八年级数学位置与坐标知识点及练习题
- 格式:docx
- 大小:92.02 KB
- 文档页数:10
一、选择题1.已知点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,那么点P 的坐标为( )A .(﹣1,2)B .(﹣2,1)C .(﹣1,﹣2)D .(﹣2,﹣1) 2.已知点Q 的坐标为()2,27a a -+-,且点Q 到两坐标轴的距离相等,则点Q 的坐标是( )A .()3,3B .()3,3-C .()1,1-D .()3,3或()1,1- 3.点(3, 2)P t t ++在直角坐标系的x 轴上,则P 点坐标为( ) A .()0,2- B .()2,0- C .()1,2 D .()1,0 4.已知点P (a ,3)、Q (﹣2,b )关于y 轴对称,则a b a b +-的值是( ) A .15- B .15 C .﹣5D .5 5.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4) 7.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 8.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°9.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7 B .1- C .1-或7 D .7-或1 10.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.我们规定:在平面直角坐标系xOy 中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212, d M N x x y y =-+-,例如图①中,点()2,3M -与点()1,1N -之间的折线距离为()(),2131347d M N =----++==.如图②,已知点() 3,4P -若点Q 的坐标为(),2t ,且(),10d P Q =,则t 的值为( )A .1-B .5C .5或13-D .1-或7 12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次接着运动到点(2,0),第三次接着运动到点(3,2),…,按这样的运动规律经过第2020次运动后,动点P 的坐标是( )A .(2020,1)B .(2020,0)C .(2020,2)D .(2020,2020)二、填空题13.如图,在平面直角坐标系中,以A (2,0),B (0,1)为顶点作等腰直角三角形ABC (其中∠ABC =90°,且点C 落在第一象限),则点C 关于y 轴的对称点C'的坐标为______.14.已知点()2 6,2P m m -+.(1)若点P 在y 轴上,P 点的坐标为______.(2)若点P 的纵坐标比横坐标大6,则点P 在第______象限.(3)若点P 在过点()2,3A 且与x 轴平行的直线上,则点P 的坐标为______. (4)点P 到x 轴、y 轴的距离相等,则点P 的坐标为______.15.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.16.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.17.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a+b=___.18.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1,A 第二次移动到点2A ….第n 次移动到点,n A 则点2020A 的坐标是____________________.19.已知点P 的坐标(),x y 满足方程组0328x y x y -=⎧⎨+=⎩,则点P 在第_____象限. 20.点A 的坐标为()5,3-,点A 关于x 轴的对称点为点B ,则点B 的坐标是______.三、解答题21.如图,方格纸中小正方形的边长均为1个单位长度,A 、B 均为格点.(1)在图中建立直角坐标系,使点A 、B 的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x 轴上是否存在点C ,使△ABC 为等腰三角形(其中AB 为腰)?若存在,请直接写出所有满足条件的点C 的坐标.22.如图,在平面直角坐标系中有三点(1,5)A -,(2,1)B -,(4,3)C -.(1)在图中作出ABC 关于y 轴的对称图形111A B C △;(2)写出点1A ,1B ,1C 的坐标;(3)求111A B C △的面积.23.在平面直角坐标系中,()0,A a ,()5,B b ,且a ,b 满足130a b ++=,将线段AB 平移至CD ,其中A ,B 的对应点分别为C ,D .(1)a =______,b =______;(2)若点C 的坐标为()2,4-,如图1,连接OC ,求三角形COD 的面积; (3)设点E 是射线OD (E 不与点D 重合)上一点,①如图2,若点E 在线段OD 上,25DCE ∠=︒,70EAB ∠=︒,求AEC ∠的度数并说明理由;②如图3,点E 在射线OD 上,试探究DCE ∠与EAB ∠和AEC ∠的关系并直接写结论.24.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B (0,n),且|m﹣n﹣3|+(2n﹣6)2=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)OA=________,OB=_________.(2)连接PB,若△POB的面积为3,求t的值;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样点P,使△EOP≌△AOB,若存在,请直接写出t的值;若不存在,请说明理由.25.如图,在网格中按要求完成作图:(1)作出ABC (三角形的顶点都在格点上)关于x 轴对称的图形;(2)写出A 、B 、C 的对应点A '、B '、C '的坐标;(3)在x 轴上画出点Q ,并写出点Q 的坐标,使QAC 的周长最小.26.如图,在平面直角坐标系中,ABC 的三个顶点分别为()2,3A ,()3,1B ,()2,2C --.(1)请在图中作出ABC 关于y 轴的轴对称图形A B C '''(A ,B ,C 的对称点分别是A ',B ',C '),并直接写出A ',B ',C '的坐标.(2)求A B C '''的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据第三象限点的横坐标与纵坐标都是负数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答即可.【详解】解:∵点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,∴点P 的横坐标为﹣1,纵坐标为﹣2,∴点P 的坐标为(﹣1,﹣2).故选:C .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键,也是最容易出错的地方.2.D解析:D【分析】根据点Q 到两坐标轴的距离相等列出方程,然后求解得到a 的值,再求解即可.【详解】解:∵点Q 到两坐标轴的距离相等,∴|-2+a|=|2a-7|,∴-2+a =2a-7或-2+a =-2a+7,解得a=5或a=3,当a=5时,-2+a =-2+5=3, 2a-7=2×5-7=3;当a=3时,-2+a =-2+3=1, 2a-7=2×3-7=-1;所以,点Q 的坐标为()3,3或()1,1-.故选D .【点睛】本题考查了点坐标,掌握坐标到坐标轴的距离的表示方法,以及掌握各象限内点的坐标特征是解题的关键.3.D解析:D【分析】x 轴上点的纵坐标是0,由此列得t+2=0,求出t 代回即可得到点P 的坐标.【详解】∵点(3, 2)P t t ++在直角坐标系的x 轴上,∴t+2=0,解得t=-2,∴点P 的坐标为(1,0),故选:D .【点睛】此题考查坐标轴上点的坐标特点:x 轴上点的纵坐标是0,y 轴上点的横坐标是0. 4.C解析:C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称,∴2a =,3b =, 则23523a b a b ++==---. 故选:C .【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数. 5.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵点()3,4-,∴点()3,4-在第二象限,故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).6.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.7.A解析:A【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.解:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第三个,即为2,∴经过第2019次运动后,动点P的坐标是:(2019,2),故选:A.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.8.B解析:B【分析】根据12PBC ABCS S∆∆=得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵12PBC ABCS S∆∆=,∴点P到BC的距离=12AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P 在过AD 的中点E 且平行于BC 的直线l 上是解决此题的关键.9.C解析:C【分析】根据点M (2,3)与点N (2,y )之间的距离是4,可得|y−3|=4,从而可以求得y 的值.【详解】∵点M (2,3)与点N (2,y )之间的距离是4,∴|y−3|=4,∴y−3=4或y−3=−4,解得y =7或y =−1.故选:C .【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.10.B解析:B【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答.【详解】∵m 2≥0,∴−m 2−1<0,∴点P (−m 2−1,2)在第二象限.故选:B .【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.11.D解析:D【分析】根据折线距离的定义可得关于t 的绝对值方程,解方程即可求出t 的值,进而可得答案.【详解】解:∵()3,4P -,点Q 的坐标为(),2t ,(),10d P Q =, ∴34210t -+--=,解得:1t =-或7t =.故选:D .【点睛】本题考查了坐标与图形,正确理解折线距离、掌握绝对值方程的解法是解题的关键. 12.B解析:B【分析】分析图象发现点P 的运动每4次位置循环一次,每循环一次向右移动4个单位,根据这个规律先确定2020次运动是多少个循环,然后根据循环次数确定点P 的位置.【详解】分析图象可以发现,点P 的运动每4次位置循环一次,每循环一次向右移动4个单位. ∴2020=505⨯4,当第505次循环结束时,点P 的位置在(2020,0),故答案为:B.【点睛】本题主要考查了平面直角坐标系中点的运动规律问题,分析图象得出规律是解题的关键.二、填空题13.【分析】过点C 向y 轴引垂线CD 利用△OAB ≌△DBC 确定DCDO 的长度即可确定点C 的坐标对称坐标自然确定【详解】如图过点C 作CD ⊥y 轴垂足为D ∵∠ABC=90°∴∠DBC+∠OBA=90°∵∠OAB解析:()1,3-【分析】过点C 向y 轴,引垂线CD ,利用△OAB ≌△DBC ,确定DC ,DO 的长度,即可确定点C 的坐标,对称坐标自然确定.【详解】如图,过点C 作CD ⊥y 轴,垂足为D ,∵∠ABC=90°,∴∠DBC+∠OBA=90°,∵∠OAB+∠OBA=90°,∴∠DBC=∠OAB ,∵AB=BC ,∠BDC=∠AOB=90°∴△OAB ≌△DBC ,∴DC=OB ,DB=OA ,∵A (2,0),B (0,1)∴DC=OB=1,DB=OA=2,∴OD=3,∴点C (1,3),∴点C 关于y 轴的对称点坐标为(-1,3),故答案为:(-1,3).【点睛】本题考查了点的坐标及其对称点坐标的确定,熟练分解点的坐标,利用三角形全等,把坐标转化为线段的长度计算是解题的关键.14.(1);(2)二;(3);(4)或【分析】(1)y 轴上点的坐标特点是横坐标为0据此求解可得;(2)由题意可列出等式2m-6+6=m+2求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等根据这个解析:(1)()0,5;(2)二;(3)()4,3-;(4)()10,10或1010,33⎛⎫-⎪⎝⎭ 【分析】(1)y 轴上点的坐标特点是横坐标为0,据此求解可得;(2)由题意可列出等式2m-6+6=m+2,求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等,根据这个性质即可求解. (4)点P 到x 轴、y 轴的距离相等,所以点P 的横坐标与纵坐标相等或互为相反数,据此可解.【详解】解:(1)∵点P 在y 轴上,∴2m-6=0,解得m=3,∴P 点的坐标为(0,5);故答案为(0,5);(2)根据题意得2m-6+6=m+2,解得m=2,∴P 点的坐标为(-2,4),∴点P 在第二象限;故答案为:二;(3)∵点P 在过A (2,3)点且与x 轴平行的直线上,∴点P 的纵坐标为3,∴m+2=3,∴m=1,∴点P 的坐标为(-4,3).故答案为:(-4,3);(4)∵点P 到x 轴、y 轴的距离相等,∴2m-6=m+2或2m-6+ m+2=0,∴m=8或m=43, ∴点P 的坐标为()10,10或1010,33⎛⎫-⎪⎝⎭. 故答案为:()10,10或1010,33⎛⎫-⎪⎝⎭. 【点睛】 本题考查平面直角坐标系中点的特点;熟练掌握平面直角坐标系中坐标轴上点的特点,与坐标轴平行的直线上点的特点是解题的关键.15.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A (1+m1-n )与点B (-32)关于y 轴对称∴1+m=31-n=2∴m=2n=-1∴(m +n )202解析:1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m +n )2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握点的坐标特点是解题关键.16.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.17.-8【分析】根据关于x 轴对称的点的横坐标相等纵坐标互为相反数关于y 轴对称的点的纵坐标相等横坐标互为相反数得出ab 的值即可得答案【详解】解:由题意得a+3=-2b-1=-4解得a=-5b=-3所以a+解析:-8【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数,得出a 、b 的值即可得答案.【详解】解:由题意,得a+3=-2,b-1=-4.解得a=-5,b=-3,所以a+b=(-5)+(-3)=-8故答案为:-8.【点睛】本题考查关于x 轴对称的点的坐标,熟记对称特征:关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数是解题关键. 18.【分析】根据都在x 轴上得出也在x 轴上再根据的坐标规律即可得出答案【详解】由图可知都在x 轴上小蚂蚁每次移动一个单位=(20)=(40)=(60)=(2n0)2020÷4=505所以=(50220)=(解析:()1010,0【分析】根据4A 、8A 、12A 都在x 轴上,得出4n A 也在x 轴上,再根据4A 、8A 、12A 的坐标规律,即可得出答案. 【详解】由图可知,4A 、8A 、12A 都在x 轴上,小蚂蚁每次移动一个单位,4A =(2,0),8A =(4,0),12A =(6,0),4n A = (2n ,0) 2020÷4=505,所以2020A =(502⨯2,0)= (1010,0),故本题答案为(1010,0).【点睛】 本题主要考查的是平面直角坐标系中确定点的坐标和点的坐标的规律性,对点的变化规律的考查.19.一【分析】求出方程组的解进而确定出P 坐标判断即可【详解】解:解方程组得:则点P ()在第一象限故答案为:一【点睛】本题考查了二元一次方程组的解及平面直角坐标系点的特征熟练掌握方程组的解法平面直角坐标系 解析:一【分析】求出方程组的解,进而确定出P 坐标,判断即可.【详解】解:解方程组0328x y x y -=⎧⎨+=⎩得:8585x y ⎧=⎪⎪⎨⎪=⎪⎩则点P (85,85)在第一象限. 故答案为:一.【点睛】 本题考查了二元一次方程组的解及平面直角坐标系点的特征,熟练掌握方程组的解法、平面直角坐标系点的特征是解答本题的关键.20.【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点的坐标为∴关于轴的对称点为点;故答案是【点睛】本题主要考查了关于x 轴对称点的坐标准确计算是解题的关键解析:()5,3【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点A 的坐标为()5,3-,∴关于x 轴的对称点为点B ()5,3;故答案是()5,3.【点睛】本题主要考查了关于x 轴对称点的坐标,准确计算是解题的关键.三、解答题21.(1)答案见解析;(2)存在,点C 的坐标(-6,0)或(4,0)或(7,0).【分析】(1)根据点B (-1,0),判断x 轴经过点B ,且B 右侧的点就是原点,建立坐标系即可; (2)分情形求解即可.【详解】(1)∵点B (-1,0),∴x 轴经过点B ,且B 右侧的点就是原点,建立坐标系如图1所示;(2)存在,点C 的坐标(-6,0)或(4,0)或(7,0).