD 是⊙O 的切线;(2)若3AE DE ==,求AF 的长.22.如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,CF ∥AB ,交DE 的延长线于点F ,连接BF ,CD .求证:四边形CDBF 是平行四边形.23.如图,△ABC中,∠BAC=90°.(1)尺规作图:在BC上求作E点,使得△ABE与△ABC相似;(保留作图痕迹,不写作法)(2)在(1)的条件下,AC=3,AB=4,求△AEC的周长.24.计算:.25.丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9B班80.8 n 153.3根据以上信息,回答下列问题:(1)补全数学成绩频数分布直方图;(2)写出表中m、n的值;(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B D B C B C C C B C C 二、填空题13.14.715.1 316.0, 3, 2, 11.2.17.218.3三、解答题19.见解析.【解析】【分析】参考小东同学的做法,可得新正方形的边长为10,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.【详解】解:所画图形如图所示.【点睛】此题主要考查对正方形与三角形之间关系的灵活掌握.20.423【解析】。
河北省2019年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形为正多边形的是( )A .B .C .D .2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作( ) A .+3B .﹣3C .﹣13D .+133.如图,从点C 观测点D 的仰角是( )A .DAB ∠ B .DCE ∠C .DCA ∠D .ADC ∠4.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58xx += 5.如图,菱形ABCD 中,150D ︒∠=,则1∠=( )A .30︒B .25︒C .20︒D .15︒6.小明总结了以下结论:①a(b+c)=ab+ac ;②a(b ﹣c)=ab ﹣ac ;③(b ﹣c)÷a =b÷a ﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( ) A .1B .2C .3D .47.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是( ) A .◎代表FEC ∠ B .@代表同位角 C .▲代表EFC ∠D .※代表AB8.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( )A .4510⨯﹣B .5510⨯﹣C .4210⨯﹣D .5210⨯﹣9.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .210.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .11.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤: ①从扇形图中分析出最受学生欢迎的种类 ②去图书馆收集学生借阅图书的记录 ③绘制扇形图来表示各个种类所占的百分比 ④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是( )A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①12.如图,函数()()1010x xy x x⎧>⎪⎪=⎨⎪-<⎪⎩的图象所在坐标系的原点是( )A .点MB .点NC .点PD .点Q13.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④14.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +15.小刚在解关于x 的方程ax 2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根 C .有一个根是x=-1D .有两个相等的实数根16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.n=.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取13乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.n=.丙:如图4,思路是当x结果取13下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题﹣﹣=,则p的值为_____.17.若210⨯⨯7777p18.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=_____;(2)当y=﹣2时,n的值为_____.19.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为______km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为______km.三、解答题20.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣; (2)若请推算12696÷⨯=﹣,□内的符号; (3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数. 21.已知:整式()()22212A n n -=+,整式0B >. 尝试: 化简整式A . 发现: 2A B =,求整式B .联想:由上可知,222212B n n +=(﹣)(),当n >1时2,1,2,n n B -为直角三角形的三边长,如图.填写下表中B 的值:22.某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)12=. (1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练. ①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由; ②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.23.如图,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心. (1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AIC <n °,分别直接写出m ,n 的值.24.长为300m 的春游队伍,以/v m s ()的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2/v m s (),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t s (),排头与O 的距离为S m 头().(1)当2v 时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S m 甲(),求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为T s (),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.25.如图1和2,ABCD 中,AB =3,BC =15,43tan DAB ∠=.点P 为AB 延长线上一点,过点A 作O 切CP 于点P ,设BP x =.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当4x =时,如图2,O 与AC 交于点Q ,求CAP ∠的度数,并通过计算比较弦AP 与劣弧PQ 长度的大小;(3)当O 与线段AD 只有一个公共点时,直接写出x 的取值范围.26.如图,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x ﹣b 与y 轴交于点B ;抛物线L :y =﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.参考答案1.D【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【详解】根据正多边形的定义,得到D中图形是正五边形.故选D.【点睛】本题考查了正多边形,关键是掌握正多边形的定义.2.B【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.【详解】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.【点睛】本题考查相反意义的量,注意,通常我们定义“增加”、“向右”为正,但是也可以定义“增加”、“向右”为负.3.B【分析】根据仰角的定义解答即可.【详解】∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE.故选B.【点睛】本题考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.4.A【分析】x的18即18x,不超过5是小于或等于5的数,由此列出式子即可.【详解】“x的18与x的和不超过5”用不等式表示为18x+x≤5.故选A.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5.D【分析】根据菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.【详解】∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°.故选D.【点睛】本题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解答本题的关键.6.C【分析】根据乘法分配律,除法分配律和去括号解题即可.【详解】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选C.【点睛】本题考查的是去括号,熟练掌握乘法分配律,除法分配律是解题的关键.7.C【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【详解】延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选C.【点睛】本题考查了平行线的判定,三角形外角的性质,比较简单.8.D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】10.00002=2×10﹣5.50000故选D.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n的最小值为3.故选C.【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.C【分析】根据三角形外心的定义得到三角形外心为三边的垂直平分线的交点,然后利用基本作图对各选项进行判断.【详解】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.11.D【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】由题意可得:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类.故选D.【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.12.A 【分析】由函数解析式可知函数关于y 轴对称,当x >0时,图象在一象限,当x <0时,图象在二象限,即可求解. 