机械优化设计实例
- 格式:pptx
- 大小:1.90 MB
- 文档页数:49
机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。
2.已知条件已知数输入功p=58kw,输入转速n=1000r/min,齿数比1?]=550Mpa,许用弯用应力[曲应力u=5,齿轮的许H?]=400Mpa。
[ F3.建立优化模型3.1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。
由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。
单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:222222??)?0.25(b?c)(.25Db(d?d?dv?0.25)b(d??d)?02gzz1g122222222????d?)?0.257l(d8?dddc?2112 zzzz022222222??)10m(mzu?d?b.25?[m0zb?d.b?m8zbub0?1112zz12222]3228dd6d)?d?l?05bd.?005 b(mzu?10m?1..2 2zz2zz2z121式中符号意义由结构图给出,其计算公式为d?mz,d?mz2112D?umz?10m12g d?1.6d,d?0.25(umz?10m?1.6d)2z2g210z c?0.2b由上式知,齿数比给定之后,体积取决于b、z、m、l、d 和z11d 六个参数,则设计变量可取为z2TT]ddbzmxxxxx]l?[xx?[23145z61z213.2目标函数为222222f(x)?0.785398(4.75xxx?85xxx?85xx?0.92xx?xx?5231116233112222220.8xxxx?1.6xxx?xx?xx?28x ?32x)?min6646213316545约束条件的建立3.3.zz?17?,得1)为避免发生根切,应有min0??17?xg(x)21b???????maxmin d的最大值为齿宽系数2 )齿宽应满足和,dmaxmin??,,得和最小值,一般取=1.4=0.9maxmin g(x)?0.9?x(xx)?03212g(x)?x(xx)?1.4?031323)动力传递的齿轮模数应大于2mm,得g(x)?2?x?0344)为了限制大齿轮的直径不至过大,小齿轮的直径不能大于d,得max1g(x)?xx?300?0352d?d?d5)齿轮轴直径的范围:得maxzminzz0?100?xxg()?560?x150?g(x)?570?x?g(x)?130680200?x)?x?g(69l按结构关系,应距离满足条件:撑6)轴的支?b?2??0.5d?l=20),得(可取2zminmin g(x)?x?0.5x?x?40?041610)齿轮的接触应力和弯曲应力应不大于许用值,得7.0550?xxx)?1468250g(x)?(1231170980?x)??400g(42??2212)x?0.854?10xxxx(0.169?0.6666?102223170 980g(x??400?)4?22213)x?10?0.?xxx(0.2824?0.17710394x23221??][ 8)齿轮轴的最大挠度,得不大于许用值max440?.003xxx(xx)?0g(x)?117.04 4521443??][ 9)齿轮轴的弯曲应力,得不大于许用值ww6x?102.8512124?5.5?2.4?100g(x)?()?153xxx3526x1085?12.2124?5.5?10?0?g(x)()?6163xxx3624.优化方法的选择由于该问题有6个设计变量,16个约束条件的优化设计问题,采用传统的优化设计方法比较繁琐,比较复杂,所以选用Matlab优化工具箱中的fmincon函数来求解此非线性优化问题,避免了较为繁重的计算过程。
机械优化设计实例压杆的最优化设计压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的尺寸限制值,求在p一定时d i d2和l分别取何值时管状压杆的体积或重量最小?(内外直径分别为d i、d2)两端承向轴向压力,并会因轴向压力达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。