理由如下:∵A (3,3),B (-1,0),∴22(3(1))(30)--+-,当AB 为等腰三角形的腰时,(1)以B 为圆心,以BA=5为半径画弧,角x 轴于两点,原点左边的1C ,右边为2C , ∵AB=5,点B (-1,0),∴1C (-6,0),2C (4,0);(2)以A 为圆心,以AB=5为半径画弧,角x 轴于一点,原点的右边为3C ,∵AB=5,点A 到x 轴的距离为3,(-1,0),∴等腰三角形AB 3C 的底边长为2253-,∴3C (7,0);综上所述,存在,点C 的坐标(-6,0)或(4,0)或(7,0).【点睛】本题考查了平面直角坐标系的建立,等腰三角形的判定,勾股定理,熟练掌握坐标系的特点,等腰三角形的判定,科学分类求解是解题的关键.22.(1)见解析;(2)1(1,5)A ,1(2,1)B ,1(4,3)C ;(3)1115A B C S =【分析】(1)做出A ,B ,C 关于y 轴的对称点连接即可;(2)根据(1)写出即可; (3)构造长方形,用长方形的面积减去三个边角三角形的面积即可得解;【详解】(1)(1,5)A -,(2,1)B -,(4,3)C -关于y 轴对称的点为1(1,5)A ,1(2,1)B ,1(4,3)C ,如图所示;(2)由(1)可知1(1,5)A ,1(2,1)B ,1(4,3)C ;(3)111111=34232214123225222△S ⨯-⨯⨯-⨯⨯-⨯⨯=---=A B C ; 【点睛】本题主要考查了作图-轴对称变换,准确分析计算是解题的关键.23.(1)﹣1,﹣3;(2)8;(3)①∠AEC=95°,理由见解析;②当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【分析】(1)根据非负数的性质解答即可;(2)先根据平移的性质求出点D 的坐标,然后过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,如图1,再根据S △COD =S 梯形CMND -S △COM -S △DON 代入数据计算即可;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG ,然后根据平行线的性质可得∠DCE=∠CEG ,∠BAE=∠GEA ,再根据角的和差即可求出结果; ②分两种情况:当点E 在线段OD 上时,如图2,此时由①的推导可直接得出结论;当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,根据平行线的性质和三角形的外角性质解答即可.【详解】解:(1)∵130a b ++=,∴a+1=0,b+3=0,解得:a=﹣1,b=﹣3,故答案为:﹣1,﹣3;(2)∵a=﹣1,b=﹣3,∴A (0,﹣1),B (5,﹣3),∵将线段AB 平移至CD ,A ,B 的对应点分别为C (﹣2,4),D ,∴点D (3,2)如图1,过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,则CM=4,DN=2,MN=2+3=5,∴S △COD =S 梯形CMND -S △COM -S △DON =()11124524328222⨯+⨯-⨯⨯-⨯⨯=;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG , ∴∠DCE=∠CEG ,∠BAE=∠GEA ,∵25DCE ∠=︒,70EAB ∠=︒,∴∠AEC=∠CEG+∠AEG=∠DCE+∠BAE=25°+70°=95°;②当点E 在线段OD 上时,如图2,此时由①的结论可得:DCE ∠+EAB ∠=AEC ∠; 当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,∵AB ∥CD ,∴∠EPQ=∠EAB ,∵∠EPQ=∠DCE+∠AEC ,∴∠BAE=∠DCE+∠AEC ;综上,当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【点睛】本题考查了非负数的性质、平移的性质、坐标系中三角形面积的计算、平行线的性质、平行公理的推论以及三角形的外角性质等知识,涉及的知识点多,但难度不大,熟练掌握上述知识是解题的关键.24.(1)6,3;(2)t =4或8;(3)当t =3或9时,△POQ 与△AOB 全等【分析】(1)根据非负数的性质列出方程,解方程分别求出m 、n ;(2)分点P 在线段AO 上、点P 在线段AO 的延长线上两种情况,根据三角形面积公式计算;(3)分点P 在线段AO 上、点P 在线段AO 的延长线上两种情况,根据全等三角形的性质列出方程,解方程得到答案.【详解】解:(1)∵|m ﹣n ﹣3|+(2n ﹣6)2=0,|m ﹣n ﹣3|≥0,(2n ﹣6)2≥0,∴|m ﹣n ﹣3|=0,(2n ﹣6)2=0,∴m ﹣n ﹣3=0,2n ﹣6=0,解得,m =6,n =3,∴OA =6,OB =3,故答案为:6;3;(2)当点P 在线段AO 上时,OP =6﹣t , 则12×(6﹣t )×3=3, 解得,t =4,当点P 在线段AO 的延长线上时,OP =t ﹣6, 则12×(t ﹣6)×3=3,解得,t =8,∴当t =4或8时,△POB 的面积等于3;(3)如图1,当点P 在线段AO 上时,∵△POE ≌△BOA ,∴OP =OB ,即6﹣t =3,解得,t =3,如图2,当点P 在线段AO 的延长线上时,∵△POE ≌△BOA ,∴OP =OB ,即t ﹣6=3,解得,t =9,∴当t =3或9时,△POQ 与△AOB 全等.【点睛】本题主要考查了坐标与图形的性质、绝对值的非负性,准确计算是解题的关键. 25.(1)见解析;(2)()4,1A '--,()3,3B '--,()1,2C '--;(3)见解析,()3,0-【分析】(1)(2)利用关于x 轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可; (3)连接CA′交x 轴于Q ,利用两点之间线段最短可判断此时△QAC 的周长最小.【详解】解:(1)如图A B C '''即为所求;(2)由图可得,()4,1A '--、()3,3B '--、()1,2C '--;(3)连接A C ',与x 轴交于点Q ,根据两点之间线段最短,此时QAC 周长最小即为AC 的长,Q 点坐标为()3,0-.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.26.(1)答案见解析;()2,3A '-,()3,1B '-,()2,2C '-;(2) 6.5A B C S '''=△.【分析】(1)分别作出点A ,B ,C 的对称点A ′,B ′,C ′,顺次连接,然后再根据各点在坐标系中的位置写出坐标即可得;(2)利用割补法求解可得.【详解】(1)如图所示.()2,3A '-,()3,1B '-,()2,2C '-(2)如图,正方形ADEC´的面积为:5×5=25△A´DE 的面积为:11212⨯⨯= △A´AC´的面积为:145102⨯⨯= △BEC´的面积为:1537.52⨯⨯=251107.5 6.5A B C S '''=---=△【点睛】本题主要考查轴对称变换的作图以及用割补法求三角形面积,熟练掌握轴对称变换的性质是解题的关键.。
八年级数学位置与坐标知识点
八年级数学的位置与坐标知识点主要包括以下几个方面:
1. 平面直角坐标系:了解直角坐标系的定义,了解如何画出直角坐标系,并能够在直
角坐标系中表示点的位置。
2. 坐标表示:了解如何用有序数对表示点的位置,即(x, y)表示点的横纵坐标。
3. 点的位置:能够根据坐标确定点的位置,也可以根据点的位置确定其坐标。
4. 距离公式:了解两点之间的距离公式,即两点之间的距离等于它们在坐标轴上的差
的绝对值。
5. 中点公式:了解两点连线的中点的坐标公式,即中点的横坐标等于两点横坐标之和
的一半,纵坐标等于两点纵坐标之和的一半。
6. 分段函数:了解分段函数的定义和表示方法,能够根据给定的定义域和函数表达式
画出分段函数的图像。
7. 利用坐标进行问题求解:能够利用坐标解决一些实际问题,如计算两点之间的距离、寻找中点等。
以上是八年级数学位置与坐标的一些基本知识点,希望对你有帮助!如有其他问题,
欢迎继续提问。
第三章位置与坐标单元测试(能力提升)一、单选题1.已知点M(1﹣m,m﹣3),则点M不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】根据各个象限的点的坐标特点,列出不等式组,不等式组无解则点M不可能在该象限.【解析】解:点M不可能在第一象限,理由如下:点M的坐标是(1﹣m,m﹣3),若点M在第一象限,则有:,∴解①得m<1,解②得m>3,∴不等式组无解,符合题意;∴点M不可能在第一象限;点M的坐标是(1﹣m,m﹣3),若点M在第二象限,则有:,∴解①得m>1,解②得m>3,∴不等式组解集是m>3,不符合题意;点M的坐标是(1﹣m,m﹣3),若点M在第三象限,则有:,∴解①得m>1,解②得m<3,∴不等式组解集是1<m<3,不符合题意;点M的坐标是(1﹣m,m﹣3),若点M在第四象限,则有:,∴解①得m<1,解②得m<3,∴不等式组解集是m<1,不符合题意;故选:A.【点睛】本题考查了坐标与图形的性质,熟练掌握平面直角坐标系中的点的坐标特点并正确地列出不等式组或方程是解题的关键.2.已知直角坐标系内有一点M(a,b),且ab=2,则点M的位置在( )A.第一或第三象限B.第一象限C.第三象限D.坐标轴上【答案】A【分析】直接利用各象限内点的坐标特点得出答案.解:∵直角坐标系内有一点M(a,b),且ab=2,∴ab同号,则点M的位置在第一或第三象限.故选:A.【点睛】本题考查点的坐标应用,熟练掌握各象限点的坐标特点是解题关键.3.点P(m+3,m﹣2)在直角坐标系的y轴上,则点P的坐标为()A.(0,5)B.(5,0)C.(﹣5,0)D.(0,﹣5)【答案】D【分析】点P在y轴上则该点横坐标为0,可解得m的值,从而得到点P的坐标.【解析】解:∵P(m+3,m-2)在y轴上,∴m+3=0,解得m=-3,即m-2=-3-2=-5.即点P的坐标为(0,-5).故选:D.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4.若点M位于x轴的下方,距x轴4各单位长,且位于y轴右侧,距y轴5个单位长,则M的坐标是()A.B.C.D.【分析】根据点到y轴的距离是横坐标的绝对值,点到x轴的距离是纵坐标的绝对值,根据点所在象限即可求出.【解析】解:∵M点在x轴下方4个单位,∴,M点在轴右侧5个单位,∴,∴,故选择:D.【点睛】本题考查坐标平面的点的特征,掌握点到y轴的距离是横坐标的绝对值,点到x轴的距离是纵坐标的绝对值是解题关键.5.在平面直角坐标系中,已知线段的两个端点分别是将线段平移后得到线段,若点的坐标为,则点的坐标为()A.B.C.D.【答案】B【分析】根据点平移后得到点,从而得到平移的规律,即可求出点的坐标.【解析】解:∵点平移后得到点,∴线段AB平移的规律是向右平移2个单位,再向上平移3个单位,∴点平移后的坐标为(3,4).故选:B【点睛】本题考查了坐标与图形的变化-平移,根据点A的平移规律得到线段AB平移规律是解题关键.6.如图在平面直角坐标系中,点A、B、C的坐标分别为,,,则的面积是()A.5B.10C.75D.15【答案】A【分析】过点A做垂直于x轴,垂足为D,则,过点C做垂直于x轴,垂足为E,则,再分别求解利用的面积的面积的面积,从而可得答案.【解析】解:,,过点A做垂直于x轴,垂足为D,则,过点C做垂直于x轴,垂足为E,则,的面积的面积的面积,,,,,,,,∴的面积,的面积,∴的面积.故选A.【点睛】本题考查的是坐标与图形,三角形面积的计算,掌握以上知识是解题的关键.7.平面立角坐标系中,点,,经过点A的直线轴,点C是直线a上的一个动点,当线段BC的长度最短时,点C的坐标为( )A.(0,-1)B.(-1,-2)C.(-2,-1)D.(2,3)【答案】D【分析】根据经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.解:∵a∥x轴,点C是直线a上的一个动点,点A(2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短.8.下列说法不正确的是( )A.若,则点一定在第二、第四象限角平分线上B.点到轴的距离为C.若中,则点在轴上D.点可能在第二象限【答案】C【分析】根据点坐标的定义选出不正确的选项.【解析】A选项正确,∵,∴,即点在二、四象限的角平分线上;B选项正确,∵点P的横坐标是,∴到y轴的距离是2;C选项错误,点P也可能在y轴上;D选项正确,∵,,∴点A可能在第二象限内.【点睛】本题考查点坐标,解题的关键是掌握点坐标的定义和所在象限的判断方法.9.如图,在平面直角坐标系中,点A(﹣2,2),B(2,6),点P为x轴上一点,当PA+PB的值最小时,三角形PAB的面积为()A.1B.6C.8D.12【答案】B【分析】如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时PA+PB的值最小.判断出点P的坐标,根据S△PAB=S△AA′B﹣S△AA′P,求解即可.【解析】解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时PA+PB 的值最小.∵A(﹣2,2),B(2,6),A′(﹣2,﹣2),P(﹣1,0),∴S△PAB=S△AA′B﹣S△AA′P=×4×4﹣×4×1=6,故选:B.【点睛】本题考查了轴对称,坐标与图形,数形结合是解题的关键.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中方向排列,如,,,,,,,根据这个规律探索可得,第120个点的坐标为 A.B.C.D.【答案】C【分析】经过观察每个列的数的个数是有规律的分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,这样就不难找到第120个点的位置,进而可以写出它的坐标.【解析】把第一个点作为第一列,和作为第二列,依此类推,则第一列有一个数,第二列有2个数,,第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为,则第120个数一定在第15列,由上到下是第15个数.因而第120个点的坐标是.答案:C.【点睛】本题考查了点与坐标的关系,需要细心观察才能找到规律,通过此类题目的训练可以提高分析问题的能力以及归纳能力,属于常考题型.二、填空题11.乐清雁荡山以山水奇秀闻名天下,号称“东南第一山”.如图,雁荡山在乐成镇的______.【答案】北偏东27°的处【分析】由图象可得:乐成镇位于坐标原点,雁荡山在乐成镇的北偏东27度的方向,距离原点处,即可求解.【解析】解:由图象可得:乐成镇位于坐标原点,雁荡山在乐成镇的北偏东27度的方向,距离原点处,即雁荡山在乐成镇的北偏东27度的处.故答案为:北偏东27度的处.【点睛】本题主要考查了方向角和方位,熟练掌握方向角和方位的确定是解题的关键.12.将点A(0,3)向右平移3个单位后与点B关于x轴对称,则点B的坐标为_________.【答案】【分析】先根据点坐标的平移变换规律可得点A平移后的点坐标,再根据点坐标关于x轴对称的变换规律即可得.【解析】将点向右平移3个单位后的点坐标为,即,点坐标关于x轴对称的变换规律:横坐标不变,纵坐标变为相反数,则点B的坐标为,故答案为:.【点睛】本题考查了点坐标的平移变换规律、点坐标关于x轴对称的变换规律,熟练掌握点坐标的变换规律是解题关键.13.已知A(2,3),AB=4,且AB∥x轴,则B的坐标是____.【答案】(﹣2,3)或(6,3)【分析】线段AB∥x轴,AB=4,把点A向左或右平移4个单位即可得到B点坐标.【解析】解:∵线段AB∥x轴,∴点B的纵坐标与点A的纵坐标相同,∵AB=4,∴点B的坐标是(﹣2,3)或(6,3).故答案为(﹣2,3)或(6,3).【点睛】本题考查了坐标与图形性质,利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.14.如图,(一周记为360°,一周多10°记为370°)点A1用极坐标表示为_____________;点A2用极坐标表示为_____________;点A3用极坐标表示为_____________;点A n用极坐标表示为____________ .【答案】(2,0°)(4,120°)(8,240°)().【分析】因为一周记为,一周多记为,即而得出点用极坐标表示为,根据规律求出的表示形式.【解析】∵一周记为,一周多记为,∴横坐标为2,纵坐标为,∴点用极坐标表示为;∵横坐标为4,纵坐标为,点用极坐标表示为;∵横坐标为8,纵坐标为,点用极坐标表示为;根据上述规律,∴点用极坐标表示为.【点睛】本题考查了利用角表示坐标的规律性题目,正确读懂题意是解题的关键.15.已知点A(2a+5,a﹣3)在第一、三象限的角平分线上,则a=_____.【答案】﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【解析】点A(2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.16.在平面直角坐标系中,已知点和,现将线段沿着直线平移,使点与点重合,则平移后点坐标是__________.【答案】【分析】点平移到点,横坐标加4,纵坐标加1,点B的平移规律与点A相同,由此可得平移后点坐标.【解析】解:由点平移到点,可知其平移规律为横坐标加4,纵坐标加1,点B的平移规律与点A相同,故平移后点B的坐标为.故答案为:【点睛】本题考查了图形的平移,找准点的平移规律是解题的关键.17.如图,A、B的坐标为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为__________;【答案】3【分析】先确定点A平移都A1确定平移方式,再按此平移方式B,得到B1点的坐标,最后代入求解即可.【解析】解:∵A(2,0)A1(3,1)∴点A平移都A1确定平移方式为先向右平移一个单位、再向上平移一个单位∵B(0,1)∴B1(1,2)∴a=1,b=2∴a+b=1+2=3.故答案为3.【点睛】本题考查了坐标与图形的平移变换,根据题意确定平移方式是解答本题的关键.18.在平面直角坐标系中,若点与点之间的距离是5,则______.【答案】1或【分析】根据纵坐标相同的点平行于x轴,再分点N在点M的左边和右边两种情况讨论求解.【解析】∵,∴M与N两点连线与x轴平行,∴,即,,解得:,.【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论.19.已知点A(-3,2m-2)在x轴上,点B(n+1,4)在y轴上,则点C(m,n)在第__________象限.