【详解】由已知可知函数y ()()1010x xx x⎧⎪⎪=⎨⎪-⎪⎩>,<关于y 轴对称,∴y 轴与直线PM 重合.当x >0时,图象在一象限,当x <0时,图象在二象限,即图象在x 轴上方,所以点M 是原点. 故选A . 【点睛】本题考查了反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键. 13.B 【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案. 【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++. 又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 14.A 【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案. 【详解】∵S 主=x 2+2x =x (x +2),S 左=x 2+x =x (x +1),∴俯视图的长为x +2,宽为x +1,则俯视图的面积S 俯=(x +2)(x +1)=x 2+3x +2. 故选A . 【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高. 15.A 【分析】直接把已知数据代入进而得出c 的值,再解方程求出答案. 【详解】解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =-1, ∴(-1)2-4+c =0, 解得:c =3,∵所抄的c 比原方程的c 值小2. 故原方程中c =5, 即方程为:x 2+4x +5=0则∆=b 2-4ac =16-4×1×5=-4<0, 则原方程的根的情况是不存在实数根. 故选:A . 【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c 的值是解题关键. 16.B 【分析】根据矩形的性质和勾股定理求出矩形的对角线长,即可判断甲和乙,丙中图示情况不是最长. 【详解】甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n ==;乙的思路与计算都正确,n=≈14;丙的思路与计算都错误,图示情况不是最长,n=(12+6)=≈13.故选B.【点睛】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.17.-3【分析】直接利用同底数幂的乘法运算法则进而得出答案.【详解】∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为﹣3.【点睛】本题考查了同底数幂的乘法运算,正确掌握相关运算法则是解题的关键.18.3x; 1【分析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,直接写出m即可;(2)先转换成加法形式,表示出m,n,y,再把y=-2代入解出x,即可求出n.【详解】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m=x+2x=3x;(2)由题知m=3x,n=2x+3,y=m+n,则y=3x+2x+3=5x+3,把y=-2代入,-2=5x+3,解得x=-1,则n=2×(-1)+3=1.【点睛】本题是对新定义的考查,熟练理解题上新定义内容和一元一次方程是解决本题的关键. 19.20 13【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案为(1)20;(2)13.【点睛】本题考查了勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.20.(1)-12;(2)-;(3)-20,理由详见解析.【分析】(1)根据有理数的加减法法则解答即可;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【详解】(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点睛】本题考查了有理数的混合运算,明确有理数混合运算的计算方法是解答本题的关键.21.尝试:221()A n=+;发现:21=B n+;联想:17,37.先根据完全平方公式和整式的混合运算法则求出A ,进而求出B ,再把n 的值代入即可解答. 【详解】A =(n 2﹣1)2+(2n )2=n 4﹣2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2. ∵A =B 2,B >0,∴B =n 2+1,当2n =8时,n =4,∴n 2+1=42+1=17; 当n 2﹣1=35时,n 2+1=37. 故答案为17;37. 【点睛】本题考查了勾股数的定义.掌握勾股数的定义是解答本题的关键.22.(1)这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;②乙组两次都拿到8元球的概率为49. 【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案; (2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案. 【详解】(1)∵P (一次拿到8元球)12=,∴8元球的个数为412⨯=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同.理由如下: 原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为882+=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为49.【点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23.(1)详见解析;(2)PD的最大值为3;(3)m=105,n=150.【分析】(1)根据ASA证明△ABC≌△ADE,得∠BAC=∠DAE,即可得出结论.(2)PD=AD﹣AP=6﹣x.可得AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【详解】(1)如图1.在△ABC和△ADE中,∵AB ADB DBC DE=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x.当AD⊥BC时,AP12=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°.∵AB⊥AC,∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α.∵I为△APC的内心,∴AI平分∠P AC,CI平分∠PCA,∴∠IAC12=∠P AC,∠ICA12=∠PCA,∴∠AIC=180°﹣(∠IAC+∠ICA)=180°1 2-(∠P AC+∠PCA)=180°1 2-(90°﹣α+60°)12=α+105°∵0<α<90°,∴105°12<α+105°<150°,即105°<∠AIC <150°,∴m =105,n =150.【点睛】本题是一道几何综合题,考查了垂线段最短,含30°的角的直角三角形的性质,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题的关键是将PD 最大值转化为P A 的最小值.24.(1)①2300头=S t +;②41200S t +=-甲;(2)T 与v 的函数关系式为:400T v=,此时队伍在此过程中行进的路程为400m . 【分析】(1)①排头与O 的距离为S 头(m ).等于排头行走的路程+队伍的长300,而排头行进的时间也是t (s ),速度是2m/s ,可以求出S 头与t 的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S 即可;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S 甲(m )是在S 的基础上减少甲返回的路程,而甲返回的时间=总时间t -甲从排尾赶到排头的时间,于是可以求S 甲与t 的函数关系式; (2)甲这次往返队伍的总时间为T (s ),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间. 【详解】(1)①排尾从位置O 开始行进的时间为t (s ),则排头也离开原排头t (s ),∴S 头=2t +300; ②甲从排尾赶到排头的时间为300÷(2v ﹣v )=300÷v =300÷2=150 s ,此时S 头=2t +300=600 m ,甲返回时间为:(t ﹣150)s ,∴S 甲=S 头﹣S 甲回=2×150+300﹣4(t ﹣150)=﹣4t +1200; 因此,S 头与t 的函数关系式为S 头=2t +300,当甲赶到排头位置时,S 的值为600m ,在甲从排头返回到排尾过程中,S 甲与t 的函数关系式为S 甲=﹣4t +1200. (2)T =t 追及+t 返回30030040022v v v v v=+=-+,在甲这次往返队伍的过程中队伍行进的路程为:v 400v⨯=400; 因此T 与v 的函数关系式为:T 400v=,此时队伍在此过程中行进的路程为400m .【点睛】本题考查了行程问题中相遇、追及问题,同时还考查了函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误.25.(1)当x =9时,圆心O 落在AP 上,PE ⊥BC ;(2)∠CAP =45°,弦AP 的长度>劣弧PQ 长度;(3)x ≥18. 【分析】(1)由三角函数定义知:Rt △PBC 中,CPBP =tan ∠PBC =tan ∠DAB 43=,设CP =4k ,BP =3k ,由勾股定理可求得BC ,根据“直径所对的圆周角是直角”可得PE ⊥AD ,由此可得PE ⊥BC ; (2)作CG ⊥AB ,运用勾股定理和三角函数可求CG 和AG ,再应用三角函数求∠CAP ,应用弧长公式求劣弧PQ 长度,再比较它与AP 长度的大小;(3)当⊙O 与线段AD 只有一个公共点时,⊙O 与AD 相切于点A ,或⊙O 与线段DA 的延长线相交于另一点,此时,BP 有最小值,即x ≥18. 【详解】(1)如图1,AP 经过圆心O . ∵CP 与⊙O 相切于P ,∴∠APC =90°. ∵▱ABCD ,∴AD ∥BC ,∴∠PBC =∠DAB ,∴CPBP =tan ∠PBC =tan ∠DAB 43=,设CP =4k ,BP =3k ,由CP 2+BP 2=BC 2,得(4k )2+(3k )2=152,解得:k 1=﹣3(舍去),k 2=3,∴x =BP =3×3=9,故当x =9时,圆心O 落在AP 上;∵AP 是⊙O 的直径,∴∠AEP =90°,∴PE ⊥AD . ∵▱ABCD ,∴BC ∥AD ,∴PE ⊥BC . (2)如图2,过点C 作CG ⊥AP 于G . ∵▱ABCD ,∴BC ∥AD ,∴∠CBG =∠DAB ,∴CG BG=tan ∠CBG =tan ∠DAB 43=,设CG =4m ,BG =3m ,由勾股定理得:(4m )2+(3m )2=152,解得:m =3,∴CG =4×3=12,BG =3×3=9,PG =BG ﹣BP =9﹣4=5,AP =AB +BP =3+4=7,∴AG =AB +BG =3+9=12,∴tan ∠CAP1212CG AG ===1,∴∠CAP =45°; 连接OP ,OQ ,过点O 作OH ⊥AP 于H ,则∠POQ =2∠CAP =2×45°=90°,PH 12=AP 72=. 在Rt △CPG中,CP ==13.