尺=耍解:根据欧拉压杆公式,两端钱支的压杆,其临界载荷为:」I ——材料的惯性矩,EI为抗弯刚度1、设计变量现以管状压杆的内径d i、外径d2和长度l作为设计变量2、目标函数以其体积或重量作为目标函数3、约束条件以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型:min/㈤=ixiu F(4,电」)=-由,),2)2、目标函数於—=逗―-㈤2。
4g 芋(元)=日芋(d1)=次11111n _d]w 0公6)=日式%)=. -41DCK —。
3)方3 = £式内)=刈2TM宫巾(幻~ & (义)二% - a 2JHK - U8⑶= &•) =『小 心(兀)=心*)='-温=。
罚函数:+ min[ OSiF -Fnun[ 0,瓯]2 +min[ 0J]3 + 一}传递扭矩的等截面轴的优化设计目式力=gKMH )=尸—名-JT - --------- 5 ----- = r - ---------------------- ----------产 M?矶为应上卅)二二伺-4J ) E +产{[皿[0g ]-4P我矛一期]^[0, - -p]解:1、设计变量:片二出巡/=同"3、约束条件:T = —<[r]1)要求扭矩应力小于许用扭转应力,即:-二,,Mr式中: ——轴所传递的最大扭矩其* d自、 —一二 一一抗扭截面系数。
对实心轴16冬(芍二0⑻二3粤-㈤2)要求扭转变形小于许用变形。
机械优化设计实例公司生产的机械设备是用来处理废气的,该设备由风机和过滤系统组成。
一些客户反映在高温环境下,设备的性能下降严重,需要频繁维护和更换零部件。
为了解决这个问题,公司决定进行机械优化设计,提高设备在高温环境下的性能和可靠性。
首先,公司通过实地调研和用户反馈,发现高温环境下设备性能下降的主要原因是风机的叶轮脆性破坏和过滤系统的滤芯耐高温能力差。
因此,公司决定对风机和过滤系统进行优化设计。
风机优化设计的一项重要措施是改变叶轮材料。
公司与材料科学研究院合作,选用一种可耐高温的新型材料。
这种新材料具有良好的耐腐蚀性和高强度,能够在高温环境下保持稳定的性能。
通过对风机进行新材料叶轮的更换,可以大大提高设备在高温环境下的可靠性和寿命。
过滤系统的优化设计主要包括滤芯材料的改进和结构的优化。
公司与滤芯制造商进行合作,针对高温环境下滤芯易损的情况,选用了一种能够耐受高温的特殊材料制作滤芯。
该材料具有优异的耐热性和抗腐蚀性,能够有效过滤废气中的有害物质。
此外,公司还对滤芯的结构进行优化设计,增加了滤芯的表面积,提高了吸附效率和容尘量。
除了对零部件的优化设计,公司还对设备的工艺流程进行了改进。
在原有的设备上增加了高温预热和冷却系统,可以避免温度的突变对设备的影响,提高了设备的稳定性和寿命。
经过优化设计,该公司的机械设备在高温环境下的性能得到了显著提高。
经实际运行验证,设备在高温环境下能够稳定工作,无需频繁维护和更换零部件,极大地减少了停机时间和维修成本。
同时,设备的可靠性和寿命也得到了显著提升,增强了客户的信任和满意度。
这个实例充分展示了机械优化设计的重要性和成功应用。
通过对机械结构、工艺流程和材料的优化,可以提高机械产品的性能、效率和可靠性,满足客户的需求,提升企业的竞争力。
1 / 8例题:用一批长度为4m的圆钢,下长度为698mm的零件4000个和长度为518mm的零件3600个。
如何下料才能使消耗的圆钢数量最少?解:(一) 建立机械优化设计数学模型(设计变量、目标函数、约束条件)设698mm的零件记为①,518mm的零件记为②。
对本例题,若只用4m长的圆钢,则总共有6种下料方案:下5个零件①,0个零件②,利用率87% (%87%10040005698=⨯⨯) 方案一 下0个零件①,7个零件②,利用率91% (%91%10040007518=⨯⨯) 方案二下4个零件①,2个零件②,利用率96% (%96%100400025184698=⨯⨯+⨯) 方案三下3个零件①,3个零件②,利用率91% ( %91%100400035183698=⨯⨯+⨯) 方案四 (1)下2个零件①,5个零件②,利用率99% (%99%100400055182698=⨯⨯+⨯) 方案五下1个零件①,6个零件②,利用率95% (%95%100400065181698=⨯⨯+⨯) 方案六从式(1)可知,用4m长的圆钢总共有6种下料方法。