【答案】四【分析】根据坐标轴上点的坐标特征求得m、n值,再根据各个象限中点的坐标特征解答即可.【解析】解:∵点A(-3,2m-2)在x轴上,点B(n+1,4)在y轴上,∴2m﹣2=0,n+1=0,解得:m=1,n=﹣1,∴点C(1,﹣1)在第四象限,故答案为:四.【点睛】本题考查平面直角坐标系中点的坐标特征,熟知坐标轴上及象限内的点的坐标特征是解答的关键.20.如图,在平面直角坐标系中,点A、B、C的坐标分别是、、,点P在y轴上,且坐标为,点P关于点A的对称点为,点关于点B的对称点为,点关于点C的对称点为,点关于点A的对称点为,点关于点B的对称点为,点关于点C的对称点为,点关于点A的对称点为,按此规律进行下去,则点的坐标是______.【答案】【分析】本题是对点的变化规律的考查,作出图形,观察出每6次对称为一个循环是解题的关键,也是本题的难点.根据对称依次作出对称点,便不难发现,点与点P重合,也就是每6次对称为一个循环,用2013除以6,根据商和余数的情况确定点的位置,然后写出坐标即可.【解析】解:根据题意画图,如图所示,点与点P重合,,点是第336循环组的第3个点,与点重合,点的坐标为.故答案为:.【点睛】本题主要考查了点的坐标规律探索,解题的关键在于能够准确找到相关规律进行求解.三、解答题21.体检时,医生将结果以(身高/cm,体重/kg)的有序数对进行记录,(185,80)就是身高185cm体重80kg.有一天,唐僧带着三徒弟去体检,医生把结果的有序数对记录在了下图中,唐僧的结果是(180,75),对应图中点B.请回答下列问题.(1)沙僧的结果是(190,110),则对应了图中的点.(2)A点是的结果,D点是的结果.(请填写“悟空”或“八戒”)(3)从这个图中我们还可以得出什么结论?结果越多越好哦!【答案】(1)C;(2)悟空;八戒;(3)见解析.【解析】【分析】(1)由已知可得,前面数字表示身高,后面表示体重;(2)根据两人的体重差别可得;(3)可以从体重和身高关系进行分析.【解析】解:(1)由已知可得,前面数字表示身高,后面表示体重,可得(190,110)对应点C,(2)根据悟空比唐僧轻,八戒比唐僧重,可得A表示悟空、D表示八戒,(3)结论:点的位置越往右下,人越矮胖,点的位置越往左上偏,人越瘦高.【点睛】理解有序数对的意义是解题的关键.22.画平面直角坐标系,标出下列各点:点在轴上,位于原点上方,距离原点2个单位长度;点在轴上,位于原点右侧,距离原点1个单位长度;点在轴上方,轴右侧,距离每条坐标轴都是2个单位长度;点在轴上,位于原点右侧,距离原点3个单位长度;点在轴上方,轴右侧,距离轴2个单位长度,距离轴4个单位长度,依次连接这些点,你能得到什么图形?【答案】见解析.【解析】【分析】根据各点的描述找出各点的坐标,将其标在同一坐标系中,依次连接这些点,由此即可得出结论.【解析】∵点A在y轴上,位于原点上方,距离原点2个单位长度,∴点A的坐标为(0,2);∵点B在x轴上,位于原点右侧,距离原点1个单位长度,∴点B的坐标为(1,0);∵点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,∴点C的坐标为(2,2);∵点D在x轴上,位于原点右侧,距离原点3个单位长度,∴点D的坐标为(3,0);∵点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,∴点E的坐标为(4,2).将A、B、C、D、E标在同一坐标系中,依次连接这些点,如图所示,得到的图形为W 形.如图,【点睛】本题考查了点的坐标,根据各点的描述找出各点的坐标是解题的关键.23.在平面直角坐标系中.(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,点B在第一象限,求m 的值,并确定n的取值范围.【答案】(1)(0,6);(2)n>﹣1.【分析】(1)根据y轴上的点的横坐标为0列出关于a的方程,解之可得;(2)由AB∥x轴知A、B纵坐标相等可得m的值,再根据点B在第一象限知点B的横坐标大于0,据此可得n的取值范围.【解析】解:(1)∵点P(2a﹣4,a+4)在y轴上,∴2a﹣4=0,解得:a=2,∴a+4=6,则点P的坐标为(0,6);(2)∵A(﹣2,m﹣3),B(n+1,4),AB∥x轴,∴m﹣3=4,解得:m=7,∵点B在第一象限,∴n+1>0,解得:n>﹣1.【点睛】本题主要考查坐标与图形的性质,解题的关键是掌握坐标轴上点的坐标特点及平行与x 轴的点的坐标特点.24.在网格中建立如图所示的平面直角坐标系,的顶点,,均在格点上,与关于轴对称.(1)画出;(2)直接写出点的坐标;(3)若是内部一点,点关于轴对称点为,且,请直接写出点的坐标.【答案】(1)见解析;(2);(3)【分析】(1)分别作出点A(4,5)、B(1,1)、C(5,3)关于y轴的对称点,依次连接起来即得到;(2)根据关于y轴对称的点的坐标的特征,即可写出点的坐标;(3)由点关于轴对称点为,则可得关于m的表达式,由可得关于m 的方程,解方程即可,从而求得点P的坐标.【解析】(1)如图所示.(2)点与C点关于y轴对称,且点C的坐标为(5,3),则点的坐标为;(3)∵点关于轴对称点为,且∴∵点P在△ABC的内部∴m>0∴∵∴2m=8∴m=4∴.【点睛】本题是坐标与图形问题,考查了画轴对称图形,关于y对称的点的坐标特征,掌握点关于y轴对称的坐标特征是解题的关键.25.如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)画出关于轴的对称图形;(2)若上有一点,那么对应上的点的坐标是______;(3)的面积是______.【答案】(1)见解析;(2);(3)3.【分析】(1)根据轴对称的性质即可作出△A1B1C1;(2)根据点关于x轴对称的性质求解即可;(3)根据网格运用割补法即可求出△ABC的面积.【解析】解:(1)如图,△A1B1C1即为所求;(2)点M1的坐标是(a,-b),故答案为(a,-b);(3)的面积为:故答案为3【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称的性质.26.已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点,请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)画出关于直线x=-1对称的,并写出各点坐标.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P点为(0,5)或(0,-3);【分析】(1)首先在坐标系中确定A、B、C三点位置,然后再连接即可;(2)首先确定A、B、C三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【解析】解:(1)如图:△ABC即为所求;(2)如图:即为所求;各点坐标分别为:,,;(3)解:设P(0,y),∵A(-2,1),B(3,1),∴AB=5,∴,∵=10,∴,∴,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键. 27.如图,三个顶点的坐标分别为、、.(1)若与关于轴成轴对称,请在答题卷上作出,并写出的三个顶点坐标;(2)求的面积;(3)若点为轴上一点,要使的值最小,请在答题卷上作出点的位置.(保留作图痕迹)【答案】(1)图见解析,、、;(2);(3)见解析【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1;(2)依据割补法进行计算,即可得到的面积.(3)连接CB1,交y轴于点P,则可得最小值;【解析】解:(1)如图,、、;(2)的面积为;(3)连接(或)与轴交于点,如图,【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.28.综合与实践问题背景:(1)已知,,,.在平面直角坐标系中描出这几个点,并分别找到线段和中点、,然后写出它们的坐标,则 , .探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为,,,,则线段的中点坐标为 .拓展应用:(3)利用上述规律解决下列问题:已知三点,,,第四个点与点、点、点中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点的坐标.【答案】(1)、;(2);(3),,【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解析】(1)如图:,,,.在平面直角坐标系中描出它们如下:线段和中点、的坐标分别为、答案:、.(2)若线段的两个端点的坐标分别为,,,,则线段的中点坐标为.答案:.(3),,,、、的中点分别为:、、①过中点时,,解得:,,故;②过中点时,,解得:,,故;③过的中点时,,解得:,,故.点的坐标为:,,.【点睛】本题考查了坐标与图形性质.通过此题,要熟记平面直角坐标系中线段中点的横坐标为对应线段的两个端点的横坐标的平均数,中点的纵坐标为对应线段的两个端点的纵坐标的平均数.29.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y 轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0,D为线段AC 的中点.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).(1)则A点的坐标为 ;点C的坐标为 ,D点的坐标为 .(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由.(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA 上运动的过程中,请确定∠OHC,∠ACE和∠OEC的数量关系,并说明理由.【答案】(1),,;(2)存在,;(3)【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,得出点A,C的坐标,再运用中点公式求出点D的坐标;(2)根据题意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列方程求解即可;(3)过点H作HP∥AC交x轴于点P,先证明OG∥AC,再根据角的和差关系以及平行线性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【解析】解:(1),,,,,,,设,为线段的中点.,,,故答案为:,,;(2)存在,.由条件可知:点从点运动到点需要时间为2秒,点从点运动到点需要时间2秒,,点在线段上,,,,,,,,,.(3)如图2,,,,,,,,如图,过点作交轴于点,则,,,,∴.【点睛】本题考查了平行线的性质,三角形面积,非负数的性质,中点坐标公式等,是一道三角形综合题,解题关键是学会添加辅助线,运用转化的思想思考问题.。
八年级数学位置与坐标知识点
八年级数学中,位置与坐标是一个重要的知识点。
以下是一些八年级数学位置与坐标
的基本知识点:
1. 直角坐标系:了解二维平面直角坐标系的定义和性质,包括x轴、y轴、原点以及
坐标轴之间的关系。
2. 点的坐标:学习如何根据一个点在直角坐标系中的位置确定它的坐标。
坐标通常用
一个有序数对(x, y)来表示,其中x是点在x轴上的投影坐标,y是点在y轴上的投影
坐标。
3. 坐标与位置关系:了解不同坐标对应于不同的位置,可以用坐标来确定点的位置,
也可以用位置确定点的坐标。
4. 定点与变量:区分定点和变量的概念。
定点是指在一个问题中位置不变的点,而变
量是指在一个问题中位置可以变化的点。
5. 平移:学习如何通过平移来改变点的位置,平移是指将点沿着一个方向按照相同的
距离保持方向不变地移动。
6. 位置关系的判定:学习如何通过坐标来判断点的位置关系,包括相等、平行、垂直、共线等。
7. 距离的计算:学习如何计算两点之间的距离,通常使用勾股定理或者坐标计算公式。
8. 坐标系的平移和旋转:学习如何通过平移和旋转来改变整个坐标系的位置和方向。
以上是八年级数学中位置与坐标的一些基本知识点。
通过学习这些知识点,可以帮助学生更好地理解点的位置和坐标在数学中的应用。
3.1 确定位置一、选择题1.电影院的第3排第6座表示为(3,6).若某同学的座位号为(4,2),那么该同学的位置是()A.第2排第4座B.第4排第2座C.第4座第4排D.无法确定2.2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米.能够准确表示芦山县这个地点位置的是()A.北纬30.3°B.东经103.0°C.四川省雅安市D.北纬31°,东经103°3.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)4.如图,学校在李老师家的南偏东30°方向,距离是500m,则李老师家在学校的()A.北偏东30°方向,相距500m处B.北偏西30°方向,相距500m处C.北偏东60°方向,相距500m处D.北偏西60°方向,相距500m处5.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°6.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)7.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(1,6)表示的“将”位置,那么“炮”的位置应表示为()A.(6,4)B.(4,6)C.(8,7)D.(7,8)8.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()A.D7,E6 B.D6,E7 C.E7,D6 D.E6,D79.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()A.4排3列B.4排5列C.5排4列D.5排5列二、填空题10.如图,学校在小明家偏度的方向上,距离约是米.11.小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示.12.如果电影院9排16号的座位用(9,16)表示,那么(10,2)表示排号.13.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.三、解答题14.(1)电影院在学校偏的方向上,距离是米.(2)书店在学校偏的方向上,距离是米.(3)图书馆在学校偏的方向上,距离是米.(4)李老师骑自行车从学校到邮局发邮件,每分钟走250米,需要多少分钟到达?15.如图,小王家在2街与2大道的十字路口,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示小王从家到工厂上班的一条路径,那么你能用同样的方式写出由家到工厂小王走的另一条路径吗?16.如图是小丽以学校为观测点,画出的一张平面图.(1)生源大酒店在学校偏方向米处.汽车站在学校偏方向米处;(2)中医院在邮电局东偏北60°方向400米处,请在上图中标出它的位置;(3)小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要分钟.北师大新版八年级数学上册同步练习:3.1 确定位置参考答案与试题解析一、选择题1.电影院的第3排第6座表示为(3,6).若某同学的座位号为(4,2),那么该同学的位置是()A.第2排第4座B.第4排第2座C.第4座第4排D.无法确定【考点】坐标确定位置.【分析】根据坐标确定位置,从有序数对的两个数的实际意义考虑解答.【解答】解:∵电影院的第3排第6座表示为(3,6),∴某同学的座位号为(4,2),该同学的位置是:第4排第2座.故选:B.【点评】本题考查了确定位置,理解有序数对的两个数的实际意义是解题的关键.2.2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米.能够准确表示芦山县这个地点位置的是()A.北纬30.3°B.东经103.0°C.四川省雅安市D.北纬31°,东经103°【考点】坐标确定位置.【分析】根据题意结合四川省雅安市芦山县发生7.0级地震即可得出芦山县这个地点位置.【解答】解:∵2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米,∴能够准确表示芦山县这个地点位置的是四川省雅安市.故选:C.【点评】此题主要考查了确定地理位置,正确理解题意是解题关键.3.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y 轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.【点评】由已知条件正确确定坐标轴的位置是解决本题的关键.4.如图,学校在李老师家的南偏东30°方向,距离是500m,则李老师家在学校的()A.北偏东30°方向,相距500m处B.北偏西30°方向,相距500m处C.北偏东60°方向,相距500m处D.北偏西60°方向,相距500m处【考点】坐标确定位置;方向角.【分析】以学校为原点建立坐标系,确定李老师家的位置.【解答】解:学校在李老师家的南偏东30°方向,距离是500m,以正北方向为y轴正方向,正东方向为x轴的正方向,以李老师家为原点,则学校在第四象限;以学校为原点建立坐标系,则李老师家在第二象限,即北偏西30°方向,相距500m处.故选B.【点评】本题利用了平面直角坐标系来理解生活中的相对位置问题.5.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有D能确定一个位置,故选:D.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.6.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【考点】坐标确定位置.【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【解答】解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.故选D.【点评】本题考查了学生的阅读理解能力,由已知条件正确确定坐标轴的位置是解决本题的关键.7.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(1,6)表示的“将”位置,那么“炮”的位置应表示为()A.(6,4)B.(4,6)C.(8,7)D.(7,8)【考点】坐标确定位置.