∵CP 是⊙O 的切线,∴∠OPC =∠OHP =90°,∠OPH +∠CPG =90°,∠PCG +∠CPG =90°,∴∠OPH =∠PCG ,∴△OPH ∽△PCG ,∴PH CG OP CP =,即PH ×CP =CG ×OP ,72⨯13=12OP ,∴OP 9124=,∴劣弧PQ 长度9190912418048ππ⨯==. ∵9148π<2π<7,∴弦AP 的长度>劣弧PQ 长度. (3)当⊙O 与线段AD 只有一个公共点时,⊙O 与AD 相切于点A ,或⊙O 与线段DA 的延长线相交于另一点,此时圆心O 位于直线AB 下方,且∠OAD ≥90°,当∠OAD =90°,∠CPM =∠DAB 时,即⊙O 与DA 切于点A 时,BP 取得最小值,如图3,过点C 作CM ⊥AB 于M .∵∠DAB =∠CBP ,∴∠CPM =∠CBP ,∴CB =CP .∵▱ABCD ,∴AD ∥BC ,∴∠PBC =∠DAB ,∴tan ∠PBC =tan ∠DAB 43CM BM==,设CM =4k ,BM =3k ,由CM 2+BM 2=BC 2,得(4k )2+(3k )2=152,解得:k 1=﹣3(舍去),k 2=3,∴x =BM =3×3=9. ∵CM ⊥AB ,∴BP =2BM =2×9=18,∴x ≥18.【点睛】本题是圆的综合题,考查了圆的切线性质,相似三角形性质,解直角三角形,勾股定理,弧长计算等;综合性较强,学生解题时要灵活运用所学数学知识解决问题.26.(1)b =4,(2,﹣2 );(2)1;(3)12;(4)当b =2019时“美点”的个数为4040个,b =2019.5时“美点”的个数为1010个.【分析】(1)求出A 、B 的坐标,由AB =8,可求出b 的值.从而得到L 的解析式,找出L 的对称轴与a 的交点即可; (2)通过配方,求出L 的顶点坐标,由于点C 在l 下方,则C 与l 的距离24b b -,配方即可得出结论;(3)由題意得y 1+y 2=2y 3,进而有b +x 0﹣b =2(﹣x 02+bx 0)解得x 0的值,求出L 与x 轴右交点为D 的坐标,即可得出结论;(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x 直线解析式a :y =x ﹣2019,美点”总计4040个点,②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,“美点”共有1010个.【详解】(1)当x =0时,y =x ﹣b =﹣b ,∴B (0,﹣b ).∵AB =8,而A (0,b ),∴b ﹣(﹣b )=8,∴b =4,∴L :y =﹣x 2+4x ,∴L 的对称轴x =2,当x =2时,y =x ﹣4=﹣2,∴L 的对称轴与a 的交点为(2,﹣2);(2)y =﹣(x 2b -)224b +,∴L 的顶点C (2b ,24b ). ∵点C 在l 下方,∴C 与l 的距离b 2144b -=-(b ﹣2)2+1≤1,∴点C 与l 距离的最大值为1;(3)∵y 3是y 1,y 2的平均数,∴y 1+y 2=2y 3,∴b +x 0﹣b =2(﹣x 02+bx 0),解得:x 0=0或x 0=b 12-. ∵x 0≠0,∴x 0=b 12-,对于L ,当y =0时,0=﹣x 2+bx ,即0=﹣x (x ﹣b ),解得:x 1=0,x 2=b . ∵b >0,∴右交点D (b ,0),∴点(x 0,0)与点D 间的距离b ﹣(b 12-)12=. (4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x ,直线解析式a :y =x ﹣2019.联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y 值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点.∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.。
2019全国中考数学真题知识点25图形的平移、旋转与轴对称(解析版)一、选择题1.(2019·泰州)下列图形中的轴对称图形是( )A. B. C. D. 第2题图【答案】B【解析】B 选项是轴对称图形,有3条对称轴,D 选项是中心对称图形,A,C 选项既不是轴对称图形,也不是中心对称图形,故选B. 2.(2019·绍兴)在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是 ( )A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【答案】B【解析】y =(x +5)(x ﹣3)=(x +1)2﹣16,顶点坐标是(﹣1,﹣16).y =(x +3)(x ﹣5)=(x ﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y =(x +5)(x ﹣3)向右平移2个单位长度得到抛物线y =(x +3)(x ﹣5),故选B .3. (2019·烟台)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】C【解析】选项A 是中心对称图形不是轴对称图形,选项B 是轴对称图形不是中心对称图形,选项C 既是中心对称图形又是轴对称图形,选项D 是轴对称图形不是中心对称图形.4.(2019·盐城)下列图形中,既是轴对称又是中心对称图形的是( )【答案】B【解析】图形是轴对称图形,有6条对称轴;绕对称轴交点旋转180度后能和自身重合,也是中心对称图形.故选B .5.(2019·青岛)下列四个图形中,既是轴对称图形,又是中心对称圄彤的是A .B .C .D .【答案】D【解析】中心对称图形是指绕图形内某点旋转180°后能与自身完全重合的图形.能确定出对称中心的图形为中心对称图形.A 、C 只是轴对称图形,B 只是中心对称图形,D 既是轴对称图形,又是中心对称图形,故选D . 6.(2019·青岛)如图,将线段AB 先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A ′B ′,则点B 的对应点B ′的坐标是( )A .(-4,1)B .(-1,2)C .(4,-1)D .(1,-2)【答案】D【解析】本题考查图形变换,根据题意画出图形,可知点B 的对应点B ′的坐标是(1,-2),故选D . 4.(2019·衡阳)下列图形既是轴对称图形,又是中心对称图形的是( )【答案】D .【解析】判断是否是中心对称图形,关键要确定对称中心;判断是否是轴对称图形,关键要确定对称轴.解:根据中心对称图形的定义, D 图形是中心对称图形,根据轴对称图形的定义, 得图形A, B,C,D 都是轴对称图形,所以既是轴对称图形 是中心对称图形的是D,故选D . 4.(2019·武汉)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( ) A .诚B .信C .友D .善【答案】D【解析】四个方块字中可以看作轴对称图形的是“善”,故选D .1. (2019·怀化) 怀化市是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是()A B C D【答案】C.【解析】A.是轴对称图形,不是中心对称图形,故选项错误;B.是轴对称图形,不是中心对称图形,故选项错误;C.是轴对称图形,是中心对称图形,故选项正确;D.是轴对称图形,不是中心对称图形,故选项错误.故选C.2. (2019·无锡)下列图案中,是中心对称图形但不是轴对称图形的是()【答案】C【解析】本题考查了中心对称图形与轴对称图形的概念, A.是轴对称图形,也是中心对称图形.故错误;B.是轴对称图形,也是中心对称图形.故错误;C.不是轴对称图形,是中心对称图形.故正确;D.不是轴对称图形,是旋转对称图形.故错误.故选C.3. (2019·济宁)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形与中心对称图形的定义可知A正确.4. (2019·泰安)下列图形:其中,是轴对称图形且有两条对称轴的是A.①②B.②③C.②④D.③④【答案】A【解析】四个图形中,轴对称图形有:①②③,其中图①有2条对称轴,图②有2条对称轴,图③有4条对称轴,故选A.5.(2019·枣庄)下列图形,可以看做中心对称图形的是( )【答案】B【解析】中心对称图形是该图形绕某点旋转180°后,可以和原图形重合,则该图形称为中心对称图形,A,C选项旋转120°或240°可重合,但是旋转180°不能重合,故错误;D选项旋转72°的整数倍均可与圆图形重合,但是旋转180°不能重合,故错误;B选项正确.故选B.6. (2019·枣庄)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABE的位置,若四边形AECF的面积为20,DE=2,则AE的长为( )A.4B.C.6D.【答案】D【解析】由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,∴AD=,∵DE=2,∴在Rt△ADE中,AE=故选D.7. (2019·达州),剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是()【答案】D【解析】A,B,C都不是轴对称图形,只有D是轴对称图形.8.(2019·乐山)下列四个图形中,可以由如图通过平移得到的是()A.B.C.D.【答案】D【解析】本题考查了平移的定义,已知原图到A、B、C三个选项的图形都是旋转只有原图到D选项的图形是平移,故选D.9. (2019·自贡)下列图案中,既是轴对称图形又是中心对称图形的是()【答案】D.【解析】对于A ,是轴对称图形,不是中心对称图形,不符合题意; 对于B ,是中心对称图形,不是轴对称图形,不符合题意; 对于C ,是中心对称图形,不是轴对称图形,不符合题意; 对于D ,既是轴对称图形,也是中心对称图形,符合题意. 故选D.10. (2019·天津)在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作轴对称图形的是( ) A. 美 B. 丽 C.校 D. 园 【答案】A【解析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.选项A 可以,选项B,C,D 都有不能够重合的部分,故选A.11. (2019·天津)如图,将△ABC 绕点C 顺时针旋转得到△DEC,使点A 的对应点D 恰好落在边AB 上,点B的对应点为E,连接BE ,下列结论一定正确的是( ) A. AC=AD B. AB ⊥EB C. BC=DE D.∠A=∠EBC 【答案】D【解析】由旋转的性质可知,AC=CD ,但∠A 不一定是60°,所以不能证明AC=AD ,所以选项A 错误;由于旋转角度不定,所以选项B 不能确定;因为不确定AB 和BC 的数量关系,所以BC 和DE 的关系不能确定;由旋转的的性质可知∠ACD=∠BCE ,AC=DC,BC=EC,所以2∠A=180°-∠ACD ,2∠EBC=180°-∠BCE,从而可证选项D 是正确的.二、填空题 15.(2019·烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO 的顶点坐标分别为(2,1)A --,(2,3)B --,(0,0)O ,111A B O 的顶点坐标为1(1,1)A -,1(1,5)B -,1(5,1)O ,△ABO 与111A B O 是以点P 为位似中心的位似图形,则P 点的坐标为 .17.(2019·烟台)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【解析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB∠的度数是22.5︒.15.(2019·山西)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为________cm.第15题图【答案】10-26【解题过程】∵∠BAC=90°,∠BAD=15°,∴∠DAF=75°由旋转可知,∠ADF=45°,过点A作AM⊥DF于点M,∴AM=22AD=32,∴AF=233AM=26,∵AC=AB=10,∴FC=AC-AF=10-26.第15题答图16.