新人教版初中八年级数学下册19.2.2 第2课时 一次函数的图象与性质学案
- 格式:doc
- 大小:1.16 MB
- 文档页数:4
部审人教版八年级数学下册说课稿19.2.2 第2课时《一次函数的图象与性质》一. 教材分析《一次函数的图象与性质》是人教版八年级数学下册第19.2.2节的内容,本节课是在学生已经掌握了函数的概念、一次函数的定义和表达式的基础上进行学习的。
教材通过具体的实例,引导学生探究一次函数的图象与性质,从而使学生能够更好地理解和运用一次函数。
本节课的主要内容包括:一次函数的图象、一次函数的性质、一次函数的应用。
通过本节课的学习,学生应该能够掌握一次函数的图象与性质,并能运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了函数的概念、一次函数的定义和表达式,对函数有一定的认识。
但是,学生对一次函数的图象与性质的理解可能还存在一定的困难,需要通过实例和实践活动来加深理解。
此外,学生的数学思维能力和解决问题的能力不同,因此在教学过程中,需要关注学生的个体差异,引导不同水平的学生都能够积极参与学习,提高他们的数学素养。
三. 说教学目标1.知识与技能目标:学生能够理解一次函数的图象与性质,并能运用一次函数解决实际问题。
2.过程与方法目标:学生通过观察、操作、探究等活动,培养观察能力、动手能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与学习,增强对数学的兴趣和自信心,培养合作意识。
四. 说教学重难点1.教学重点:一次函数的图象与性质。
2.教学难点:一次函数的图象与性质的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、小组合作法等,引导学生主动探究,提高学生的参与度和积极性。
2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学,使抽象的数学概念形象化、直观化。
六. 说教学过程1.导入:通过复习函数的概念和一次函数的定义,引导学生回顾已学知识,为新课的学习做好铺垫。
2.探究一次函数的图象:让学生观察多媒体课件中的实例,引导学生发现一次函数的图象是一条直线,并分析直线的特点。
人教版八年级下第19章第二节________ 1922 —次函数(2)《一次函数的图像和性质》教学设计一、教学目标1.掌握一次函数图象及其画法,理解一次函数的性质;2.体会数形结合思想、分类讨论思想在分析问题和解决问题中的作用;3.体会从特殊到一般的研究问题的方法;4.提高学生动手实践的能力和与他人交流合作的意识.二、教学重点掌握一次函数的图象和性质。
三、教学难点理解一次函数的图象和性质,并能灵活应用.四、教学方法教师启发与学生自主探究相结合五、教学手段利用多媒体等教学手段六、过程设计的图象2•结合学过的函数y=x的图象,比较两个函数的解析式,你能说明函数y=x・2的图象为什么是直线吗?3.如何由函数y二x的图象得到函数y =x • 2的图象?4.一次函数y = kx • b的图象是什么形状,由直线y = kx可经过怎样的变换得到直线y 二kx b ?例画出函数y = x-2的图象5.画一次函数y = kx b的图象有哪些方法?活动3 :自主实践,深入研究在同一直角坐标系中画出以下函数的图象y=xT , y_-x-1 ,学生通过观察、比较得到函数y =x与y =x •2的图象之间的关系.学生讨论函数y = kx • b与y二kx图象的关系并发表自己的看法.教师利用《几何画板》进行演示.师生一起总结得到:(1) 一次函数y二kx • b的图象是一条直线;(2)由直线y =kx平移|b |个单位长度得到直线y = kx • b(当b 0时,向上平移;当b : 0时,向下平移).学生画图,交流画法,并总结画一次函数y = kx • b的图象的方法.在本次活动中教师应重点关注:(1)学生在描点画图的过程中,是否注意两个函数图象的关系;(2)学生能否通过函数解析式(数)对“平移”(形)作出解释;一位学生利用实物投影仪展示,并谈谈自己的画法.分析每条直线的变化趋势,观察k的正负对函数图象变化趋势的影响,让学生在动手操作的过程中从“形”的角度感知一次函数的图象的形状.让学生在描点的过程中感受正比例函数与一次函数图象之间的位置关系.(2)引导学生通过比较解析式,发现两个解析式仅在常数项上有区别,其他部分完全相同,因此,对于自变量的任一值,这两个函数相应的值总差同一个常数.这反映在图象上,就是在横坐标相同的情况下,两个函数图象上对应的纵坐标总差同一个值,即将正比例函数的图象经过向上或向下的平移得到相应的一次函数的图象.由此,引导学生从“数”的角度认识一次函数图象,进而在理解正比例函数图象的基础上来认识一般的一次函数的图象.(4)将以前学过的平移与现在讨论的函数图象联系起来,增强学生对函数y=kx,b与函数y = kx的认识,让学生体会数形结合思想的应用.(5)通过展示学生的不同画法,找到简便的画法,让学生感受到数学的简洁美.(1)通过动手实践,巩固两点法画图的方法,让学生通过观察直观地得到一次函数的y随x 的变化而变化的情况以及k的正y =0.5x —1, y = —2x —1 ;观察上面四个一次函数的图象,探究一次函数y = kx +b中k 的正负对函数图象有什么影响,并在此基础上表述函数的性质. 进而总结函数性质.