【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:由“用(2,﹣3)表示“帅”的位置,向左移2个单位,向上移3个单位,那个点就是原点(0,0),建立坐标系.可得“炮”的位置为(6,4).故选A.【点评】本题解题的关键就是确定坐标原点和x,y轴的位置及方向.8.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()A.D7,E6 B.D6,E7 C.E7,D6 D.E6,D7【考点】坐标确定位置.【分析】读图可知:故宫所在位置是E竖排,7横行;鼓楼所在的位置是D竖排,6横行;故图中“故宫”、“鼓楼”所在的区域分别是E7,D6.【解答】解:故宫所在位置是E竖排,7横行;鼓楼所在的位置是D竖排,6横行.故图中“故宫”、“鼓楼”所在的区域分别是E7,D6.故选C.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力.9.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()A.4排3列B.4排5列C.5排4列D.5排5列【考点】坐标确定位置.【分析】在数轴上,用一个数据就能确定一个点的位置;在平面直角坐标系中,要用两个数据才能表示一个点的位置;在空间内要用三个数据才能表示一个点的位置.【解答】解:根据1号同学,2号同学,3号同学的说法,可知小明在第4列,再根据4号同学说:“小明离1号同学和3号同学的距离一样远”可得小明在第5排第4列.故选C.【点评】本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系,通过此题可以做到在生活中理解数学的意义.二、填空题10.如图,学校在小明家北偏西45 度的方向上,距离约是500 米.【考点】方向角.【分析】根据方向角的定义结合图例即可做出判断.【解答】解:学校在小明家北偏西45度的方向上,距离≈200×2.5=500米.故答案为:北;偏西45;500.【点评】本题主要考查的是方向角的定义,掌握方向角的定义是解题的关键.11.小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示(5,2).【考点】坐标确定位置.【专题】数形结合.【分析】由于他前面一个同学的座位为第5列第2个,然后可根据题中的表示方法用有序实数对表示他前面一个同学的座位.【解答】解:他前面一个同学的座位为第5列第2个,表示为(5,2).故答案为(5,2).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.如果电影院9排16号的座位用(9,16)表示,那么(10,2)表示10 排 2 号.【考点】坐标确定位置.【专题】应用题.【分析】由“9排16号”记作(9,16)可知,有序数对与排号对应,(10,2)的意义为第10排2号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数,∴(10,2)的意义为第10排2号.故答案为10排2号.【点评】本题主要考查了类比点的坐标解决实际问题的能力和阅读理解能力,比较简单.13.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用(6,1)表示C点的位置.【考点】坐标确定位置.【专题】网格型.【分析】可根据平移规律解答;也可根据已知两点的坐标建立坐标系后解答.【解答】解:以原点(0,0)为基准点,则C点为(0+6,0+1),即(6,1).故答案填:(6,1).【点评】本题考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.三、解答题14.(1)电影院在学校南偏东70°的方向上,距离是400 米.(2)书店在学校北偏西60°的方向上,距离是800 米.(3)图书馆在学校南偏西15°的方向上,距离是400 米.(4)李老师骑自行车从学校到邮局发邮件,每分钟走250米,需要多少分钟到达?【考点】方向角.【分析】(1)、(2)、(3)根据方向角的定义和图例即可做出判断;(4)根据时间=路程÷速度计算即可.【解答】解:(1)电影院在学校南偏东70°的方向上,距离是400米.(2)书店在学校北偏西60°的方向上,距离是800米.(3)图书馆在学校南偏西15°的方向上,距离是400米.故答案为:(1)南;偏东70°;400;(2)北;偏西60°;800(3)南;偏西15°400.(4)5×200÷250=4.答:需要4分钟到达.【点评】本题主要考查的是方向角的定义,掌握方向角的定义是解题的关键.15.如图,小王家在2街与2大道的十字路口,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示小王从家到工厂上班的一条路径,那么你能用同样的方式写出由家到工厂小王走的另一条路径吗?【考点】坐标确定位置.【专题】数形结合.【分析】每个十字路口用有序实数对表示,然后表示出第2大道与第2、3、4、5街的路口,再表示第5街与第3、4大道的路口,从而得到由家到工厂小王走的另一条路径.【解答】解:小王从家到工厂上班的另一条路径可为:(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.16.如图是小丽以学校为观测点,画出的一张平面图.(1)生源大酒店在学校北偏西30°方向400 米处.汽车站在学校南偏西50°方向600 米处;(2)中医院在邮电局东偏北60°方向400米处,请在上图中标出它的位置;(3)小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要24 分钟.【考点】方向角.【分析】(1)由图意可知:生源大酒店在学校北偏西30°处,汽车站在学校南偏西50°方向,再据“实际距离=图上距离÷比例尺”即可求得学校到生源大酒店的距离,以及学校到汽车站的距离;(2)依据“图上距离=实际距离×比例尺”即可求得中医院到邮电局的图上距离,再据方向和角度,即可标出中医院的位置;(3)先求出从汽车站经过学校、邮局再到中医院的实际距离,再据“路程÷速度=时间”即可求得小丽需要的时间.【解答】解:(1)生源大酒店在学校在学校北偏西30°处,汽车站在学校南偏西50°方向,量得学校到生源大酒店的距离是2厘米,则学校到生源大酒店的实际距离是:2÷=40000(厘米)=400(米);量得学校到汽车站的距离是3厘米,则学校到汽车站的实际距离是:3÷=60000(厘米)=600(米);故答案为:北、西30°、400、南、西50°、600;(2)因为400米=40000厘米,则中医院到邮电局的图上距离是:40000×=2(厘米);如图所示,即为中医院的位置:(3)量得学校到邮电局的图上距离为1厘米,则学校到邮电局的实际距离为:1÷=20000(厘米)=200(米);所以小丽需要的时间为:(600+200+400)÷50,=1200÷50,=24(分钟);答:小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要24分钟.故答案为:24.【点评】此题考查了方向角,用到的知识点是比例尺的意义、方向角、“路程÷速度=时间”,关键是根据所给出的图形量准图上的距离.。
一、选择题1.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 3.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3B .()1,3--C .()1,3-D .()1,3- 4.点A (3,4)关于x 轴的对称点的坐标为( ) A .(3,﹣4)B .(﹣3,﹣4)C .(﹣3,4)D .(﹣4,3) 5.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限B .x 轴上C .第四象限D .y 轴上 6.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2) C .(-2,4) D .(2,-4) 7.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8868.已知P(2-x ,3x-4)到两坐标轴的距离相等,则x 的值为( )A .32B .1-C .32或1-D .32或1 9.如下图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2020次运动到点( )A .()2020,2-B .()2020,0C .()2019,1D .()2019,0 10.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A ﹣B ﹣C ﹣D ﹣A …循环爬行,其中A 点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C 的坐标为(﹣1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A .(1,1)B .(1,0)C .(0,1)D .(1,﹣1) 11.在平面直角坐标中,点(2,5)M --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(﹣2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2020的坐标是( )A .(0,1)B .(﹣2,4)C .(﹣2,0)D .(0,3)二、填空题13.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________14.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.15.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.16.长方形共有_________________条对称轴.17.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.18.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰到矩形的边时的点为P n. 则点P3的坐标是_______,点P2014的坐标是_______.19.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)……根据这个规律探究可得,第115个点的坐标为________.20.在平面直角坐标系中,线段AB平行于x轴,且AB=4,若点A坐标为(-1,2),点B 的坐标为(a,b),则a+b=_______三、解答题21.如图所示的正方形网格中,每个小正方形的边长都是1,△ABC顶点都在网格线的交点上,点B坐标为(﹣3,0),点C坐标为(﹣2,﹣2);(1)根据上述条件,在网格中建立平面直角坐标系xOy;(2)画出△ABC分别关于x轴的对称图形△A1B1C1;(3)写出点A关于y轴对称点的坐标.22.如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)写出点B 1的坐标;(4)求△ABC 的面积.23.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.24.如图,在平面直角坐标系中,ABC 三个顶点坐标分别为()3,3A ,()1,1B ,()4,1C -.(1)画出ABC ,并求出ABC 的面积;(2)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出2B 、1C 两点的坐标.25.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .26.如图,已知△ABC 的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形111A B C ,并写出点1A 的坐标;(2)作出点C 关于直线m 对称的点2C ,并写出点2C 的坐标;(3)在x 轴上画出点P ,使PA +PC 最小.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.C【分析】根据点A,点A'坐标可得点A,点A'关于y轴对称,即可求点B'坐标.【详解】解:∵将线段AB沿坐标轴翻折后,点A(1,3)的对应点A′的坐标为(-1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(-2,1)故选:C.【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y轴对称的两点纵坐标相等,横坐标互为相反数是关键.3.D解析:D【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】1,3-,∵与点P关于原点对称的点Q为()-.∴点P的坐标是:()1,3故选D.【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.4.A解析:A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,-y),得出即可.【详解】点A(3,4)关于x轴对称点的坐标为:(3,-4).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键. 6.A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.7.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L ,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C.【点睛】本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律.8.D解析:D【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案.【详解】由题意,得2-x=3x-4或2-x+(3x-4)=0,解2-x=3x-4得x=32,解2-x+(3x-4)=0得x=1,x的值为32或1,故选D.【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.9.D解析:D【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2020除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:20204505÷=,∴动点P第2020次运动为第505个循环组的第4次运动,横坐标505412019⨯-=,纵坐标为0,∴点P此时坐标为(2019,0).故选:D.【点睛】本题考查了规律型:点的坐标,本题为平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.10.B解析:B【分析】由题意知:AB=2,BC=4,CD=2,DA=4,可求出蚂蚁爬行一周的路程为12个单位,然后求出2015个单位能爬167圈还剩11个单位,结合图形即可确定位置为(1,0)【详解】由题意知:AB=2,BC=4,CD=2,DA=4,∴蚂蚁爬行一周的路程为:2+4+2+4=12(单位),2015÷12=167(圈)…11(单位),即离起点差1个单位,∴蚂蚁爬行2015个单位时,所处的位置是AD和x轴的正半轴的交点上,∴其坐标为(1,0).故选:B.【点睛】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.11.C解析:C【分析】由于点M的横坐标为负数,纵坐标为负数,根据各象限内点的坐标的符号特征即可求解.【详解】解:∵-2<0,-5<0,∴点M(-2,-5)在第三象限.故选:C.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.B解析:B【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(-2,4),再反射到P5(-4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(-2,4),故选:B.【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.14.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 15.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第解析:()2021,1【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.16.【分析】依据轴对称图形的概念即在平面内如果一个图形沿一条直线折叠直线两旁的部分能够完全重合这样的图形叫做轴对称图形据此即可进行判断【详解】如下图长方形有2条对称轴故答案为2【点睛】解答此题的主要依据解析:2【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断.【详解】如下图长方形有2条对称轴,故答案为2.【点睛】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.17.【分析】先根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A(11)B(﹣11)C (﹣1﹣2)D(1﹣2)∴AB=1﹣(﹣1)=2BC=1﹣(0,1解析:()【分析】先根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.18.(83)(50)【详解】解:如图根据反射角与入射角的定义作出图形可知:(1)当点P第3次碰到矩形的边时点P的坐标为(83);(2)每6次反弹为一个循环组依次循环经过6次反弹后动点回到出发点(03)∵解析:(8,3)(5,0)【详解】解:如图,根据反射角与入射角的定义作出图形,可知:(1)当点P第3次碰到矩形的边时,点P的坐标为(8,3);(2)每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3);(5,0).19.