(2019·武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=24.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是___________.【答案】229【解析】由题构造等边△MFN,△MHO,图中2个彩色三角形全等(△MFH≌△MNO(SAS))∴OM+ON+OG=HO+HF+OG,∴距离和最小值为FG=229(Rt△FQG勾股定理)15.(2019·益阳)在如图所示的方格纸(1格长为1个单位长度)中,△ABC 的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A ′B ′C ′,使各顶点仍在格点上,则其旋转角的度数是.第14题图【答案】90°【解析】找到一组对应点A 、A ′,并将其与旋转中心连接起来,确定旋转角,进而得到旋转角的度数为90°. 1. (2019·淄博)如图,在正方形网格中,格点△ABC 绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A 与点A1,点B 与点B1,点C 与点C1是对应点,则α=度.【答案】90°【解析】∵旋转图形的对称中心到对应点的距离相等,∴分别作边AC 和A 1C 1的垂直平分线,两直线相交于点D ,则点D 即为旋转中心,连接AD ,A 1D ,∴∠ADA 1=α=90°.三、解答题 23.(2019·淮安)如图,方格纸上每个小正方形的边长均为1个单位长度,点A 、B 都在格点上(两条网格线的交点叫格点).(1)将线段AB 向上平移两个单位长度,点A 的对应点为点1A ,点B 的对应点为点1B ,请画出平移后的线段11B A ; (2)将线段11B A 绕点1A 按逆时针方向旋转90°,点1B 的对应点为点2B ,请画出旋转后的线段21B A ; (3)连接2AB 、2BB ,求△2ABB 的面积.4图2F第23题图【解题过程】(1)作图如下:(2)作图如下:(3)如图所示,△2ABB 的面积为:222142214)42(21⨯⨯-⨯⨯-⨯+⨯=6.16.(2019安徽,16题号,8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以个点(网络线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD;(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【解题过程】解:(1)线段CD如图所示:………………4分(2)得到的菱形如图所示(答案不唯一).………………8分1. (2019·宁波)图1,图2都是有边长为1的小等边三角形构成的网格,每个网格图中由5个小等边三角形已图上阴影,请在余下的空白小等边三角形中,按下列要求选取一个图上阴影:(1)使得6个阴影小等边三角形中组成一个轴对称图形;(2)使得6个阴影小等边三角形中组成一个中心对称图形.(请将两个小题一次作答在图1,图2中,均只需画出符合条件的一种情形)【解题过程】(1)画出下列其中一种即可(2)画出下列其中一种即可22.(2019·山西)综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平,再沿过点C 的直线折叠,使点B,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N,且点E,点N,点F 三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3.第三步:在图3的基础上继续折叠,使点C 与点F 重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.第22题图 问题解决:(1)在图5中,∠BEC 的度数是_____,AEBE的值是_____; (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______. 【思路分析】(1)通过折叠转化角相等,进而利用内角和求∠BEC 的度数,再利用45°三角函数解决线段的比值问题(2)根据第1问的提示,可以通过折叠求角的度数,进而得到四边形各内角的度数为90°,利用三个内角为90°的四边形是矩形进而可以判定四边形的形状是矩形(3)利用多次折叠可以得到很多相等的线段以及互相垂直的线段,可以利用四边相等的四边形是菱形或对角线互相垂直平分的四边形是菱形来得到符合条件的菱形. 【解题过程】(1)∵正方形ABCD,∴∠ACB =45°,由折叠知:∠1=∠2=22.5°,∠BEC =∠CEN,BE =EN,∴∠BEC =90°-∠1=67.5°,∴∠AEN =180°-∠BEC -∠CEN =45°,∴cos45°=22ENAE ,2AE EN,2AE AE BE EN;(2)四边形EMGF 是矩形.理由如下:∵四边形ABCD 是正方形,∴∠B =∠BCD =∠D =90°,由折叠可知:∠1=∠2=∠3=∠4,CM =CG,∠BEC =∠NEC =∠NFC =∠DFC,∴∠1=∠2=∠3=∠4=°904=22.5°,∴∠BEC =∠NEC =∠NFC =∠DFC =67.5°,由折叠知:MH,GH 分别垂直平分EC,FC,∴MC =ME,GC =GF.∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF =∠GFE =90°.∵∠MCG =90°,CM =CG,∴∠CMG =45°,又∵∠BME =∠1+∠5=45°,∴∠EMG =180°-∠CMG -∠BME =90°,∴四边形EMGF 是矩形; (3)答案不唯一,画出正确的图形(一个即可).菱形FGCH (或菱形EMCH )第22题答图一、选择题3.(2019·黄石)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断.A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【知识点】轴对称图形;中心对称图形1.(2019·齐齐哈尔)下面四个图形中,既是轴对称图形又是中心对称图形的是()【答案】D【解析】选项A,B都是中心对称,但不是轴对称图形,选项C是轴对称但不是中心对称图形,选项D既是轴对称又是中心对称图形,故选D【知识点】中心对称,轴对称4.(2019·兰州)剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称又是中心对称图形的是()【答案】C【解析】既是轴对称图形,又是中心对称图形的是C,故选C.【知识点】轴对称图形,中心对称图象4.(2019·黔三州)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D. 1个【答案】B.【解析】第一个是中心对称图形,不是是轴对称图形;第二个既是中心对称图形,又是轴对称图形;第三个既是中心对称图形,又是轴对称图形;第四个既是中心对称图形,又是轴对称图形.综上可得,共有3个符合题意,故选B.【知识点】轴对称图形;中心对称图形.3.(2019 ·福建)下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形【答案】D【解析】等边三角形是轴对称不是中心对称选,故A选项错误;直角三角形既不是轴对称也不是中心对称图形,故B选项错误;平行四边形是中心对称图形而不是轴对称图形,故C选项错误;正方形既是轴对称图形又是中心对称图形,D选项正确.故选D【知识点】轴对称图形;中心对称图形;1.(2019 ·扬州)下列图案中,是中心对称图形的是()【答案】D【解析】不是中心对称图形,故选项A错误;不是中心对称图形,故选项B错误;不是中心对称图形,故选项C错误;是中心对称图形,故选项D正确.故选:D.【知识点】中心对称图形5.(2019·广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】C【解析】本题考查中心对称图形与轴对称图形的概念【知识点】中心对称图形轴对称图形2.(2019·深圳)下列图形中是轴对称图形的是()【答案】A【解析】A中图形沿着过上下两边中点的直线进行折叠,直线两旁的部分能完全重合,是轴对称图形;其他图形不符合轴对称图形的定义,不是轴对称图形.故选A.【知识点】轴对称图形6.(2019·毕节)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【答案】B【解析】①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【知识点】轴对称图形;中心对称图形.3.(2019·绵阳)对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B【解析】如图所示:是中心对称图形.故选B.【知识点】轴对称图形;中心对称图形1.(2019·甘肃)下列四个图案中,是中心对称图形的是()【答案】A【解析】解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选A.【知识点】中心对称图形4.(2019·黔东南)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【答案】B【解析】①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【知识点】轴对称图形;中心对称图形2.(2019·菏泽)下列图形中,既是轴对称图形,又是中心对称图形的是()【答案】C【解析】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误,故选C.【知识点】轴对称图形;中心对称图形2.(2019·宜昌)如下字体的四个汉字中,是轴对称图形的是( )【答案】D【解析】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确. 故选:D .【知识点】轴对称图形10.(2019·兰州)如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (-3,5),B (-4,3),A 1(3,3),则B 1的坐标为( )A.(1,2)B.(2,1)C.(1,4)D.(4,1)【答案】B【解析】∵A (-3,5),A 1(3,3),∴四边形ABCD 向右平移6个单位,向下平移2个单位,∵点B (-4,3),∴点B 1(2,1),故选B.【知识点】图形的平移7.(2019·黄石)如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上, AB 边的中点是坐标原点O ,将正方形绕点C 按逆时针方向旋转90°后,点B 的对应点'B 的坐标是( )A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)【答案】C【解析】根据旋转可得:CB '=CB =2,∠BCB '=90°,可得B '的坐标,如图,由旋转得:CB '=CB =2,∠BCB '=90°,∵四边形ABCD 是正方形,且O 是AB 的中点,∴OB =1,∴B '(2+1,2),即B '(3,2),故选:C .x【知识点】坐标与图形变化﹣旋转;正方形的性质8.(2019·海南) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为( )A.(-1,-1)B.(1,0)C.(-1,0)D.(3,0)第8题图【答案】C【解析】∵点A(2,1)平移后落在A1(-2,2),∴是向左平移4个单位,向上平移1个单位,∴点B(3,-1)平移后的点B1坐标为(3-4,-1+1),即B1(-1,0),故选C.【知识点】点的平移15.(2019·宜昌)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+√3)B.(−√3,3)C.(−√3,2+√3)D.(﹣3,√3)【答案】B【解析】如图,作B′H⊥y轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=12A′B′=1,B′H=√3,∴OH=3,∴B′(−3,3),故选:B.