现用1X 、2X 、3X 、4X 、5X 、6X 分别表示按这种方式下料所需的圆钢数量,则下料方案可用表1表示。
2 / 8表1 下料方案Tab.1 Cutting material plan 原钢种类(m )数量零件① 零件② 方 案 4 1X5 0 方案一 4 2X0 7 方案二 4 3X 4 2 方案三 4 4X 3 3 方案四 4 5X 2 5 方案五 46X16方案六表示为数学模型就是Min 654321654321),,,,,(X X X X X X X X X X X X f +++++= (2)51X +43X +34X +25X +6X ≥4000 (3) 72X +23X +43X +55X +66X ≥3600 (4) X1≥0,X2≥0,X3≥0,X4≥0,X5≥0,X6≥0 (5)3 / 8式(2)称为目标函数,式(3)、式(4)和式(5)都称为约束条件。
机械优化设计经典实例机械优化设计是指通过对机械结构和工艺的改进,提高机械产品的性能和技术指标的一种设计方法。
机械优化设计可以在保持原产品功能和形式不变的前提下,提高产品的可靠性、工作效率、耐久性和经济性。
本文将介绍几个经典的机械优化设计实例。
第一个实例是汽车发动机的优化设计。
汽车发动机是汽车的核心部件,其性能的提升对汽车整体性能有着重要影响。
一种常见的汽车发动机优化设计方法是通过提高燃烧效率来提高功率和燃油经济性。
例如,通过优化进气和排气系统设计,改善燃烧室结构,提高燃烧效率和燃油的利用率。
此外,采用新材料和制造工艺,减轻发动机重量,提高动力性能和燃油经济性也是重要的优化方向。
第二个实例是飞机机翼的优化设计。
飞机机翼是飞机气动设计中的关键部件,直接影响飞机的飞行性能、起降性能和燃油经济性。
机翼的优化设计中,常采用的方法是通过减小机翼的阻力和提高升力来提高飞机性能。
例如,优化机翼的气动外形,减小阻力和气动失速的风险;采用新材料和结构设计,降低机翼重量,提高飞机的载重能力和燃油经济性;优化翼尖设计,减小湍流损失,提高升力系数。
第三个实例是电机的优化设计。
电机是广泛应用于各种机械设备和电子产品中的核心动力装置。
电机的性能优化设计可以通过提高效率、减小体积、降低噪音等方面来实现。
例如,采用优化电磁设计和轴承设计,减小电机的损耗和噪音,提高效率;通过采用新材料和工艺,减小电机的尺寸和重量,实现体积紧凑和轻量化设计。
总之,机械优化设计在提高机械产品性能和技术指标方面有着重要应用。
通过针对不同机械产品的特点和需求,优化设计可以提高机械产品的可靠性、工作效率、耐久性和经济性。
这些经典实例为我们提供了有效的设计思路和方法,帮助我们在实际设计中充分发挥机械优化设计的优势和潜力。
机械最优化设计及应用实例
机械最优化设计是指基于数学模型和优化算法,通过对机械系统的设计参数进行优化,以使系统满足一定的性能指标或者达到最优的设计目标。
以下是机械最优化设计的一些应用实例:
1. 汽车设计:汽车是一个复杂的机械系统,涉及到多个设计参数,如引擎排量、车身重量、气动设计等。
通过机械最优化设计,可以优化汽车的燃料效率、行驶稳定性等性能指标。
2. 飞机设计:飞机的设计涉及到多个参数,如机翼形状、机身结构等。
通过机械最优化设计,可以优化飞机的升力、阻力等性能指标,提高飞机的飞行效率和安全性。
3. 增材制造:增材制造是一种先进的制造技术,通过逐层加工材料来制造复杂的结构。
机械最优化设计可以用来优化增材制造的工艺参数,如激光功率、扫描速度等,以实现高质量、高效率的制造过程。
4. 结构优化:机械系统的结构设计是一个关键的环节,通过机械最优化设计,可以优化结构的刚度、强度、耐久性等性能指标,提高系统的工作性能和使用寿命。
5. 机器人设计:机器人是一种复杂的机械系统,涉及到多个参数,如关节结构、连杆长度等。
通过机械最优化设计,可以优化机器人的运动性能、负载能力等指标,提高机器人的工作效
率和精度。
总之,机械最优化设计在各个领域具有广泛的应用,可以提高机械系统的性能和效率,推动科技进步和工业发展。
机械优化设计作业一、优化设计问题的提出预制一无盖水槽,现有一块长为4m,宽为3m的长方形铁板作为原材料,想在这块铁板的四个角处剪去相等的正方形以制成无盖水槽,问如何剪法使水槽的底面积最大?二、建立问题的数学模型为了建成此无盖水槽,可设在这块铁板的四个角处剪去相等的正方形的边长为X,所建造水槽的底面积为S,分析问题有次问题变成在约束条件:X≥04-2X≥03-2X≥0限制下,求目标函数:S(X)=(4-2X)(3-2X)=4-14X+12的最大值。