(155)【分析】观察图形可知:第115个点为第15列的由上往下第10个可求出第115个点的坐标(此处纵坐标为6-1)【详解】解:观察图形可知:1+2+3+…+14==105105+10=115∴第解析:(15,5)【分析】观察图形,可知:第115个点为第15列的由上往下第10个,可求出第115个点的坐标(此处纵坐标为6-1).【详解】解:观察图形,可知:1+2+3+…+14=14(14+1)2=105,105+10=115,∴第115个点为第15列从上往下的第10个.∴第115个点的坐标为(15,5).故答案为:(15,5).【点睛】本题考查了规律型:点的坐标,找出第115个点为第15列的倒数第10个是解题的关键.20.5或-3【分析】根据题意求出ab 的值计算即可;【详解】∵AB 平行于x 轴且AB=4点A 坐标为(-12)∴或∴或;故答案是5或-3【点睛】本题主要考查了坐标与图形的性质明确平行于x 轴的直线上的纵坐标相等解析:5或-3【分析】根据题意求出a ,b 的值计算即可;【详解】∵AB 平行于x 轴,且AB=4,点A 坐标为(-1,2),∴2b =,145a =--=-或413a =-=,∴()253a b +=+-=-或235a b +=+=;故答案是5或-3.【点睛】本题主要考查了坐标与图形的性质,明确平行于x 轴的直线上的纵坐标相等是解题的关键.三、解答题21.(1)见解析;(2)见解析;(3)(5,4)【分析】(1)根据B ,C 两点坐标,分别确定横轴与纵轴的位置,即可作出平面直角坐标系; (2)分别作出A ,B ,C 的对应点A 1,B 1,C 1,再依次连接即可得出图形;(3)根据轴对称与坐标变换的性质,由点A 的坐标即可得出结果.【详解】解:(1)如图,平面直角坐标系即为所求作.(2)如图,△A 1B 1C 1;即为所求作.(3)∵点A 的坐标为(-5,4),∴点A 关于y 轴对称点的坐标(5,4).【点睛】本题考查作图−轴对称变换,解题的关键是熟练掌握平面直角坐标系中的坐标特点及轴对称与坐标变换之间的规律.22.(1)答案见解析;(2)答案见解析;(3)B 1(2,1);(4)4【分析】(1)根据点C 的坐标,向右一个单位,向下3个单位,确定出坐标原点,然后建立平面直角坐标系即可;(2)根据轴对称得到点A 1、B 1、C 1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出点B 1的坐标,(4)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)建立如图所示的平面直角坐标系:(2)(3)由(2)可得点B 1的坐标为B 1(2,1);(4)△ABC 的面积=111341223244222. 【点睛】本题考查轴对称作图问题,用到的知识点:图象的变换轴对称,看关键点的变换即可. 23.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D 的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.24.(1)画图见解析;5 (2)画图见解析;()11,1B -,()14,1C --【分析】(1)先根据A 、B 、C 三点坐标描点,再顺次连接即可得到ABC ,再运用割补法即可求出ABC 的面积;(2)分别作出A 、B 、C 三点关于y 轴的对称点,再顺次连接即可,根据作图即可写出2B 、1C 两点的坐标.【详解】解:(1)ABC 如图所示:111341422235222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;(2)111A B C △如图所示:()11,1B -,()14,1C --.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质. 25.(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )【分析】(1)利用A 、C 点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A 、B 、C 关于直线l 的对称点A 1、B 1、C 1即可; (3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A 1B 1C 1为所作的三角形;C 1的坐标为:(0,5);(3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).∴P1的坐标是(﹣a﹣4,b).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,26.(1)图见解析,A(-2,-2);(2)图见解析,C2(7,1);(3)图见解析【分析】(1)根据轴对称关系确定点A1、B1、C1的坐标,顺次连线即可;(2)根据轴对称的性质解答即可;(3)连接AC1,与x轴交点即为点P.【详解】(1)如图,A1(-2,-2);(2)如图,C2的坐标为(7,1);(3)连接AC1,与x轴交点即为所求点P.【点睛】此题考查轴对称的性质,利用轴对称关系作图,确定直角坐标系中点的坐标,最短路径问题作图,正确理解轴对称的性质是解题的关键.。
第三章位置与坐标第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是()A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为()图1A.(-4,6) B.(4,6)C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在()A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]()图2A.黑(3,7),白(5,3) B.黑(4,7),白(6,2)C.黑(2,7),白(5,3) D.黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述: 甲:从学校向北直走500米,再向东直走100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到博物馆; 丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( ) A .向南直走300米,再向西直走200米 B .向南直走300米,再向西直走600米 C .向南直走700米,再向西直走200米 D .向南直走700米,再向西直走600米7.若点P(-m ,3)与点Q(-5,n)关于y 轴对称,则m ,n 的值分别为( ) A .-5,3 B .5,3 C .5,-3 D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A(1,0),B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0) 请将选择题答案填入下表:二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD 翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图91.B 2.B3.B 4.C 5.C6.A7.A8.C 9.C10.B11.一12.(-7,-7)13.关于x轴对称14.(-5,0),(5,0),(0,4),(0,-4)15.(-1,3 3)或(-1,-3 3)9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,3 3);同理,当点C在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3.16.(9,6) 正东 (2n +1) [解析] 因为蓝精灵从点O 第一跳落到A 1(1,0),第二跳落到A 2(1,2),第三跳落到A 3(4,2),第四跳落到A 4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A 5(9,6).到达A 2n 后,要向正东方向跳(2n +1)个单位长度落到A 2n +1.17.解:答案不唯一,如以BC 所在直线为x 轴,过点B 作BC 的垂线为y 轴建立平面直角坐标系,由图可知,点A (12,5),B (0,0),C (24,0). 18.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a |=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图. (1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0). (3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB ∥x 轴,且AB =3-(-2)=5, 所以S △ABC =12×5×2=5.(3)存在.因为AB =5,S △ABP =10,所以点P 到AB 的距离为4.又因为点P 在y 轴上,所以点P 的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m +4=0,解得m =-2,则m -1=-3,所以点P 的坐标为(0,-3). (2)由题意,得m -1=0,解得m =1,则2m +4=6,所以点P 的坐标为(6,0).(3)由题意,得m -1=(2m +4)+3,解得m =-8,则2m +4=-12,m -1=-9, 所以点P 的坐标为(-12,-9).(4)由题意,得m -1=-3,解得m =-2,则2m +4=0,所以点P 的坐标为(0,-3). 22.解:由题意,可知折痕AD 所在的直线是四边形OAED 的对称轴.在Rt △ABE 中,AE =OA =10,AB =8,所以BE =AE 2-AB 2=102-82=6, 所以CE =4,所以E (4,8). 在Rt △DCE 中,DC 2+CE 2=DE 2, 又DE =OD ,所以(8-OD )2+42=OD 2, 所以OD =5,所以D (0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A (-3,4),D (8,1),E (7,4),F (4,3),G (1,7).(2)连接BE 和CG 相交于点H ,由题意,得BE =72+42=65,CG =72+42=65,所以BE =CG . 借助全等及三角形内角和等性质可得∠BHC 的度数:∠BHC =90°.24.解:(1)△A 2B 2C 2的三个顶点的坐标分别是A 2(4,0),B 2(5,0),C 2(5,2).(2)①如图①,当0<a ≤3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。
(考试真题)第三章位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,直角坐标系中,O为原点,A(12,0),在等腰三角形ABO中,OB=BA=10,点B在第一象限,C为y轴正半轴上一动点,作以∠CBD为顶角的等腰三角形CBD,且∠CBD=∠OBA,连接AD并延长与y轴交于点M(0,m),则m的值为().A. B. C. D.2、在平面直角坐标系xOy中,点P在第二象限,且点P到x轴的距离是4,到y轴的距离是5,则点P坐标是()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)3、如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A. B. C. D.4、如图,线段两个端点的坐标分别为、,以原点为位似中心,将线段放大得到线段,若点的坐标为,则点的坐标为()A. B. C. D.5、如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上6、平面直角坐标系中,的横坐标与纵坐标的绝对值之和叫做的勾股值,记为,即.若点B在第一象限且满足,则满足条件的所有B点与坐标轴围成的图形的面积为()A.2B.4C.6D.87、课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)8、如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2 ),则点C的坐标为()A.(,1)B.(1,)C.(1,2)D.(2,1)9、点M在第二象限内,M到x轴是距离是3,到y轴距离是2,那么点M的坐标是( )A.(-3,2)B.(-2,-3)C.(-2,3)D.(2,-3)10、在平面直角坐标系中,等腰直角三角形的两个锐角顶点坐标为(2,3),(0,﹣1),则它的直角顶点坐标为()A.(3,0)B.(﹣1,2)C.(1,1)D.(3,0),(﹣1,2)11、以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米12、下列选项所给数据,能让你在地图上准确找到位置的是()A.东经128°B.西经71°C.南纬13°D.东经118°,北纬24°13、如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A坐标是()A.(2,1)B.(1,﹣2)C.(1,2)D.(2,﹣1)14、如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A. B. C. D.15、已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.-1B.-4C.2D.3二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,正六边形的边长是2,则它的外接圆圆心的坐标是________.17、在平面直角坐标系中,点P(2t+8,5﹣t)在y轴上,则与点P关于x轴对称的点的坐标是________.18、如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点________.19、如图,半径为且坐标原点为圆心的圆交轴、轴于点、、、,过圆上的一动点(不与重合)作,且在右侧)⑴连结,当时,则点的横坐标是________.⑵连结,设线段的长为,则的取值范围是________.20、如图,写出各点的坐标:A(________,________ ),B(________,________ ),C(________,________ )。
第三章位置与坐标知识归纳与题型突破(十二类题型清单)01思维导图02知识速记一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点:(1)坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.四、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.03题型归纳题型一确定位置及其路径1.在平面内,下列数据不能确定物体位置的是()A.3号楼2单元5楼1号B.黄海路8号C.北偏西60︒D.东经120︒,北纬30︒巩固训练2.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为() A.(2,1)B.(3,3)C.(2,3)D.(3,2)3.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A .()()()2,22,55,6→→B .()()()2,22,56,5→→C .()()()2,26,26,5→→D .()()()()22236365→→→,,,,题型二判断点所在的象限4.点(6,3)-在()A .第一象限B .第二象限C .第三象限D .第四象限巩固训练5.如图,在平面直角坐标系中,点P 的坐标可能是()A .()1.3,1B .()1.3,1-C .()1.3,1--D .()1.3,1-6.如果点(),P a b ab +在第二象限,那么点(),Q a b -在第()象限.A .一B .二C .三D .四题型三求点到坐标轴的距离7.点F 的坐标为()2,3-,那么点F 到x 轴和y 轴的距离依次是()A .3,2-B .2,3-C .3,2D .2,3巩固训练8.在平面直角坐标系中,点(2-到x 轴的距离为()A .2BC .2-D .题型四写出平面直角坐标系中点的坐标9.若点()35P a a --,在y 轴上,则点P 的坐标为()A .(0,4)B .(40),C .(2,0)-D .(0,2)-巩固训练10.已知点P 位于第二象限,到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为()A .()35-,B .()53-,C .()35-,或()35,D .()53-,或()53,11.若点A 的坐标是()2,1-,4AB =,且AB x ∥轴,则点B 的坐标为()A .()2,5-B .()6,1-或()2,1--C .()2,3D .()2,3或()2,5-12.点P 在x 轴的下侧,y 轴的右侧,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为()A .()3,4-B .()4,3-C .()4,3-D .()3,4-13.已知点Q 的坐标为()2,3-,点P 的坐标为()22,5a a +-,若直线PQ y ⊥轴,则点P 的坐标为()A .()2,5-B .()2,2C .()6,3-D .()14,3--14.已知点(),P a b 到x 轴的距离为2,到y 轴的距离为5,且a b a b -=-,则点P 的坐标为()A .()52-,B .()52-,C .()52-,或()52-,D .()52,或()52-,题型五平面直角坐标系中点的坐标综合判断15.下列说法中错误的是()A .x 轴上的所有点的纵坐标都等于0B .y 轴上的所有点的横坐标都等于0C .原点的坐标是(0,0)D .点(2,7)A -与点(7,2)B -是同一个点巩固训练16.下列说法正确的是()A .(32),和(2,3)表示同一个点B .点在x 轴的正半轴上C .点(2,4)-在第四象限D .点(31)-,到x 轴的距离为317.下列命题不正确的是()A .平行于x 轴的直线上的所有点的纵坐标都相同B .在平面直角坐标系中,()1,2-和()2,1-表示两个不同的点C .若点(),P a b 在y 轴上,则=0aD .