【知识点】坐标与图形变化﹣旋转9.(2019·河北)如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂照n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.2第8题图【答案】C【解析】如图所示,第8题答图∴n的最小值为3.【知识点】等边三角形的对称性6.(2019 ·南京)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④ B.②③ C.②④ D.③④【答案】D【解析】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C',故选D.【知识点】平移、旋转与对称9.(2019·南充)如图,正方形MNCB在宽为2的矩形纸片一端,对折正方形MNCB得到折痕AE,再翻折纸片,使AB与AD重合,以下结论错误的是()A .210AB =+B .CD BC = C .2BC CD EH = D .sin AHD ∠【答案】A【解析】在Rt AEB ∆中,AB == //AB DH ,//BH AD ,∴四边形ABHD 是平行四边形,AB AD =,∴四边形ABHD 是菱形,AD AB ∴==1CD AD AD ∴===,∴CD BC =,故选项B 正确,24BC =,(51)4CD EH ==,2BC CD EH ∴=,故选项C 正确,四边形ABHD 是菱形,AHD AHB ∴∠=∠,sin sin AE AHD AHB AH ∴∠=∠===,故选项D 正确, 故选:A . 【知识点】翻折变换(折叠问题);矩形的性质;正方形的性质;解直角三角形;相似三角形的判定与性质3. (2019·宜宾)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,1DE =,将ADE ∆绕着点A 顺时针旋转到与ABF ∆重合,则(EF = )A B C .D .【答案】D【解析】由旋转变换的性质可知,ADE ABF ∆≅∆,∴正方形ABCD 的面积=四边形AECF 的面积25=,5BC ∴=,1BF DE ==,6FC ∴=,4CE =,EF ∴===故选:D .【知识点】正方形的性质;旋转的性质10.(2019·荆门)如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()()A.(√3,﹣1)B.(1,−√3)C.(2,0)D.(√3,0)【答案】A【解析】如图,在Rt△OCB中,∵∠BOC=30°,∴BC=√33OC=√33×√3=1,∵Rt△OCB绕原点顺时针旋转120°后得到△OC′B',∴OC′=OC=√3,B′C′=BC=1,∠B′C′O=∠BCO=90°,∴点B′的坐标为(√3,﹣1).故选:A.【知识点】坐标与图形变化﹣旋转二、填空题15.(2019·海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.第15题图【解析】∵α+β=∠B,∴∠EAF=∠BAC+∠B=90°,∴△AEF是直角三角形,且AE=AB=3,AF=AC=2,∴EF【知识点】旋转,勾股定理14. ( 2019·广州)一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为 .【答案】15°或45°【解析】解:分情况讨论:①当DE ⊥BC 时,∠BAD =75°,∴α=90°﹣∠BAD =15°;②当AD ⊥BC 时,∠BAD =45°,即α=45°.故答案为:15°或45【知识点】角的计算;垂直的定义;旋转的定义17. (2019·甘肃)如图,在矩形ABCD 中,10AB =,6AD =,E 为BC 上一点,把CDE ∆沿DE 折叠,使点C 落在AB 边上的F 处,则CE 的长为 .【答案】103【解析】解:设CE x =,则6BE x =-由折叠性质可知,EF CE x ==,10DF CD AB ===, 在Rt DAF ∆中,6AD =,10DF =,8AF ∴=,1082BF AB AF ∴=-=-=,在Rt BEF ∆中,222BE BF EF +=,即222(6)2x x -+=,解得103x =,故答案为103. 【知识点】矩形的性质;翻折变换(折叠问题)18. (2019·绵阳)如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′= .【答案】√2+√6.【解析】如图,连接CE ′,∵△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2,∴AB =BC =2√2,BD =BE =2,∵将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【知识点】全等三角形的判定与性质;等腰直角三角形;旋转的性质15.(2019·资阳)如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.【答案】95【解析】如图,作CH⊥AB于H.由翻折可知:∠AE′C=∠AEC=90°,∠ACE=∠ACE′,∵CE′∥AB,∴∠ACE′=∠CAD,∴∠ACD=∠CAD,∴DC=DA,∵AD=DB,∴DC=DA=DB,∴∠ACB=90°,∴AB=√AC2+BC2=5,∵12•AB•CH=12•AC•BC,∴CH=125,∴AH=√AC2−CH2=95,∵CE∥AB,∴∠E′CH+∠AHC=180°,∵∠AHC=90°,∴∠E′CH=90°,∴四边形AHCE′是矩形,∴CE′=AH=95,故答案为95.【知识点】平行线的性质;翻折变换(折叠问题)14.(2019·随州)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变化后点A的对应点的坐标为.【答案】(-2,2)【解析】△ABC先绕点C逆时针旋转90°,后点A的对应点的坐标为(1,2),再向左平移3个单位,A的对应点的坐标为(-2,2) .【知识点】旋转;平移17.(2019·黔东南)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).【答案】3【解析】2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【知识点】生活中的旋转现象三、解答题23.(2019·齐齐哈尔)折纸是同学们喜欢的手工活动之一,通过这只我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF,如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD= °;线段NF= ;(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A’处,分别得到图③,图④(二)填一填:(3)图③中阴影部分的周长为 ;(4)图③中,若∠A ’GN=80°,则∠A ’HD= °; (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点A ’落在边ND 上,若n m D A N A ='',则AHAG= (用含m,n 的代数式表示)【思路分析】(一)(1)∵折叠∴DN=CD=4,DE=2,∴Rt △DEN 中,∠EDN=60°,∴∠NDC=30°,∵折叠,∴∠MDC=15°,∴Rt △CDM 中,∠CMD=75°;∵Rt △DEN 中,∠EDN=60°,DN=4,∴EN=32∴NF=4-32(2)由(1)知EN=32,∵AE=2,∴Rt △AEN 中,∠EAN=60°,∵∠EDN=60°∴△AND 是等边三角形; (二)(2) ∵折叠,∴A ’G=AG,A ’H=AH,∴阴影部分的周长为△AND 的周长(3) ∵折叠,∠A ’GN=80°,∴∠A ’GH=50°,∵折叠,∴∠A ’=∠A=60°,∴△GHA ’中,∠A ’HG=70°,∴∠A ’HG=40°(4) 如图,设A ’G ,ND 交于点P,A ’H,ND 交于点Q ,∵等边△AND ,∴∠N=∠A=60°, ∵∠A ’=60°,∴∠N=∠A ’,∵∠NPG==∠A ’PQ,∴△NPG ∽△A ’PQ,同理,△HDQ ∽△PA ’Q,∴△NPG ∽△DHQ,∵△AGH ≌△A ’GH ∴共有4对相似三角形(6)∵折叠∴∠GA ’H=∠A=60°,∴∠NA ’G+∠HA ’D=120°, ∵∠A ’HD+∠HA ’D=120° ∴∠NA ’G=∠A ’HD ∵∠D=∠N∴△NA ’G ∽△DHA ’∵n mD A N A =''∴AH AG =n m n m 22++【解题过程】(一)(1)75°,4-32; (2)△AND 是等边三角形; 证明:∵折叠 ∴DN=CD=AD∵DE=21AD, ∴DE=21DN,∵EF ⊥AD∴∠END=30°, ∴∠AND=60°,∴△AND 是等边三角形 (二)(3)12; (4)40° (5)4; (6)nm nm 22++【知识点】折叠问题,等边三角形的判定,锐角三角函数,三角形相似,三角形全等24.(2019•广安)在数学活动课上,王老师要求学生将图1所示的33⨯正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33⨯的正方形方格画一种,例图除外)【思路分析】根据轴对称图形和旋转对称图形的概念作图即可得. 【解题过程】解:如图所示,【知识点】利用轴对称设计图案;利用旋转设计图案 22.(2019·山西)综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平,再沿过点C 的直线折叠,使点B,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N,且点E,点N,点F 三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3.第三步:在图3的基础上继续折叠,使点C 与点F 重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.第22题图 问题解决:(1)在图5中,∠BEC 的度数是_____,AEBE的值是_____; (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______. 【思路分析】(1)通过折叠转化角相等,进而利用内角和求∠BEC 的度数,再利用45°三角函数解决线段的比值问题(2)根据第1问的提示,可以通过折叠求角的度数,进而得到四边形各内角的度数为90°,利用三个内角为90°的四边形是矩形进而可以判定四边形的形状是矩形(3)利用多次折叠可以得到很多相等的线段以及互相垂直的线段,可以利用四边相等的四边形是菱形或对角线互相垂直平分的四边形是菱形来得到符合条件的菱形. 【解题过程】(1)∵正方形ABCD,∴∠ACB =45°,由折叠知:∠1=∠2=22.5°,∠BEC =∠CEN,BE =EN,∴∠BEC =90°-∠1=67.5°,∴∠AEN =180°-∠BEC -∠CEN =45°,∴cos45°=22ENAE ,2AE EN,2AE AE BE EN;(3)四边形EMGF 是矩形.理由如下:∵四边形ABCD 是正方形,∴∠B =∠BCD =∠D =90°,由折叠可知:∠1=∠2=∠3=∠4,CM =CG,∠BEC =∠NEC =∠NFC =∠DFC,∴∠1=∠2=∠3=∠4=°904=22.5°,∴∠BEC =∠NEC =∠NFC =∠DFC =67.5°,由折叠知:MH,GH 分别垂直平分EC,FC,∴MC =ME,GC =GF.∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF =∠GFE =90°.∵∠MCG =90°,CM =CG,∴∠CMG =45°,又∵∠BME =∠1+∠5=45°,∴∠EMG =180°-∠CMG -∠BME =90°,∴四边形EMGF 是矩形; (3)答案不唯一,画出正确的图形(一个即可).菱形FGCH (或菱形EMCH )。