由此可得此问题的数学模型为:Min S(X)=4约束条件:( =-X ≤0 ( = -(4-2X )≤0( =-(3-2X )≤0 算法为黄金分割法。
四、外推法确定最优解的搜索区间用外推法确定函数S (X )=4 索区间。
设初始点 , =S( )=12; = +h=0+1=1, =S( )=2;比较 和 ,因为 < h=2h=2x1=2, = +h=1+2=3, 比较 和 ,因为 > ,面,故搜索区间可定为[a,b]=[1,3]。
五、算法框图六、算法程序#include <math.h>#include <stdio.h>double obfunc(double x){double ff;ff=4*X*X-14*X+12;return(ff);}void jts(double x0,double h0,double s[],int n,double a[],double b[]) {int i;double x[3],h,f1,f2,f3;h=h0;for(i=0;i<n;i++)x[0]=x0;f1=obfunc(x[0]);for(i=0;i<n;i++) x[1]=x[0]+h*s[i];f2=obfunc(x[1]);if(f2>=f1){h=-h0;for(i=0;i<n;i++)x[2]=x[0];f3=f1;for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}for(;;){h=2.0*h;for(i=0;i<n;i++)x[2]=x[1]+h*s[i];f3=obfunc(x[2]);if(f2<f3)break;else{for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}}if(h<0)for(i=0;i<n;i++){a[i]=x[2];b[i]=x[0];}elsefor(i=0;i<n;i++){a[i]=x[0];b[i]=x[2];}printf("%4d",n);}double gold(double a[],double b[],double eps,int n,double xx) double f1,f2,ff,q,w;double x[3];for(i=0;i<n;i++){x[0]=a[i]+0.618*(b[i]-a[i]);x[1]=a[i]+0.382*(b[i]-a[i]);}f1=obfunc(x[0]); f2=obfunc(x[1]);do{if(f1>f2){for(i=0;i<n;i++){b[i]=x[0];x[0]=x[1];}f1=f2;for(i=0;i<n;i++)x[1]=a[i]+0.382*(b[i]-a[i]);f2=obfunc(x[1]);}else{for(i=0;i<n;i++){a[i]=x[1];x[1]=x[0];}f2=f1;for(i=0;i<n;i++)x[0]=a[i]+0.618*(b[i]-a[i]);f1=obfunc(x[0]);}q=0;for(i=0;i<n;i++)q=q+(b[i]-a[i])*(b[i]-a[i]);w=sqrt(q);}while(w>eps);for(i=0;i<n;i++)xx=0.5*(a[i]+b[i]);ff=obfunc(xx);printf("xx=ff=%5.2f,,,,%5.2f",xx,ff);return(ff);}void main(){int n=1;double a[1],b[1],xx;double s[]={1},x0=0;double eps1=0.001,h0=0.1;jts(x0,h0,s,n,a,b);gold(a,b,eps1,n,xx);七、程序运行结果与分析(1)程序运行结果(截屏)(2)结果分析、对与函数S(X)=(4-2X)(3-2X)=4-14X+12,令(X)=8X-14=0可解的X=1.75,说明程序运行结果正确。
例题:用一批长度为4m的圆钢,下长度为698mm的零件4000个和长度为518mm的零件3600个。
如何下料才能使消耗的圆钢数量最少?解:(一) 建立机械优化设计数学模型(设计变量、目标函数、约束条件)设698mm的零件记为①,518mm的零件记为②。