()3,4P -到x 轴的距离为318.在平面直角坐标系中,已知点()1,23M m m -+,分别根据下列条件,求出M 点的坐标.(1)点M 在y 轴上;(2)点M 到x 轴的距离为1;(3)点N 的坐标为(5,1)-,且MN x ∥轴.19.已知在平面直角坐标系中,有线段MN ,其中点()2,3M -,点()8,3N ,则线段MN 中点的坐标为()A .()5,3B .()4.5,3C .()4,3D .()3,3题型六轴对称20.下列图形中,对称轴最多的图形是()A .B .C .D .巩固训练21.下列轴对称图形中,对称轴的条数四条的有()个A .1B .2C .3D .4题型七轴对称的应用22.一个车牌号码在水中的倒影如图所示,则该车牌号码为.巩固训练23.如图,这是小明在平面镜里看到的背后墙上电子钟显示的时间,则此刻的实际时间应该是.题型八坐标的平移24.将点A 先向下平移3个单位,再向右平移2个单位后得B (﹣1,5),则A 点坐标为()A .(﹣4,11)B .(﹣2,6)C .(﹣4,8)D .(﹣3,8)巩固训练25.如果点(),P a b 向上平移3个单位长度,再向左平移2个单位长度后得到的点的坐标是()2,3--,那么a ,b 的值分别是()A .0,0a b ==B .0,6a b ==-C .0,4a b ==D .5,1a b ==-26.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标()A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以2题型九坐标的对称问题27.在平面直角坐标系中,点(5,6)关于x 轴的对称点是()A .(6,5)B .(-5,6)C .(5,-6)D .(-5,-6)巩固训练28.已知()2,A a 、(),3B b -两点关于x 轴对称,则a b +的值为()A .5B .1C .1-D .5-29.在平面直角坐标系中,若点(2,3)P m 与点(4,)Q n -关于原点对称,则m n -的值为()A .2B .5-C .5D .8-30.如图,△ABC 的三个顶点的坐标分别为()()()0,0,1,3,2,2A B C .(1)请画出平面直角坐标系;(2)画出ABC V 关于y 轴对称的111A B C △;(3)判断ABC V 的形状,并说明理由.题型十坐标系的简单应用31.根据下面的描述,在平面图上标出各场所的位置.(1)小彬家在广场西南方向1200米处;(2)小丽家在广场北偏西20°方向600米处;(3)柳柳家在广场东偏北30°方向900米处.巩固训练32.如图是某学校的平面示意图,已知从清源楼向西走300米到达明德楼,图书馆在知行楼与致远楼的正中间位置.(1)请根据以上条件,选取清源楼为坐标原点,以正东方向为x轴的正方向,以100米为一个单位长度建立平面直角坐标系,并标出图书馆的位置;(2)在(1)的条件下,可得致远楼坐标为()14,,请直接写出图书馆、知行楼、清源楼和崇文楼的坐标.33.如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.(1)图中“象”的位置可表示为;(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.题型十一点坐标的规律问题34.小明同学在一次数学探究活动中,将小正方形放置在如图所示的平面直角坐标系中,使得小正方形的中心(即正方形对角线的交点)位于原点,各顶点在坐标轴上,若各顶点到原点的距离为1.接下来,按如.图方式...作新正方形,即从第二个正方形开始,以前一个正方形的一条对角线为边作正方形,则第十个正方形中心10O 的坐标为()A .()8,16B .()8,20C .()15,46D .()15,48巩固训练35.如图,在平面直角坐标系中,对ABC V 进行循环往复的轴对称变换,若原来点B 坐标是()5,2-,则经过第2023次变换后点B 的对应点的坐标为()A .()5,2--B .()5,2-C .()5,2-D .()5,236.在平面直角坐标系中,横、纵坐标均为整数的点称为整数点.如图,一列按箭头方向有规律排列的整数点,其坐标依次为(1,0),(1,1),(2,1),(2,0),(3,0),(3,1),(3,2),(2,2),…,根据规律,第2024个整数点的坐标为.37.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点(,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点(L ,按这样的运动规律,经过2024次运动后,电子蚂蚁运动到的位置的坐标是.题型十二平面直角坐标系的几何应用38.在平面直角坐标系中,点(0)A m ,,230()B m +,,210()P m +,,PQ x ⊥轴,点Q 的纵坐标为m .则以下说法错误的是()A .当5m =-,点B 是线段AP 的中点B .当1m ≥-,点P 一定在线段AB 上C .存在唯一一个m 的值,使得AB PQ =D .存在唯一一个m 的值,使得2AB PQ=巩固训练39.在平面直角坐标系中,O 为坐标原点,过点()8,6A 分别作x 轴、y 轴的平行线,交y 轴于点B ,交x 轴于点C .(1)直接写出点B 和点C 的坐标,其中点B 的坐标为__________,点C 的坐标为__________;(2)动点P 若从点O 出发,沿射线OC 以1个单位长度/秒的速度运动,运动时间为t (秒),当OAP 为直角三角形时,求t 的值.(3)动点P 若从点B 出发,沿B A C →→以2个单位长度/秒的速度向终点C 运动,运动时间为t (秒),点()2,0D ,连接PD 、AD ,是否存在这样的t 值,使112APD ABOC S S =四边形△,若存在,请求出t 值,若不存在,请说明理由.40.如图,在平面直角坐标系中,直线AB 与两坐标轴分别交于A ,B 两点,若线段OA 与OB 的长满足等式290OB OA -+=.(1)求线段OA ,OB 的长;(2)若点C 的坐标为()1,2-,连接,AC BC ,则ABC V 的面积为______;(3)若点D 在线段AB 上,且2AD BD =,点Q 在x 轴上且10ADQ S = ,请直接写出点D 的坐标______,点Q 的坐标______.(数学活动小组的同学发现:可连接OD ,OBD 的面积是OAB △面积的13,OAD △的面积是OAB △面积的23,利用其面积即可求出点D 坐标.41.已知,ABC V 是等腰直角三角形,BC AB =,A 点在x 轴负半轴上,直角顶点B 在y 轴上,点C 在x 轴上方.(1)如图1所示,若A 的坐标是()30-,,点B 的坐标是()01,,求点C 的坐标;(2)如图2,过点C 作CD y ⊥轴于D ,请直接写出线段OA OD CD ,,之间等量关系;(3)如图3,若x 轴恰好平分BAC BC ∠,与x 轴交于点E ,过点C 作CF x ⊥轴于F ,问CF 与AE 有怎样的数量关系?并说明理由.第三章位置与坐标知识归纳与题型突破(十二类题型清单)01思维导图02知识速记一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点:(1)坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.四、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.03题型归纳题型一确定位置及其路径1.在平面内,下列数据不能确定物体位置的是()A.3号楼2单元5楼1号B.黄海路8号C.北偏西60︒D.东经120︒,北纬30︒【答案】C【分析】本题主要考查了确定物体的位置,解题的关键是掌握确定物体的位置的方法.【解析】解:北偏西60︒只有方向,没有距离,不能确定物体位置的,故选:C.巩固训练2.一个学生方队,B 的位置是第8列第7行,记为(8,7),则学生A 在第二列第三行的位置可以表示为()A .(2,1)B .(3,3)C .(2,3)D .(3,2)【答案】C【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行,据此即可解答.【解析】根据题干分析可得:B 的位置是第8列第7行,记为(8,7),学生A 在第二列第三行的位置可以表示为:(2,3).故选C .【点睛】本题考查了数对表示位置的方法,根据已知得出列与行的意义是解题的关键.3.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A 表示.某人由点B 出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)()A .()()()2,22,55,6→→B .()()()2,22,56,5→→C .()()()2,26,26,5→→D .()()()()22236365→→→,,,,【答案】A【分析】根据图象一一判断即可解决问题.【解析】A 选项:由图象可知()()()2,22,55,6→→不能到达点A ,正确.B 选项:由图象可知()()()2,22,56,5→→能到达点A ,与题意不符.C 选项:由图象可知()()()2,26,26,5→→到达点A ,与题意不符.D 选项:由图象可知(()()()()22236365→→→,,,,到达点A 正确,与题意不符.故选:A .【点睛】本题考查坐标确定位置、解题的关键是理解点与有序数对是一一对应关系,属于中考常考题型.题型二判断点所在的象限4.点(6,3)-在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】利用各象限内点的坐标的符号特征进而得出答案.【解析】解:因为点(6,3)-横坐标为负数,纵坐标为正数,所以点(6,3)-在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,解题的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.巩固训练5.如图,在平面直角坐标系中,点P 的坐标可能是()A .()1.3,1B .()1.3,1-C .()1.3,1--D .()1.3,1-【答案】C【分析】根据平面直角坐标系中第三象限点的坐标特征(),--,即可解答.【解析】解:如图,在平面直角坐标系中,点P 在第三象限∴点P 的坐标可能是()1.3,1--故选:C .【点睛】本题考查了点的坐标,熟练掌握平面直角坐标系中每一象限点的坐标特征是解题的关键.6.如果点(),P a b ab +在第二象限,那么点(),Q a b -在第()象限.A .一B .二C .三D .四【答案】B【分析】由点P 在第二象限得到0,0a b ab +<>,,即可得到a 与b 的符号,由此判断点Q 所在的象限.【解析】解:∵点(),P a b ab +在第二象限,∴0,0a b ab +<>,∴0,0a b <<,∴0b ->,∴点(),Q a b -在第二象限.故选:B【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.题型三求点到坐标轴的距离7.点F 的坐标为()2,3-,那么点F 到x 轴和y 轴的距离依次是()A .3,2-B .2,3-C .3,2D .2,3【答案】C【分析】根据点到x 轴的距离等于纵坐标的绝对值,点到y 轴的距离等于横坐标的绝对值,进行计算即可解答.【解析】解:∵点F 的坐标为()2,3-,∴点F 到x 轴和y 轴的距离依次是3,2故选:C .【点睛】本题考查了点的坐标,解题的关键是熟练掌握点到x 轴的距离等于纵坐标的绝对值,点到y 轴的距离等于横坐标的绝对值.巩固训练8.在平面直角坐标系中,点(2-到x 轴的距离为()A .2BC .2-D .9.若点()35P a a --,在y 轴上,则点P 的坐标为()A .(0,4)B .(40),C .(2,0)-D .(0,2)-【答案】D【分析】直接利用y 轴上点的坐标特点得出a 的值,进而得出答案.【解析】解:∵点)3,5(P a a --在y 轴上,∴30a -=,解得:3a =,则52a -=-,则点P 的坐标为(0,2)-.故选:D .【点睛】此题主要考查了点的坐标,掌握y 轴上点的坐标特点,横坐标为零是解题关键.巩固训练10.已知点P 位于第二象限,到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为()A .()35-,B .()53-,C .()35-,或()35,D .()53-,或()53,【答案】B【分析】直接利用第二象限内的点的坐标特征即可得到答案.【解析】解: 点P 位于第二象限,到x 轴的距离为3,到y 轴的距离为5,∴点P 的坐标为()53-,,故选:B .【点睛】本题主要考查的是点的坐标,解答本题的关键是明确点到x 轴的距离是这点的纵坐标的绝对值,到y 轴的距离是这点的横坐标的绝对值.11.若点A 的坐标是()2,1-,4AB =,且AB x ∥轴,则点B 的坐标为()A .()2,5-B .()6,1-或()2,1--C .()2,3D .()2,3或()2,5-【答案】B【分析】根据题意,点B 与点A 的纵坐标相同,横坐标有两种情况:B 在A 右侧和B 在A 左侧,分别求解即可.【解析】解: 点A 的坐标是()2,1-,4AB =,且AB x ∥轴,∴点B 的纵坐标为1-,横坐标是242-=-或246+=,∴点B 的坐标为()2,1--或()6,1-,故选:B .【点睛】本题考查了坐标与图形的性质,属于基础题,解题时注意分类讨论,避免出现漏解的情况.12.点P 在x 轴的下侧,y 轴的右侧,距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为()A .()3,4-B .()4,3-C .()4,3-D .()3,4-【答案】B【分析】根据点P 在x 轴的下侧,y 轴的右侧,得出点P 在第四象限,再根据距离x 轴3个单位长度,距离y 轴4个单位长度即可得出最后结果.【解析】解: 点P 在x 轴的下侧,y 轴的右侧,∴点P 在第四象限,点P 距离x 轴3个单位长度,距离y 轴4个单位长度,∴点P 的横坐标为4,纵坐标为3-,∴点P 的坐标为()4,3-.故选:B .【点睛】本题考查的是点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,判断出所求点所在的象限是解答本题的关键.13.已知点Q 的坐标为()2,3-,点P 的坐标为()22,5a a +-,若直线PQ y ⊥轴,则点P 的坐标为()A .()2,5-B .()2,2C .()6,3-D .()14,3--【答案】C【分析】利用直角坐标系中垂直于y 轴或平行于x 轴的直线上的点的纵坐标相同的特点进行计算即可.【解析】解:∵点Q 的坐标为()2,3-,点P 的坐标为()22,5a a +-,直线PQ y ⊥轴,∴53a -=-,∴2a =,∴226a +=,∴点P 的坐标为()6,3-.故选:C .【点睛】本题考查了坐标与图形的性质,解题的关键是掌握坐标系中点的坐标的特点和图形的性质.14.已知点(),P a b 到x 轴的距离为2,到y 轴的距离为5,且a b a b -=-,则点P 的坐标为()A .()52-,B .()52-,C .()52-,或()52-,D .()52,或()52-,15.下列说法中错误的是()A .x 轴上的所有点的纵坐标都等于0B .y 轴上的所有点的横坐标都等于0C .原点的坐标是(0,0)D .点(2,7)A -与点(7,2)B -是同一个点【答案】D【分析】根据平面直角坐标系中坐标轴上的点的特征,及各个象限内点的特征依次判断即可.【解析】A.x 轴上的所有点的纵坐标都等于0,正确,故不符合题意;B.y 轴上的所有点的横坐标都等于0,正确,故不符合题意;C.原点的坐标是(0,0),正确,故不符合题意;D.()2,7A -与点()7,2B -它们的横,纵坐标都不相同,所以不是同一个点,故D 选项错误,符合题意.【点睛】本题主要考查平面直角坐标系中坐标轴上的点的特征,及各个象限内点的特征.第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),+-.熟练掌握以上知识是解题的关键.巩固训练16.下列说法正确的是()A .(32),和(2,3)表示同一个点B .点在x 轴的正半轴上C .点(2,4)-在第四象限D .点(31)-,到x 轴的距离为3【答案】B17.下列命题不正确的是()A .平行于x 轴的直线上的所有点的纵坐标都相同B .在平面直角坐标系中,()1,2-和()2,1-表示两个不同的点C .若点(),P a b 在y 轴上,则=0a D .()3,4P -到x 轴的距离为3【答案】D【分析】根据平面直角坐标系中点的坐标特点,点到坐标轴的距离求解即可.【解析】解:A .平行于x 轴的直线上所有点的纵坐标都相同,正确,不符合题意;B .在平面直角坐标系中,()1,2-和()2,1-表示两个不同的点,正确,不符合题意;C .点P (a ,b )在y 轴上,则a =0,正确,不符合题意;D .点P (3-,4),则P 到x 轴的距离为|4|=4,选项错误,符合题意.故选:D .【点睛】此题考查了平面直角坐标系中点的坐标特点,点到坐标轴的距离等知识,解题的关键是熟练掌握以上知识点.18.在平面直角坐标系中,已知点()1,23M m m -+,分别根据下列条件,求出M 点的坐标.(1)点M 在y 轴上;(2)点M 到x 轴的距离为1;(3)点N 的坐标为(5,1)-,且MN x ∥轴.【答案】(1)()0,5M。