第二节 平移与旋转以三角形旋转题.,河北五年中考真题及模拟)图形平移的相关计算1.(2019保定中考模拟)边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速平移穿过大正方形,如图反映了这个运动的全过程.设小正方形的运动时间为t ,两正方形重叠部分为s ,则s 与t 的函数图像大约为( B ),A) ,B) ,C) ,D)2.(2019保定十七中一模)如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于__4或8__.图形旋转的相关计算3.(2019沧州十三中一模)如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B 的度数是( B )A .70°B .65°C .60°D .55°4.(2019张家口中考模拟)如图,线段OA 垂直射线OB 于点O ,OA =4,⊙A 的半径是2.将OB 绕点O 沿顺时针方向旋转,当OB 与⊙A 相切时,OB 旋转的角度为__60°或120°__.,(第4题图)) ,(第5题图))5.(2019邯郸中考模拟)如图所示,在正方形ABCD 中,AD =1,将△ABD 绕点B 顺时针旋转45°得到△A ′BD ′,此时A ′D ′与CD 交于点E ,则DE 的长度为.6.(2019河北中考)如图,△ABC 中,AB =AC ,∠BAC ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F.(1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.解:(1)根据图形旋转的性质可得△ABC≌△ADE,且AB =AC ,∴∠BAC =∠DAE,AB =AC =AD =AE.∵∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD =∠CAE,在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE,AD =AE ,∴△ABD ≌△ACE(SAS);(2)根据图形旋转的性质可知,∠CAE =100°,且AC =AE ,∴∠ACE =∠AEC=(180°-100°)÷2=40°,∴∠ACE 的度数为40°;(3)∵∠BAC =∠ACE=40°,∴BA ∥CE.由(1)知∠ABD =∠ACE=40°,∠BAE =∠BAC+∠CAE=140°,∴∠BAE +∠ABD=180°,∴AE ∥BD.∴四边形ABFE 是平行四边形.又∵AB=AE ,∴平行四边形ABFE 是菱形.,中考考点清单)图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离. 3.性质:(1)平移前后,对应线段__平行且相等__、对应角相等; (2)各对应点所连接的线段平行(或在同一条直线上)且相等; (3)平移前后的图形全等. 4.作图步骤:(1)根据题意,确定平移的方向和平移的距离; (2)找出原图形的关键点;(3)按平移方向和平移距离、平移各个关键点,得到各关键点的对应点; (4)按原图形依次连接对应点,得到平移后的图形.图形的旋转5.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.6.三大要素:旋转中心、旋转方向和__旋转角度__. 7.性质:(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前后的图形全等. 8.作图步骤:(1)根据题意,确定旋转中心、旋转方向及旋转角; (2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点; (4)按原图形依次连接对应点,得到旋转后的图形. 【方法技巧】坐标系中的旋转问题:1.关于原点对称的点的坐标的应用.其基础知识为:点P(x ,y)关于原点对称点的坐标为(-x ,-y),在具体问题中一般根据坐标特点构建方程组来求解,常用到的关系式:点P(a ,b),P 1(m ,n)关于原点对称,则有⎩⎪⎨⎪⎧a +m =0,b +n =0.2.坐标系内的旋转作图问题.与一般的旋转作图类似,其不同点在于若是作关于原点的中心对称图形,可以根据点的坐标规律,直接在坐标系内找到对应点的坐标,描点后连线.,中考重难点突破)图形平移的相关计算【例1】如图,已知△ABC 的面积为3,且AB =AC ,现将△ABC 沿CA 方向平移CA 长度得到△EFA.(1)求四边形CEFB 的面积;(2)试判断AF 与BE 的位置关系,并说明理由; (3)若∠BEC =15°,求AC 的长.【解析】(1)根据平移的性质和平行四边形的性质可得S △EFA =S △BAF =S △ABC =3,进而求即可;(2)容易证▱EFBA 为菱形,再据菱形的对角线的性质可得AF 与BE 的位置关系;(3)过点B 作高,用面积法求解即可.【答案】解:(1)由平移的性质得:AF∥BC 且AF =BC ,△EFA ≌△ABC ,∴四边形AFBC 为平行四边形.∴S △EFA =S △BAF =S △ABC =3.∴四边形CEFB 的面积为9;(2)BE⊥AF.理由如下:由(1)知四边形AFBC 为平行四边形,∴BF ∥AC 且BF =CA.又∵AE=CA ,∴BF ∥AE 且BF =AE .∴四边形EFBA 为平行四边形.又∵AB=AC ,∴AB =AE.∴▱EFBA 为菱形,∴BE ⊥AF ;(3)过点B 作BD⊥AC 于点D ,∠BAC =∠ABE+∠AEB=15°×2=30°.在Rt △ABD 中,sin30°=BDAB=12,故AB =2BD =AC.S △ABC =12AC ·BD =12AC ·12AB =14AC 2=3,∴AC =2 3.1.(泉州中考)如图,△ABC 沿着由点B 到E 的方向,平移到△DEF,已知BC =5,EC =3,那么平移的距离为( A )A .2B .3C .5D .7图形旋转的相关计算【例2】如图①,在△ABC 中,AB =AC ,∠BAC =90°,D ,E 分别是AB ,AC 边的中点.将△ABC 绕点A 顺时针旋转α角(0°<α<180°),得到△AB ′C ′(如图②).(1)探究DB ′与EC′的数量关系,并给予证明; (2)当DB ′∥AE 时,试求旋转角α的度数.【解析】(1)由于AB =AC ,∠BAC =90°,D ,E 分别是AB ,AC 边的中点,则AD =AE =12AB ,再根据旋转的性质得到∠B′AD=∠C′AE=α,AB ′=AB ,AC ′=AC ,则AB′=AC′,根据三角形全等的判定方法可得到△B′AD≌△C′AE(SAS),则有DB ′=EC′;(2)由于DB′∥AE,根据平行线的性质得到∠B ′DA =∠DAE =90°,又因为AD =12AB =12AB ′,根据含30°的直角三角形三边的关系得到∠AB ′D =30°,利用互余即可得到旋转角∠B ′AD 的度数.【答案】解:(1)DB ′=EC′.证明如下:∵AB=AC ,∠BAC =90°,D ,E 分别是AB ,AC 边的中点,∴AD =AE =12AB.∵△ABC 绕点A 顺时针旋转α角(0°<α<180°)得到△AB ′C ′,∴∠B ′AD =∠C′AE=α,AB ′=AB ,AC ′=AC ,∴AB ′=AC′,在△B′AD 和△C′AE 中,⎩⎪⎨⎪⎧AB′=AC′,∠B ′AD =∠C′AE,AD =AE ,∴△B ′AD ≌△C ′AE(SAS),∴DB ′=EC′;(2)∵DB′∥AE,∴∠B ′DA =∠DAE=90°.在Rt△B ′DA 中,∵AD =12AB ′,∴∠AB ′D =30°,∴∠B ′AD =90°-30°=60°,即旋转角α的度数为60°.2.(2019石家庄四十二中三模)如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A(-2,3),B(-1,2),C(-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为________;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标. 解:(1)如图所示;(2)132π; (3)∵点B ,B 1在y 轴两旁,连接BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B+D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的表达式为y =kx +b ,依据题意,得⎩⎪⎨⎪⎧-k +b =2,2k +b =1,解得⎩⎪⎨⎪⎧k =-13,b =53.∴y =-13x +53,∴D ⎝ ⎛⎭⎪⎫0,53.2019-2020学年数学中考模拟试卷一、选择题1.一个数和它的倒数相等,则这个数是()A.1 B.-1 C.±1D.±1和02.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>b B.a=b>0 C.ac>0 D.|a|>|c|3.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A. B.C.D.4.抛物线y=x2向下平移一个单位,向左平移两个单位,得到的抛物线关系式为()A.y=x2+4x+3 B.y=x2+2x﹣1 C.y=x2+2x D.y=x2﹣4x+35.下列运算正确的是()A.a2×a3=a6B.a2+a2=2a4C.a8÷a4=a4D.(a2)3=a56.有一张矩形ABCD的纸片(AB<BC),按如图所示的方式,在A,C两端截去两个矩形AEFG和CE′F′G′,且AE=CE′,AG=CG′,再分别过EF,FG,E′F′,F′G′四边的中点,沿平行于原矩形各边的方向剪裁,得到如图的阴影部分,分别记为L1,L2.若L1的周长是矩形ABCD的34,L2的周长是矩形ABCD的35,则AEAG的值为()A.54B.85C.32D.20971,0( )AB .﹣1C .0D 8.某足球生产厂计划生产4800个足球,在生产完1200个后,采用了新技术,工作效率比原计划提高了20%,结果共用了21天完成全部任务.设原计划每天生产x 个足球,根据题意可列方程为( ) A .12004800(120%)x ++=21 B .120048001200(120%)x x -++=21 C .12004800120020%x x-+=21 D .480048001200(120%)x x-++=21 9.如表是小明同学参加“一分钟汉字听写”训练近6次的成绩:则这组数据的平均数和中位数分别是( ) A .245个、244个 B .244个、244个 C .244个、241.5个D .243个、244个10.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=10,则AD 的长度可以是( )A.2B.7C.8D.1011.一组数1,1,2,3,5,8,13是“斐波那契数列”的一部分,若去掉其中的两个数后这组数的中位数、众数保持不变,则去掉的两个数可能是( ) A .2,5B .1,5C .2,3D .5,812.“定西市乒乓球夏令营”开始在学校报名了,已知甲、乙、丙三个夏令营组人数相等,且每组学生的平均年龄都是14岁,三个组学生年龄的方差分别是2S 甲=17,2S 乙=14.6,2S 丙=19,如果今年暑假你也准备报名参加夏令营活动,但喜欢和年龄相近的同伴相处,那么你应选择( ) A .甲组 B .乙组C .丙组D .采取抽签方式,随便选一个二、填空题13.如图,点A 是双曲线6y x=-在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰ABC △,且120ACB ∠=︒,点C 在第一象限,随着点A 的运动点C 的位置也不断变化,但点C 始终在双曲线ky x=上运动,则k 的值为________.14.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =8,EB =2,则⊙O 的半径为_____.15.如图,在△ABO 中,∠ABO =90°,点A 的坐标为(3,4).