当k >0时,直线y =kx +b从左向右上升,y随x的增大而增大;当kcO时,直线y = kx+b从左向右下降,y随x的增大而减小.在本次活动中教师应重点关注:(1)学生在用两点法画图时是否能选择合适的点;(2)学生是否注意到一次函数的性质与k有关,且与正比例函数的性质相同(3)学生从“数”与“形”两个方面去理解和掌握一次函数的性质.负对函数图象的影响,培养学生观察分析的能力和从图象中获取信息的能力.(2)通过类比正比例函数的性质,加深对一次函数的y随x 的变化而变化的情况的理解.(3)让学生经历画图类比一一归纳的数学活动过程.活动4:反馈练习,夯实基础1.直线y = 2x -3与x轴交点坐标为,与y轴交点坐标为,图象经过第象限,y随x的增大而2 .函数y = -3x - 2随x的增大而.它的图象可由直线y = -3x向平移个单位得到.学生独立完成,教师巡视,了解学生对知识的掌握情况.师生共评,及时纠正学生的错误.在本次活动中教师应重点关注:(1)学生在练习中反映出的问题,有针对性地讲解;(2)学生对数形结合思想和分类讨论思想的掌握与运用.通过一系列的练习,可以实现知识向能力的转化.学生在尝试运用一次函数的图象和性质解决问题的过程中,进一步加深了对一次函数的图象和性质的理解.同时训练学生运用数形结合思想解决问题的意识和能力.活动5 :小结评价,畅谈收获通过这节课的学习,你有什么收获?教师引导学生归纳总结本节课所学的知识.在本次活动中教师应重点关注:课堂小结不仅可以使学生从总体上把握知识,强化对知识的理解和记忆,还可以培养学生的数学语言表达能力.引导学生积。
人教版数学八年级下册19.2《一次函数图象与性质》教案一. 教材分析《一次函数图象与性质》是初中数学的重要内容,通过本节课的学习,使学生能够理解一次函数的图象和性质,能够运用一次函数解决实际问题。
本节课的内容在教材中起到承上启下的作用,为后续学习二次函数、反比例函数等函数内容奠定基础。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的定义,对函数有了初步的认识。
但学生在理解一次函数的图象和性质方面还存在一定的困难,需要通过实例分析,引导学生深入理解一次函数的图象和性质。
三. 教学目标1.了解一次函数的图象特征,能够描述一次函数图象的形状和位置。
2.理解一次函数的性质,能够解释一次函数图象的变换。
3.能够运用一次函数解决实际问题,提高学生的数学应用能力。
四. 教学重难点1.一次函数的图象特征和性质的理解。
2.一次函数图象的实际应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,激发学生的学习兴趣,引导学生主动探究,培养学生的数学思维能力。
六. 教学准备1.教学课件:制作一次函数图象和性质的相关课件,便于学生直观理解。
2.实例材料:准备一些实际问题,用于引导学生运用一次函数解决实际问题。
3.学生活动材料:准备一些练习题,用于学生在课堂上进行练习。
七. 教学过程1.导入(5分钟)通过复习一次函数的定义,引导学生回顾一次函数的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件展示一次函数的图象,引导学生观察图象的形状和位置,总结一次函数图象的特征。
3.操练(15分钟)通过实例分析,让学生动手操作,改变一次函数的斜率和截距,观察图象的变化,引导学生理解一次函数的性质。
4.巩固(10分钟)让学生分组讨论,总结一次函数图象和性质的关系,每个小组派代表进行汇报,教师点评并总结。
5.拓展(10分钟)让学生运用一次函数解决实际问题,如线性规划、成本计算等,提高学生的数学应用能力。
人教版数学八年级下册19.2.2第2课时《一次函数的图象与性质》教学设计一. 教材分析人教版数学八年级下册19.2.2第2课时《一次函数的图象与性质》是本节课的主要内容。
本节课主要让学生了解一次函数的图象特点,学会利用图象分析一次函数的性质,进一步理解一次函数与二元一次方程的关系。
教材通过具体的例子引导学生探究一次函数的图象与性质,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在八年级上学期已经学习了直线、射线、线段,对图象有一定的认识。
同时,他们已经掌握了二元一次方程的解法,对函数的概念也有了一定的了解。
但学生对一次函数的图象与性质的认识还不够深入,需要通过本节课的学习进一步掌握。
三. 教学目标1.理解一次函数的图象特点,学会分析一次函数的性质。
2.能够运用一次函数的性质解决实际问题。
3.提高学生的数学思维能力,培养学生的团队合作精神。
四. 教学重难点1.一次函数的图象特点及其性质。
2.一次函数与二元一次方程的关系。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生主动探究、积极思考,培养学生的数学素养。
六. 教学准备1.准备相关的教学案例和图片,用于引导学生分析一次函数的图象与性质。
2.准备一次函数的练习题,用于巩固所学知识。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过提问方式复习上节课的内容,引导学生回顾一次函数的概念。
然后,提出本节课的学习目标,让学生明确本节课要学习的内容。
2.呈现(10分钟)展示一次函数的图象,引导学生观察图象的特点,如直线、斜率等。