对本例题,若只用4m长的圆钢,则总共有6种下料方案:下5个零件①,0个零件②,利用率87% () 方案一下0个零件①,7个零件②,利用率91%()方案二下4个零件①,2个零件②,利用率96% ()方案三下3个零件①,3个零件②,利用率91%() 方案四(1)下2个零件①,5个零件②,利用率99%()方案五下1个零件①,6个零件②,利用率95% ()方案六从式(1)可知,用4m长的圆钢总共有6种下料方法.现用、、、、、分别表示按这种方式下料所需的圆钢数量,则下料方案可用表1表示。
表1 下料方案Tab。
1 Cutting material plan原钢种类(m)数量零件①零件②方案4 5 0 方案一4 0 7 方案二4 4 2 方案三4 3 3 方案四4 25 方案五4 1 6 方案六表示为数学模型就是(2)5+4+3+2+≥4000 (3)7+2++5+6≥3600 (4)X1≥0,X2≥0,X3≥0,X4≥0,X5≥0,X6≥0 (5)式(2)称为目标函数,式(3)、式(4)和式(5)都称为约束条件。
例题用数学语言描述为:在约束条件(3)、(4)和(5)的限制下,求目标函数(2)达到最小值时的数值。
(二)选择合适的优化方法。
由于本题数学模型中的目标函数和所有约束函数都是设计变量的线性函数,因此该问题为典型的线性规划问题,优化方法选用单纯性法。
(三)上机计算,求得最优解。
计算程序使用DCXF。
EXE。
具体程序使用方法请大家参看《机械优化设计上机实验指导书》。
上机求得结果为:(四)結果分析分析与评判率由88 。
5%提高到97%,提高了法二利用Mathcad 2001软件求解(具体求解过程参看:Mathcad 讲义提纲和“Mathcad在工程技术中的应用讲座")思考题:平板下料问题,如果已知平板材料长和宽分别为a和b,如果需要尺寸如图示矩形、椭圆、圆和平行四边形分别为N1、N2、N3和N4个,问如何进行下料使所需要的平板数量最少?。
机械优化设计实例压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的尺寸限制值,求在p 一定时d i、d2和丨分别取何值时管状压杆的体积或重量最小?(内外直径分别为d i、d2)两端承向轴向压力,并会因轴向压力达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。
解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I ――材料的惯性矩,EI为抗弯刚度1、设计变量现以管状压杆的内径d i、外径d2和长度l作为设计变量2、目标函数以其体积或重量作为目标函数3、约束条件以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型:2)min = oiia F(兀屯小=扌一材)「压杆的最优化设计也㈤皿也2亟刍-皿。
4勿(忙)=韵佃1 dJ = P -卩匕型—瘩辽(茁—町)I2~M?嵐二(工)==止皿_£]玉o血(兀)=呂.SJ =右 ~ ^lmax —°3) .3 ■■' -J」j -工—二.g$ (光)~ & (£) —^2 2JHK—"」^W = ^W = U-/^ogO劭刘罚函数:反耐皿上严)二7寓-町)f +円{[诡[o,[cr]- + mm[ Q/]『+nun[ Q 鶴『+min[ 0,?]3 + ■■■)传递扭矩的等截面轴的优化设计2、目标函数?r 讪(為4-d「)―^—胡解:1、设计变量:冈区I以轴的重量 最轻作为目标函数:3、约束条件:T = —<[r]1)要求扭矩应力小于许用扭转应力,即:-匕式中: ' --------- 轴所传递的最大扭矩一「一一抗扭截面系数。
对实心轴 疋勿(匿)二內⑴二兰拿-罔空J7EZ2)要求扭转变形小于许用变形。
即:式中:G ――材料的剪切弹性模数32M T 13)结构尺寸要求的约束条件:若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与 扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴, 疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。