写出一个反比例函数y =kx(k≠0),使它的图象与△ABO 有两个不同的交点,这个函数的表达式为_____.16.如果点(m ,﹣2m )在双曲线ky x=上,那么双曲线在_____象限. 17.如图,在△ABC 中,DE ∥BC ,AD :DB=1:2,DE=2,则BC 的长是 .18.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱:若每人出7钱,还差3钱.则合伙人数为_____人;羊价为_____钱. 三、解答题19.如图,在ABC △中,AB AC =,以AB 为直径的⊙O 分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥,垂足为点H ,连接DE ,交AB 于点F .(1)求证:DH 是⊙O 的切线;(2)若⊙O 的半径为4,①当AE FE =时,求AD 的长(结果保留π);②当sin 4B =时,求线段AF 的长.20.如图,正方形网格中,△ABC 为格点三角形(顶点都在格点上)(1)作出△ABC 绕点A 逆时针旋转90°后的△AB 1C 1;将△ABC 向上平移3格,在向左平移4格得到△A 2B 2C 2;(2)设小正方形的边长为1,求出△ABC 旋转到△AB 1C 1的过程中AB 所扫过的面积(结果保留π)21.已知:如图,在平行四边形中,点E 在BC 边上,连接AE .O 为AE 中点,连接BO 并延长交AD 于F .(1)求证:△AOF ≌△BOE ,(2)判断当AE 平分∠BAD 时,四边形ABEF 是什么特殊四边形,并证明你的结论.22.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm ,箱底端点E 与墙角G 的距离为65cm ,∠DCG=60°.(1)箱盖绕点A 转过的角度为______,点B 到墙面的距离为______cm ;(2)求箱子的宽EF (结果保留整数,可用科学计算器).=1.41=1.73)23.如图,某学校甲楼的高度AB 是18.6m ,在甲楼楼底A 处测得乙楼楼顶D 处的仰角为40,在甲楼楼顶B 处测得乙楼楼顶D 的仰角为19,求乙楼的高度DC 及甲乙两楼之间的距离AC (结果取整数).参考数据:cos190.95≈,tan190.34≈,cos400.77≈,tan 400.84≈.24.先化简,再求值222221b a ab a b a b a 2ab b-⎛⎫-÷ ⎪---+⎝⎭,其中a=2sin45°,25.计算:11|2|3-⎛⎫-- ⎪⎝⎭.【参考答案】*** 一、选择题二、填空题 13.2 14.515.答案不唯一,如:2y x=; 16.二.四; 17. 18.150 三、解答题19.(1)见解析;(2)①AD的长=85;②AF=43.【解析】【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)①根据等腰三角形的性质的∠EAF=∠EAF,设∠B=∠C=α,得到∠EAF=∠EFA=2α,根据三角形的内角和得到∠B=36°,求得∠AOD=72°,根据弧长公式即可得到结论;②连接AD,根据圆周角定理得到∠ADB=∠ADC=90°,解直角三角形得到AD=的性质得到AH=3,于是得到结论.【详解】(1)连接OD,如图,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴AD 的长=72481805ππ⋅⨯=; ②连接AD , ∵AB 为⊙O 的直径,∴∠ADB =∠ADC =90°,∵⊙O 的半径为4,∴AB =AC =8,∵sin B =,∴8AD =,∴AD =,∵AD ⊥BC ,DH ⊥AC ,∴△ADH ∽△ACD , ∴AH AD AD AC=,=, ∴AH =3,∴CH =5,∵∠B =∠C ,∠E =∠B ,∴∠E =∠C ,∴DE =DC ,∵DH ⊥AC ,∴EH =CH =5,∴AE =2,∵OD ∥AC ,∴∠EAF =∠FOD ,∠E =∠FDO ,∴△AEF ∽△ODF , ∴AF AE OF OD =, ∴244AF AF =-, ∴AF =43. 【点睛】本题考查了等腰三角形的性质和判定、切线的性质和判定、三角形相似的性质和判定、圆周角定理,正确的作出辅助线是解题的关键.20.(1)见解析;(2)254 Sπ=【解析】【分析】(1)根据旋转的性质及平移的性质画出△AB1C1,△A2B2C2即可.(2)利用扇形的面积公式计算即可.【详解】(1)△AB1C1,△A2B2C2如图所示.(2)2905253604Sππ==.【点睛】本题考查作图-旋转变换,平移变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)求证:见解析;(2)四边形ABEF是菱形,见解析.【解析】【分析】(1)先利用平行四边形的性质得AD∥BC,则∠AFB=∠CBF,然后根据“AAS”可判断△AOF≌△BOE;(2)利用△AOF≌△BOE得到FO=BO,则可根据对角线互相平分可判定四边形ABEF是平行四边形,根据AE平分∠BAD,得∠BAE=∠FAE,又∠FAE=∠AEB,得∠BAE=∠AEB,AB=BE,有一组对边相等的平行四边形是菱形,得四边形ABEF是菱形.【详解】(1)∵O为AE中点,∴AO=EO,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠AFB=∠CBF,在△AOF 和△BOE 中AFO EBO AOF EOB AO EO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△BOE ;(2)四边形ABEF 是菱形,理由如下:∵△AOF ≌△BOE ,∴FO =BO ,而AO =EO ,∴四边形ABEF 是平行四边形,∵AE 平分∠BAD ,∴∠BAE =∠FAE ,∵∠FAE =∠AEB ,∴∠BAE =∠AEB ,∴AB =BE ,∴四边形ABEF 是菱形.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质,菱形的判定等,熟练掌握相关的性质与判定定理是解题的关键.22.(1)150°;5(2)32.4cm【解析】【分析】(1)如图,过点B 作BH ⊥CG 于H ,过点D 作CG 的垂线MN 交AF 于M ,交HG 于N .利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A 转过的角度;通过解直角△BHC 来求BH 的长度;(2)通过解直角△AMD 得到线段MD 的长度,则DN=65-EF-DM ,利用解直角△DCN 来求CD 的长度,即EF 的长度即可.【详解】(1)如图,过点B 作BH ⊥CG 于H ,过点D 作CG 的垂线MN 交AF 于M ,交HG 于N .∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD 是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A 转过的角度为:360°-90°-30°-90°=150°.在直角△BCH 中,∠BCH=30°,BC=10cm ,则BH=12BC=5cm . 故答案是:150°;5;(2)在直角△AMD 中,AD=BC=10cm ,∠MAD=30°,则MD=AD•sin30°=12×10=5(cm ). ∵∠CDN=30°,∴cos ∠CDN=cos30°=655DN EF DC EF --=,即655EF EF --= 解得EF=32.4.即箱子的宽EF 是32.4cm .【点睛】本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.23.乙楼的高度DC 约为31m ,甲乙两楼之间的距离AC 约为37m.【解析】【分析】过点B 作BE CD ⊥,垂足为点E ,从而判定四边形ABEC 是矩形,得到AB CE =,AC BE =设甲乙两楼之间的距离为x m,在直角三角形BDE 与直角三角形DAC 中,利用三角函数即可用x 表示出DE 与DC ,根据DC DE CE -=,列出方程解之即可.【详解】解:过点B 作BE CD ⊥,垂足为点E ,可知BAC ACE BEC 90∠∠∠===︒.∴四边形ACEB 是矩形.∴AB CE =,AC BE =.设甲乙两楼之间的距离为x m.则BE AC x ==,在Rt DBE 中,DBE 19∠=︒,DE tan DBE BE ∠=. ∴DE BE tan DBE x tan19∠=⋅=⋅︒.在Rt DAC 中,DAC 40∠=︒,DC tan DAC AC∠=. ∴DC AC tan DAC x tan DAC x tan40∠∠=⋅=⋅=⋅︒.∵DC DE CE -=,∴x tan40x tan1918.6⋅︒-⋅︒=.∴0.84x 0.34x 18.6-≈.解得x 37.2≈.∴AC 37≈.DE x tan4037.2.8431=⋅︒≈⨯≈.答:乙楼的高度DC 约为31m ,甲乙两楼之间的距离AC 约为37m.【点睛】本题考查了解直角三角形的应用,解题的关键是从复杂的实际问题中整理出直角三角形并选择合适的边角关系列出方程.24.6【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=()()a b b a b a b +-+-•()2(a b)a a b --=1a b +,当a=2×2,=6. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.5【解析】【分析】原式利用算术平方根定义,负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【详解】原式=4+3﹣2=5.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.若△ABC 的每条边长增加各自的50%得△A'B'C',若△ABC 的面积为4,则△A'B'C'的面积是( )A.9B.6C.5D.2 2.已知二次函数y =x 2﹣3x+m(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2﹣3x+m =0的两实数根是( )A .x 1=1,x 2=﹣1B .x 1=1,x 2=3C .x 1=1,x 2=2D .x 1=1,x 2=3 3.下列所述图形中,是中心对称图形,但不是轴对称图形的是A .正三角形B .平行四边形C .正五边形D .圆4.如果,.那么代数式的值是( ) A.-1 B.1 C.-3 D.3 5.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为( )A .13410⨯千米B .12410⨯千米C .139. 510⨯千米D .129. 510⨯千米6.把直线3y x =--向上平移m 个单位后,与直线24y x =+的交点在第二象限,则m 可以取得的整数值有( )A .4个B .5个C .6个D .7个7.一元二次方程﹣x 2+2x =﹣1的两个实数根为α,β,则α+β+α•β的值为( )A .1B .﹣3C .3D .﹣18.如图,点A (m ,1),B (2,n )在双曲线k y x=(k≠0),连接OA ,OB .若S △ABO =8,则k 的值是( )A .﹣12B .﹣8C .﹣6D .﹣4 9.已知x+1x =6,则x 2+21x =( ) A.38 B.36 C.34 D.3210.如图所示,二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的图象的一部分与x 轴的交点A 在(2,0)与(3,0)之间,对称轴为直线1x =.下列结论:①0ab <;②20a b +=;③30a c +>;④()a b m am b +≥+(m 为实数);⑤当13x -<<时,0y >.其中,正确结论的个数是( )A .2B .3C .4D .511.如图,在同一直角坐标系中,函数y kx =与()0k y k x=≠的图象大致是( ).A .①②B .①③C .②④D .③④12.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2015次相遇在( )边上.A.ADB.DCC.BCD.AB二、填空题 13.