北师大版八年级上册数学第三章位置与坐标含答案一、单选题(共15题,共计45分)1、在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个2、若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)3、为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,0),表示点B的坐标为(3,3),则表示其他位置的点的坐标正确的是()A. B. C. D.4、已知点A(a﹣2,a+1)在x轴上,则a等于()A.1B.0C.﹣1D.25、在直角坐标系中,点M(,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(﹣2,3)C.(0,0)D.(﹣3,﹣2)7、下列数据能确定物体具体位置的是()A.明华小区东B.希望路右边C.东经118°,北纬28°D.北偏东30°8、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3)C.(3,2)D.(3,﹣2)9、平面直角坐标系中的点P(2,-1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、如图,己知菱形ABCD的顶点的坐标为,顶点B的坐标为若将菱形ABCD绕原点O逆时针旋转称为1次变换,则经过2020次变换后点C的坐标为( )A. B. C. D.11、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)12、已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为( )A.(3,2)B.(-3,-2)C.(3,-2)D.(2,3),(2,-3),(-2,3),(-2,-3)13、若(1,2)表示教室里第1列第2排的位置,则教室里第3列第2排的位置表示为A.(2,3)B.(3,2)C.(2,1)D.(3,3)14、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个15、如果点M在第四象限,且点M到y轴的距离是4,到x轴的距离是3,则点M的坐标为()A.(4,-3)B.(-4,3)C.(3,4)D.(-3,4)二、填空题(共10题,共计30分)16、点M(2,﹣3)关于y轴对称的对称点N的坐标是________17、在平面直角坐标系中,已知点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A2016的坐标为________18、如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B 的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为________.19、如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(45,2)的是点________.20、如图,在平面直角坐标系中,点A、B的坐标分别为、,点在第一象限内,连接、.已知,则________.21、点关于原点对称的点的坐标是________.22、在平面直角坐标系中,点P(-2,1)关于x轴的对称点的坐标为________23、点(5,-8)关于原点对称点的坐标为________24、已知在平面直角坐标系中,点O为坐标原点,点P的坐标为(-2,2),射线PA与x轴正半轴交于点A,射线PB与y轴负半轴交于点B,且线段OA的长度大于线段OB,同时始终满足∠APB=45°,则AOB的面积为________.25、若点与点关于轴对称,则________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。
北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。
八年级数学位置与坐标知识点
八年级数学位置与坐标的知识点包括:
1. 坐标轴及坐标系:了解一维和二维坐标系,以及如何画出坐标轴和坐标系。
2. 坐标的表示:学习如何用有序数对表示一个点的坐标,如(x, y)。
3. 点的位置关系:了解如何通过比较坐标来描述点的位置关系,如相等、大于、小于等。
4. 点的对称:学习如何通过对称轴来确定点的位置。
5. 点的平移:了解如何通过向量来进行点的平移。
6. 点的旋转:学习如何通过中心点和角度来进行点的旋转。
7. 点的映射:了解如何通过一一对应的关系来进行点的映射。
8. 图形的坐标表示:学习如何通过多个点的坐标来表示一个图形。
9. 直线的方程:了解如何通过点和斜率来表示一条直线的方程。
10. 中点和距离:学习如何通过两点的坐标来求中点和距离。
以上是八年级数学位置与坐标的主要知识点,通过掌握这些知识点可以更好地理解和应用数学中的位置和坐标概念。
一、选择题1.在平面直角坐标系中,点()3,4A 关于原点O 的对称点是点A ',则OA '=( ) A .3B .4C .5D .52.已知点Q 与点(3,)P a 关于x 轴对称点是(,2)Q b -,那么点(,)a b 为( ) A .(2,3)- B .(2,3)C .(3,2)D .(3,2)-3.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上 4.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 5.已知A ,B 两点关于x 轴对称,若点A 坐标为(2,-3),则点B 的坐标是( ) A .(2,-3) B .(-2,3) C .(-2,-3) D .(2,3) 6.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 7.如图,在平面直角坐标系上有个点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1,A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2019次跳动至点2019A 的坐标是( )A .()505,1009-B .()505,1010C .()504,1009-D .()504,10108.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位9.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.A(-2,-3)到x 轴的距离为( )A .-2B .-3C .3D .211.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A ﹣B ﹣C ﹣D ﹣A …循环爬行,其中A 点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C 的坐标为(﹣1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A .(1,1)B .(1,0)C .(0,1)D .(1,﹣1)12.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,3二、填空题13.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2022A 的坐标是__________.14.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____.15.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 16.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 17.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 18.若点M (a -3,a +4)在y 轴上,则a =___________.19.如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,……,按这样的运动规律,动点P 第2018次运动到点的坐标是________.20.在平面直角坐标系中,线段AB 平行于x 轴,且AB=4,若点A 坐标为(-1,2),点B 的坐标为(a ,b ),则a+b=_______三、解答题21.某高速公路的同一侧有A ,B 两个城镇,如图所示,它们到高速公路所在直线MN 的距离分别为2km AE =,3km BF =,12km EF =,要在高速公路上E 、F 之间建一个出口Q ,使A 、B 两城镇到Q 的距离之和最短,在图中画出点Q 所在位置,并求出这个最短距离.22.如图,已知△ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)请直接写出点A 关于y 轴对称的点的坐标;(2)在这个坐标系内画出△1A 1B 1C ,使△1A 1B 1C ,与△ABC 关于y 轴对称. 23.如图,在平面直角坐标系中,已知A (0,2),B (1,0),点C 在第一象限,AB =AC ,∠BAC =90°. (1)求点C 到y 轴的距离; (2)点C 的坐标为 .24.在平面直角坐标系中,已知点(1,3)A ,(3,1)B ,(4,3)C .(1)画出ABC ;(2)画出ABC 关于x 轴对称的111A B C △.连接1A B ,请直接写出线段1A B 的长. 25.如图1,在平面内取一个定点O ,自O 引一条射线O x ,设M 是平面内一点,点O 与点M 的距离为m (m >0), 以射线O x 为始边,射线OM 为终边的∠x OM 的度数为x °(x≥0).那么我们规定用有序数对(m ,x °)表示点M 在平面内的位置,并记为M (m ,x °).例如,在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°).(1)如图3,如果点N 在平面内的位置记为N (6,35°),那么ON= ;xON ∠= °;(2)如图4,点A ,点B 在射线O x 上,点A ,B 在平面内的位置分别记为(a ,0°), (2a ,0°)点A ,E ,C 在同一条直线上. 且OE=BC .用等式表示∠OEA 与∠ACB 之间的数量关系,并证明.26.如图,在平面直角坐标系xOy 中,A(﹣1,5),B(﹣1,0),C(﹣4,3). (1)求出ABC 的面积.(2)在图中作出ABC 关于y 轴的对称图形111A B C △. (3)写出点A 1,B 1,C 1的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据对称性知道,OA=OA ',计算OA 的长度即可. 【详解】 ∵()3,4A ,∴,A关于原点O的对称点是点A',∵点()3,4∴OA=OA'=5,故选:C.【点睛】本题考查了关于原点对称,点到原点的距离计算,熟练掌握原点对称的性质,点到原点的距离计算是解题的关键.2.B解析:B【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案.【详解】解:∵点P(3,a)关于x轴的对称点为Q(b,-2),∴a=2,b=3,∴点(a,b)的坐标为(2,3),故选:B.【点睛】此题主要考查了关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.3.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,故选B.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.4.B解析:B【分析】直接利用关于y轴对称点的性质得出答案.【详解】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.D解析:D【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案.【详解】∵A,B两点关于x轴对称,点A坐标为(2,-3),∴点B坐标为(2,3),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.6.D解析:D【分析】由点M、N的坐标得出点M、N的纵坐标相等,据此知直线MN∥x轴,继而得出直线MN⊥y轴,从而得出答案.【详解】解:∵点M(12,-5)、N(-7,-5),∴点M、N的纵坐标相等,∴直线MN∥x轴,则直线MN⊥y轴,故选:D.【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y轴的直线上是解题的关键.7.B解析:B【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2019=504×4+3即可得出点A2019的坐标.【详解】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2019=504×4+3∴A2019(504+1,504×2+2),即()505,1010.故选:B.【点睛】本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”是解题的关键.8.A解析:A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.B解析:B【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答.【详解】∵m2≥0,∴−m2−1<0,∴点P(−m2−1,2)在第二象限.故选:B.【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.10.C解析:C【分析】平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.【详解】解:点A(-2,-3)到x轴的距离为|-3|=3.故选C.【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.11.B解析:B【分析】由题意知:AB=2,BC=4,CD=2,DA=4,可求出蚂蚁爬行一周的路程为12个单位,然后求出2015个单位能爬167圈还剩11个单位,结合图形即可确定位置为(1,0)【详解】由题意知:AB=2,BC=4,CD=2,DA=4,∴蚂蚁爬行一周的路程为:2+4+2+4=12(单位),2015÷12=167(圈)…11(单位),即离起点差1个单位,∴蚂蚁爬行2015个单位时,所处的位置是AD和x轴的正半轴的交点上,∴其坐标为(1,0).故选:B.【点睛】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.12.D解析:D【分析】由经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C 的坐标为(2,3). 故选:D . 【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.二、填空题13.【分析】根据图象可得移动8次图象完成一个循环从而可得出点的坐标【详解】解:A1(01)A2(11)A3(10)A4(20)A5(2-1)A6(3-1)A7(30)A8(40)A9(41)…2022÷ 解析:()1011,1-【分析】根据图象可得移动8次图象完成一个循环,从而可得出点2022A 的坐标. 【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,-1),A 6(3,-1),A 7(3,0),A 8(4,0),A 9(4,1),…, 2022÷8=252…6,所以2022A 的坐标为(252×4+3,-1), ∴点2022A 的坐标是是()1011,1-. 故答案为:()1011,1-. 【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.14.(-5-1)【分析】考查平面直角坐标系点的对称性质【详解】解:点A (mn )关于y 轴对称点的坐标A′(-mn )∴点A (5-1)关于y 轴对称的点的坐标为(-5-1)故答案为:(-5-1)【点睛】此题考查解析:(-5,-1). 【分析】考查平面直角坐标系点的对称性质. 【详解】解:点A (m ,n )关于y 轴对称点的坐标A′(-m ,n ) ∴点A (5,-1)关于y 轴对称的点的坐标为(-5,-1). 故答案为:(-5,-1). 【点睛】此题考查平面直角坐标系点对称的应用.15.-7或9【分析】根据纵坐标相同可知MN ∥x 轴然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标即可得解【详解】∵点M (13)与点N (x3)的纵坐标都是3∴MN ∥x 轴∵MN =8∴点N 在点M 的左边时x 解析:-7或9【分析】根据纵坐标相同可知MN ∥x 轴,然后分点N 在点M 的左边与右边两种情况求出点N 的横坐标,即可得解.【详解】∵点M (1,3)与点N (x ,3)的纵坐标都是3,∴MN ∥x 轴,∵MN =8,∴点N 在点M 的左边时,x =1−8=−7,点N 在点M 的右边时,x =1+8=9, ∴x 的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.16.()或(7-7)【分析】根据题意可得关于a 的绝对值方程解方程可得a 的值进一步即得答案【详解】解:∵P(2-a2a+3)到两坐标轴的距离相等∴∴或解得或当时P 点坐标为();当时P 点坐标为(7-7)故答解析:(73,73)或(7,-7). 【分析】 根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案.【详解】解:∵P (2-a ,2a +3)到两坐标轴的距离相等, ∴223a a -=+.∴223a a -=+或2(23)a a -=-+, 解得13a =-或5a =-, 当13a =-时,P 点坐标为(73,73); 当5a =-时,P 点坐标为(7,-7). 故答案为(73,73)或(7,-7). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键. 17.7或﹣4【分析】根据题意可以求得a 的值然后再对t 进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t >2时h=t ﹣1则3(t ﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值.【详解】由题意可得,“水平底”a=1﹣(﹣2)=3,当t>2时,h=t﹣1,则3(t﹣1)=18,解得,t=7;当1≤t≤2时,h=2﹣1=1≠6,故此种情况不符合题意;当t<1时,h=2﹣t,则3(2﹣t)=18,解得t=﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.18.3【分析】在y轴上的点横坐标为零即a-3=0即可解答【详解】解:∵点M (a-3a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征第一象限内点的坐标特征为(解析:3【分析】在y轴上的点横坐标为零,即a-3=0,即可解答【详解】解:∵点M(a-3,a+4)在y轴上∴a-3=0∴a=3故答案为:3【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.19.