然后,通过具体的例子,讲解一次函数的性质,如随着自变量的增大,函数值的变化规律等。
3.操练(10分钟)让学生独立完成教材上的练习题,巩固对一次函数图象与性质的理解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)以小组合作的形式,让学生探讨一次函数与二元一次方程的关系。
每组选取一个一次函数,分析其图象与方程的对应关系。
《一次函数图像与性质》教学设计(一)内容解析函数是数学领域中最重要的内容之一,也是刻画和研究现实世界变化规律的重要模型.它反映了数量之间的对应规律,是研究数量关系的重要工具。
一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用。
一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的。
一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质。
它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础。
(二)教学目标知识与技能目标:1、会画一次函数的图象。
2、知道一次函数y=kx+b的性质。
3、了解k、b与一次函数的图象之间的关系。
4、能根据一次函数的图象与k、b的关系解决简单的问题。
过程与方法目标:1.通过画正比例函数与一次函数的图象,培养学生的动手能力;2.在一次函数的图象与性质的教学中,培养学生的观察、分析、总结、归纳的能力。
情感态度与价值观目标:向学生渗透“数形结合”及“分类讨论”的数学思想。
体会从特殊到一般的研究问题的方法,培养科学的学习方法和良好的学习习惯。
(三)目标解析1.使学生理解一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响.2.通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳k的正负对函数图象变化趋势和函数性质的影响,让学生经历知识的探究、归纳的过程,体会数形结合思想方法和分类讨论思想方法的应用,同时培养学生的观察能力和抽象概括能力.3.通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.4.在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.(四)教学重点、难点1、教学重点:一次函数的图象及性质。
19.2.2 一次函数
第2课时 一次函数的图象与性质
学习目标:
1、会画一次函数的图象;
2、理解一次函数图象的性质,了解b kx y +=中的k ,b 对函数图象的影响。
重点、难点:一次函数图象的性质 学习过程 一、复习旧知:
1、 (1)2m y m x =-+,当m= ,y 是x 的一次函数.
2、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤21
12
y x =+;⑥y=0.5x
中,属一次函数的有 ,属正比例函数的有 (填序号) 3、用描点法画函数图象的步骤是 。
二、新知探究:阅读教材,思考下列问题:
1、选择自变量的值,在同一坐标系中画出函数y=2x ,y=2x+3,y=2x-3的图象。
观察这三个图象,这三个函数图象形状都是_________,并且倾斜度_______。
从左向右 。
函数y=2x 的图象经过原点,函数y=2x+3与y 轴交于点________,即它可以看作由直线y=2x 向_____平移_____个单位长度得到;函数
y=2x-3与y轴交于点________,即它可以看作由直线y=2x向_____平移_____个单位长度得到。
6
2、适当选择自变量的值,在同一直角坐标系中函数画出y=-x,y=-x-1,y=-x+1的图象。
观察这三个图象,这三个函数图象形状都是_________,并且倾斜度_______,从左向右 。
函数y=-x 的图象经过原点,函数y=-x-1与y 轴交于点________,即它可以看作由直线y=-x 向_____平移_____个单位长度得到;同样的,函数y=-x+1与y 轴交于点________,即它可以看作由直线y=-x 向_____平移_____个单位长度得到。
三、新知归纳
1、一次函数b kx y +=(k ≠0)的图象是一条____ _。
当0>b 时,它是由直线kx y =向_____平移_____个单位长度得到; 当0<b 时,它是由直线kx y =向_____平移_____个单位长度得到。
2、一次函数b kx y +=(k ≠0)的性质:
(1)当0>k 时,y 随x 的增大而_______,这时函数的图象从左到右_______; (2)当0<k 时,y 随x 的增大而_______,这时函数的图象从左到右_______; 3、一次函数图象的画法:一次函数b kx y +=(k ≠0)的图象是一条直线,因此画它们的图象时,只需要确定两点,通常选取坐标较“简单”的点,如(0, )与( ,0)
四、课堂练习
1、直线y=2x-3与y 轴交点坐标为 ,与x 轴交点为 ,图象经过 象限,y 随x 的增大而 。
2、将直线321+=x y 向_____平移______个单位可得直线22
1
-=x y 。
五、课后反思。