一个矩形的面积为,若一边长为,则另一边长为___________.14.如图,已知正方形ABCD ,点M 是边BA 延长线上的动点(不与点A 重合),且AM <AB ,△CBE 由△DAM 平移得到.若过点E 作EH ⊥AC ,H 为垂足,则有以下结论:①点M 位置变化,使得∠DHC=60°时,2BE=DM ;②无论点M 运动到何处,都有HM ;③无论点M 运动到何处,∠CHM 一定大于135°.其中正确结论的序号为_____.15.(2017辽宁省盘锦市,第18题,3分)如图,点A 1(1,1)在直线y=x 上,过点A 1分别作y 轴、x轴的平行线交直线2y x =于点B 1,B 2,过点B 2作y 轴的平行线交直线y=x 于点A 2,过点A 2作x 轴的平行线交直线2y x =于点B 3,…,按照此规律进行下去,则点A n 的横坐标为______.16.甲、乙两车分别从A 、B 两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B 地后马上以另一速度原路返回A 地(掉头的时间忽略不计),乙车到达A 地以后即停在地等待甲车.如图所示为甲乙两车间的距离y (千米)与甲车的行驶时间t (小时)之间的函数图象,则当乙车到达A 地的时候,甲车与A 地的距离为_____千米.17.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.18.如图,在▱ABCD 中,AB =AD =4,将▱ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为_____.三、解答题19.在△ABC 中,AB =AC ,⊙O 经过点A 、C 且与边AB 、BC 分别交于点D 、E ,点F 是AC 上一点,»»DE AF =,连接CF 、AF 、AE .(1)求证:△ACF ≌△BAE ;(2)若AC 为⊙O 的直径,请填空:①连接OE、DE,当△ABC的形状为时,四边形OADE为菱形;②当△ABC的形状为时,四边形AECF为正方形.20.已知:如图①,将∠D=60°的菱形ABCD沿对角线AC剪开,将△ADC沿射线DC方向平移,得到△BCE,点M为边BC上一点(点M不与点B、点C重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.(1)①求证:∠ANB=∠AMC;②探究△AMN的形状;(2)如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.21.飞机飞行需加适量燃油,既能飞到目的地,又使着陆时飞机总重量(自重+载重+油重)不超过它的最大着陆重量,否则飞机需通过空中放油(如图1)减重,达标后才能降落.某客机的主要指标如图2,假定该客机始终满载飞行且它的加油量要使它着陆时的总重量恰好达到135 t.例如,该客机飞1 h 的航班,需加油1×5+(135-120)=20 t.(1)该客机飞3 h的航班,需加油 t;(2)该客机飞x h的航班,需加油y t,则y与x之间的函数表达式为;(3)该客机飞11 h的航班,出发2 h时有一位乘客突发不适,急需就医.燃油有价,生命无价,机长决定立刻按原航线原速返航,同时开始以70 t/h的速度实施空中放油.①客机应放油 t;②设该客机在飞行x h时剩余燃油量为R t,请在图3中画出R与x之间的函数图像,并标注必要数据.22.今年省城各城区相继召开了创建全国文明城市推进大会.某校为了将“创城”工作做到更好,教务处、团委和体育组联合组织成立三个新社团,分别是篮球社团、排球社团、足球社团,经统计,将七、八年级同学报名情况绘制了下面不完整的统计图.请解答下列问题:(1)七、八年级新社团的报名总人数是;(2)请你把条形统计图补充完整;(3)在扇形统计图中,表示“排球”的扇形圆心角度数为;(4)从报名八年级足球社团的学生“张明”“李力”“王华”3人中选取其中两人去参加学校的社团年度表彰会,请用树状图或列表法求出“张明”和“王华”一起被选中的概率是多少?23.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.24.在一次数学考试中,小明有一道选择题(只能在四个选项A 、B 、C 、D 中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是 ;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷的过程中,发现学生的错误率较高.他想:若这10道选择题都是靠随机选择答案,则这10道选择题全对的概率是 .25.先化简,再求值:2221(1)244x x x x x +++÷--+,其中x =3.【参考答案】***一、选择题二、填空题13.2a +.14.①②③15.1(3n -. 16.63017.2018.3三、解答题19.(1)详见解析;(2)①等边三角形;②当△ABC 是等腰直角三角形时,四边形AECF 为正方形.【解析】【分析】(1)由圆的内接四边形性质可得CFA AEB ∠∠=,由“AAS ”可证ACF BAE ∆∆≌;(2)① 四边形OADE 为菱形,可得OA OE DE AD ===,可得AOD DOE ∆∆, 都是等边三角形,可求120AOE ∠︒=,可得60ACB ∠︒=,即可求解;② 四边形AECF 为正方形,90FCE FAE F AF CF ∠︒∠∠===,=,可证ACF BAE ∆∆≌,可得45EAD FCA ∠∠︒==,可得90CAB ∠︒=,即可求解. 【详解】证明:(1)∵四边形AECF 是圆内接四边形CFA AEB ∴∠∠=DE AF =ACF DAE CFA AEB AB AC ∴∠∠∠∠=,且=,=ACF BAE AAS ∴∆∆≌()(2)①如图:若四边形OADE 为菱形;OA OE DE AD ∴===OA OD AD OE OD DE ∴==,==AOD DOE ∴∆∆, 都是等边三角形60AOD DOE ∴∠∠︒==120AOE ∴∠︒=2AOE ACB ∠∠=60ACB AC AB ∴∠︒=,且=∴△ABC 是等边三角形,∴当△ABC 是等边三角形时,四边形OADE 为菱形;故答案为:等边三角形②若四边形AECF 为正方形,90FCE FAE F AF CF ∴∠︒∠∠===,=45FAC FCA CAE ∴∠∠︒∠===ACF BAE ∆∆≌45EAD FCA ∴∠∠︒==90∴∠︒=,且=,CAB AC AB∴△ABC是等腰直角三角形,∴当△ABC是等腰直角三角形时,四边形AECF为正方形,【点睛】本题主要考查了圆的综合,全等三角形的判定和性质,菱形的性质,正方形的性质,圆的有关知识,熟练运用这些性质进行推理是解题关键.20.(1)①证明见解析;②△AMN是等边三角形,理由见解析;(2)见解析.【解析】【分析】(1)①先由菱形可知四边相等,再由∠D=60°得等边△ADC和等边△ABC,则对角线AC与四边都相等,利用ASA证明△ANB≌△AMC,得结论;②根据有一个角是60°的等腰三角形是等边三角形得出:△AMN是等边三角形(2)①成立,根据正方形得45°角和射线AM绕点A逆时针旋转45°,证明△ANB∽△AMC,得∠ANB=∠AMC;②不成立,△AMN是等腰直角三角形,利用①中的△ANB∽△AMC,得比例式进行变形后,再证明△NAM∽△BAD,则△AMN是等腰直角三角形【详解】(1)如图1,①∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠D=60°,∴△ADC和△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠NAM=60°,∴∠NAB=∠CAM,由△ADC沿射线DC方向平移得到△BCE,可知∠CBE=60°,∵∠ABC=60°,∴∠ABN=60°,∴∠ABN=∠ACB=60°,∴△ANB≌△AMC,∴∠ANB=∠AMC;②如图1,△AMN是等边三角形,理由是:由∴△ANB≌△AMC,∴AM=AN,∵∠NAM=60°,∴△AMN是等边三角形;(2)①如图2,∠ANB=∠AMC成立,理由是:在正方形ABCD中,∴∠BAC=∠DAC=∠BCA=45°,∵∠NAM=45°,∴∠NAB=∠MAC,由平移得:∠EBC=∠CAD=45°,∵∠ABC=90°,∴∠ABN=180°﹣90°﹣45°=45°,∴∠ABN=∠ACM=45°,∴△ANB∽△AMC,∴∠ANB=∠AMC;②如图2,不成立,△AMN是等腰直角三角形,理由是:∵△ANB∽△AMC,∴AN AB AM AC=,∴AN AMAB AC=,∵∠NAM=∠BAC=45°,∴△NAM∽△BAC,∴∠ANM=∠ABC=90°,∴△AMN是等腰直角三角形.【点睛】此题考查四边形综合题,运用了菱形的性质,三角形全等,三角形相似,解题关键在于合理运用各种性质进行证明和计算21.(1)30;(2)y=5x+15.(3)①35;②见解析【解析】【分析】(1)根据题意列式解答即可;(2)根据飞机油耗5t/h可得y与x的关系式;(3)①根据题意列式解答即可;②根据题意画图即可.【详解】解:(1)客机飞3h的航班,需加油3×5+(135-120)=30t.故答案为:30;(2)根据飞机油耗5t/h可得:y=5x+15.故答案为:y=5x+15;(3)①客机应放油:5×(11-2×2)=35(t).故答案为:35;②如图所示,【点睛】本题考查了一次函数的应用,解题的关键是根据数量关系,找出函数关系式.22.(1)120人;(2)补全图形见解析;(3)108°;(4)“张明”和“王华”一起被选中的概率为13.【解析】【分析】(1)由篮球的总人数及其所占百分比可得答案;(2)求出八年级排球人数、七年级足球人数,继而补全图形即可得;(3)用360°乘以排球对应的百分比即可得;(4)画树状图列出所有等可能结果,再从中找出符合条件的结果数,继而根据概率公式计算可得.【详解】(1)七、八年级新社团的报名总人数是(36+24)÷50%=120(人),故答案为:120人;(2)八年级排球人数为120×30%﹣16=20(人),七年级足球人数为120×20%﹣12=12(人), 补全图形如下:(3)在扇形统计图中,表示“排球”的扇形圆心角度数为360°×30%=108°,故答案为:108°;(4)画树状图如下:由树状图知,共有6种等可能结果,其中“张明”和“王华”一起被选中的有2种结果, 所以“张明”和“王华”一起被选中的概率为2163=. 【点睛】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,由图形获取正确信息是解题关键.23.(1)详见解析;(2)详见解析.【解析】【分析】(1)由“AAS ”可证AED CEF ∆≅∆,可得DE EF =;(2)由直角三角形的性质可得CD AD =,由对角线互相平分的四边形是平行四边形可证四边形ADCF 是平行四边形,即可证四边形ADCF 是菱形.【详解】(1)证明:∵CF AB ∥ ,∴DAC ACF ∠∠=,又∵AE EC AED CEF ∠∠=,= ,∴AED CEF AAS ≌(), ∴DE EF =.(2)∵90ACB ∠︒=,D 是AB 的中点,∴CD AD =∵DE EF AE EC =,=∴四边形ADCF 是平行边形又∵AD CD =∴四边形ADCF 是菱形.【点睛】本题考查了菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.24.(1)14;(2)116;(3)1014. 【解析】【分析】(1)错误答有3个,除以答案总数4即可(2)根据题意画出树状图即可知道一共有16种情况,选出两题都错的情况,即可解答(3)由(2)可知两题都对的概率为(14)2,10道选择题全对的概率是10个14的乘积 【详解】(1)∵只有四个选项A 、B 、C 、D ,对的只有一项, ∴答对的概率是14 ; 故答案为:14; (2)根据题意画图如下:共有16种等情况数,两题都答对的情况有1种, 则小亮两题都答对概率是116; (3)由(2)得2道题都答对的概率是(14)2,则这10道选择题全对的概率是(14)10=1014. 故答案为:1014. 【点睛】 此题考查概率公式和列表法与树状图法,解题关键在于看懂题中数据25.3。