【分析】先根据运动规律可得出第246次运动到的点的坐标再归纳类推出一般规律由此即可得【详解】由图可知第2次运动到点即第4次运动到点即第6次运动到点即归纳类推得:第n次运动到点(其中且为偶数)因为且为2017,0解析:()【分析】先根据运动规律可得出第2、4、6次运动到的点的坐标,再归纳类推出一般规律,由此即可得.【详解】由图可知,第2次运动到点(1,0),即(21,0)-,第4次运动到点(3,0),即(41,0)-,第6次运动到点(5,0),即(61,0)-,归纳类推得:第n 次运动到点(1,0)n -(其中2n ≥,且为偶数),因为20182>,且为偶数,所以第2018次运动到点(20181,0)-,即(2017,0),故答案为:(2017,0).【点睛】本题考查了点坐标规律探索,依据题意,正确归纳类推出一般规律是解题关键. 20.5或-3【分析】根据题意求出ab 的值计算即可;【详解】∵AB 平行于x 轴且AB=4点A 坐标为(-12)∴或∴或;故答案是5或-3【点睛】本题主要考查了坐标与图形的性质明确平行于x 轴的直线上的纵坐标相等解析:5或-3【分析】根据题意求出a ,b 的值计算即可;【详解】∵AB 平行于x 轴,且AB=4,点A 坐标为(-1,2),∴2b =,145a =--=-或413a =-=,∴()253a b +=+-=-或235a b +=+=;故答案是5或-3.【点睛】本题主要考查了坐标与图形的性质,明确平行于x 轴的直线上的纵坐标相等是解题的关键.三、解答题21.见解析,13km【分析】作点B 关于MN 的对称点C ,连接AC 交MN 于点Q ,连接QB ,此时QA+QB 的值最小.作AD ⊥BC 于D ,在Rt △ACD 中,利用勾股定理求出AC 即可;【详解】解:作点B 关于MN 的对称点C ,连接AC 交MN 于点Q ,则点Q 为所建的出口; 此时A 、B 两城镇到出口Q 的距离之和最短,最短距离为AC 的长.作AD BC ⊥于D ,则90ADC ∠=︒,AE ⊥MN ,BF ⊥MN∴四边形AEFD 为矩形∴12AD EF ==,2DF AE ==在t R ADC 中,12AD =,5DC DF CF =+=,∴由勾股定理得:222212513AC AD DC =+=+=∴这个最短距离为13km .【点睛】本题考查作图-应用与设计,轴对称-最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,构造直角三角形解决问题.22.(1)(2,3);(2)见解析.【分析】(1)根据纵坐标不变,横坐标变为相反数计算即可;(2)先逐一确定三角形的顶点关于y 轴对称的对称点的坐标,然后顺次连接即可.【详解】解:(1)点A 关于y 轴对称的点的坐标为(2,3).(2)如图,△1A 1B 1C 即为所求作.【点睛】本题考查了坐标系中两点关于y 轴对称的问题,熟记两个点关于y 轴对称时,坐标的变化规律是解题的关键.23.(1)2;(2)(2,3).【分析】(1)过点C 作CD ⊥y 轴,垂足为D ,然后证明△AOB ≌△CDA ,则CD=OA ,即可得到答案;(2)由(1)可知,CD=OA ,AD=OB ,即可求出答案.【详解】解:(1)过点C 作CD ⊥y 轴,垂足为D ,如图:∵CD ⊥y 轴,∴∠AOB=∠CDA=90°,∵∠BAC=90°,∴∠CAD+∠BAO=∠ABO+∠BAO=90°,∴∠CAD=∠ABO ,∵AB=AC ,∴△AOB ≌△CDA ,∴CD=OA ,AD=OB ,∵A (0,2),B (1,0),∴CD=OA=2;∴点C 到y 轴的距离为2;(2)由(1)可知,CD=OA ,AD=OB ,∵OA=2,OB=1,∴OD=2+1=3,∴点C 的坐标为(2,3);故答案为:(2,3).【点睛】本题考查了全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质进行解题,注意正确的作出辅助线.24.(1)见解析;(2)见解析;125A B .【分析】(1)描点,后顺次连接A,B,C 三点即可;(2)先确定对称点,后依次连接即可;利用勾股定理计算即可.【详解】(1)ABC 如图所示;(2)∵点(1,3)A ,(3,1)B ,(4,3)C ,∴关于x 轴对称的对称点分别为1A (1,-3),1B (3,-1),1C (4,-3), 描点,连线,得111A B C △,如图所示, ∴2212425A B =+=.【点睛】本题考查了坐标系中根据坐标确定点的位置,轴对称,网格中的勾股定理,熟记轴对称的意义是解题的关键.25.(1)6;35;(2)用等式表示OEA ∠与ACB ∠之间的数量关系是OEA ∠=ACB ∠.证明见解析.【分析】(1)根据示例可求出结果;(2)过点O 作BC 的平行线交CA 的延长线于点F .证明△AOF ≌△ABC 可得OF=BC ,即可得OE=OF ,所以∠OEF=∠OFE ,进一步可得结论.【详解】解:(1)∵在如图2中,如果OG=4,∠x OG=120°,那么点G 在平面内的位置记为G (4,120°)∴如果点N 在平面内的位置记为N (6,35°),那么ON=6;xON ∠=35°;故答案为:6;35;(2)用等式表示OEA ∠与ACB ∠之间的数量关系是:OEA ∠=ACB ∠.证明:过点O 作BC 的平行线交CA 的延长线于点F .ACB F ∴∠=∠.∵点A , B 在平面内的位置分别记为(,0)a ︒,(2,0)a ︒,2OB OA ∴=OA AB ∴=在△AOF 和△ABC 中,,,,ACB F OAF BAC OA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △AOF ≌△ABC .∴OF =BC .∵OE =BC .∴OE =OF .∴F OEA ∠=∠.又∵ACB F ∠=∠,∴OEA ACB ∠=∠.【点睛】本题考查了坐标与图形性质,三角形全等的判定与性质,证明△AOF ≌△ABC 是解答本题的关键.26.(1)152;(2)见解析;(3)A 1(1,5),B 1(1,0),,C 1(4,3) 【分析】(1)利用面积公式直接计算求出答案;(2)根据轴对称的性质确定点A 1,B 1,C 1的位置,顺次连线即可得到图形; (3)根据(2)直接解答即可.【详解】(1)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB ∥y 轴,AB=5-0=5,AB 边上的高为-1-(-4)=3, ∴1532ABC S=⨯⨯=152; (2)如图:(3)A 1(1,5),B 1(1,0),,C 1(4,3).【点睛】此题考查轴对称的性质,轴对称作图,直接坐标系中点的坐标,正确理解轴对称的性质作出图形是解题的关键.。
一、选择题1.已知点(,2)A m 和(3,)B n 关于y 轴对称,则2021()m n +的值为( )A .0B .1C .1-D .2020(5)-2.若点(0,2)A -与点B 关于x 轴对称,则点B 的坐标为( ) A .(0,2)-B .(2,0)C .(0,2)D .(2,0)-3.在平面直角坐标系中,点()3,4-在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.平面直角坐标系中,点P (-2,1)关于y 轴对称点P 的坐标是( )A .()2,1-B .()2,1-C .()2,1--D .()2,15.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( ) A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤16.如图,在平面直角坐标系上有个点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1,A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2019次跳动至点2019A 的坐标是( )A .()505,1009-B .()505,1010C .()504,1009-D .()504,10107.已知P(2-x ,3x-4)到两坐标轴的距离相等,则x 的值为( ) A .32B .1-C .32或1- D .32或1 8.如果a 是任意实数,则点(1,1)P a a -+,一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位10.如图,已知点1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,,则点2020A 的坐标为( )A .(505,505)B .(506,505)-C .(505,505)--D .(505,505)-11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,,这样依次得到点1A ,2A ,3A ,,n A ,.若点1A 的坐标为(2,4),点2020A 的坐标为( ) A .(-3,3) B .(-2,-2) C .(3,-1) D .(2,4)12.平面直角坐标系中,点 A (-2,-1) ,B (1,3) ,C (x ,y ) ,若 AC ∥ x 轴,则线段BC 的最小值为( ) A .2B .3C .4D .5二、填空题13.点P 的坐标是(1,4),它关于y 轴的对称点坐标是_____________.14.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到1A ,第2次移动到2A ,第3次移动到3A ,……,第n 次移动到n A ,则22020OA A ∆的面积是__________.15.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.16.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.17.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 18.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 19.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______. 20.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,0)和(3,2)-,那么“卒”的坐标为__________.三、解答题21.作图题,如图,△ABC 为格点三角形(不要求写作法)(1)请在坐标系内用直尺画出△111A B C ,使△111A B C 与△ABC 关于y 轴对称; (2)请在坐标系内用直尺画出△222A B C ,使△222A B C 与△ABC 关于x 轴对称;22.如图,在平面直角坐标系中,△ABC 的位置如图所示(每个方格的边长均为1个单位长度).(1)写出下列点的坐标:A ( , ),B ( , ) C ( , )(2)若△ABC 各顶点的纵坐标不变,横坐标都乘﹣1,请在同一直角坐标系中找出对应的点A′,B′,C′,并依次连接这三个点,从图象可知△ABC 与△A′B′C′有怎样的位置关系?23.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标. 24.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形 ()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OABS=?若存在,求出点B 的坐标;若不存在说明理由.25.如图,在直角坐标系内.(1)作出ABC ,其中(3,1)A ,(1,2)B ,(4,3)C ; (2)作ABC 关于x 轴的轴对称图形DEF ; (3)求ABC 的周长和面积,26.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l )分别写出△ABC 各个顶点的坐标.(2)请在图中画出△ABC 关于y 轴对称的图形△A'B'C'. (3)计算出△ABC 的面积.【参考答案】***试卷处理标记,请不要删除1.C 解析:C 【分析】根据平面直角坐标系中点的对称的知识点可得到m 、n 的值,代入求值即可. 【详解】∵点(,2)A m 与点(3,)B n 关于y 轴对称, ∴32m n =-⎧⎨=⎩,∴()()202120213+21m n +=-=-,故选择:C .【点睛】本题主要考查了平面直角坐标系点的对称,代数式求值,掌握平面直角坐标系点的对称,代数式求值方法,根据对称性构造方程组是解题的关键.2.C解析:C 【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,可得答案. 【详解】解:点A 与点B 关于x 轴对称,点A 的坐标为(0,-2),则点B 的坐标是(0,2). 故选:C . 【点睛】本题考查了关于x 轴对称的点的坐标,利用关于x 轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.3.B解析:B 【分析】根据直角坐标系中点的坐标的特点解答即可. 【详解】 ∵点()3,4-,∴点()3,4-在第二象限, 故选:B. 【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).4.D【分析】直接利用关于y轴对称点的特点得出答案.【详解】点P(﹣2,1)关于y轴对称点P的坐标是:(2,1).故选D.【点睛】此题主要考查了关于y轴对称点的特点,正确记忆横纵坐标的符号是解题关键.5.B解析:B【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【详解】解:∵点A(0,a),点B(0,4﹣a),且A在B的下方,∴a<4﹣a,解得:a<2,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A,B,C的坐标分别是(0,a),(0,4﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.6.B解析:B【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2019=504×4+3即可得出点A2019的坐标.【详解】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A 6(2,3),A 7(2,4),A 8(-3,4),A 9(-3,5),…,∴A 4n (-n-1,2n ),A 4n+1(-n-1,2n+1),A 4n+2(n+1,2n+1),A 4n+3(n+1,2n+2)(n 为自然数). ∵2019=504×4+3∴A 2019(504+1,504×2+2),即()505,1010. 故选:B . 【点睛】本题考查了规律型中点的坐标,根据部分点A n 坐标的变化找出变化规律“A 4n (-n-1,2n ),A 4n+1(-n-1,2n+1),A 4n+2(n+1,2n+1),A 4n+3(n+1,2n+2)(n 为自然数)”是解题的关键.7.D解析:D 【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案. 【详解】 由题意,得2-x=3x-4或2-x+(3x-4)=0, 解2-x=3x-4得x=32, 解2-x+(3x-4)=0得x=1,x 的值为32或1, 故选D . 【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.8.D解析:D 【分析】根据点P 的纵坐标一定大于横坐标和各象限的点的坐标进行解答. 【详解】解:∵11a a +>-,即点P 的纵坐标一定大于横坐标, 又∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P 一定不在第四象限. 故选:D . 【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.9.A解析:A 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x 轴对称. 【详解】解:∵纵坐标乘以﹣1, ∴变化前后纵坐标互为相反数, 又∵横坐标不变,∴所得三角形与原三角形关于x 轴对称. 故选:A . 【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.C解析:C 【分析】由2020A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2020A 在第三象限,根据推导可得出结论; 【详解】 由题可知,第一象限的点:2A ,6A …角标除以4余数为2; 第二象限的点:3A ,7A ,…角标除以4余数为3; 第三象限的点:4A ,8A ,…角标除以4余数为0; 第四象限的点:5A ,9A ,…角标除以4余数为1; 由上规律可知:20204=505÷, ∴点2020A 在第三象限, 又∵4(1,1)A --,8(2,2)--A , ∴()2020-505,-505A .即点2020A 的坐标为()-505,-505. 故答案选C . 【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.11.C解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.【详解】∵A1的坐标为(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1).故选:C【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.12.C解析:C【分析】由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.【详解】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(1,-1),∴线段的最小值为4.故选:C【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题13.【分析】根据关于y 轴对称的点的特征即可得解;【详解】∵点的坐标是∴点P 关于y 轴的点是;故答案是【点睛】本题主要考查了关于对称轴对称点的应用准确计算是解题的关键解析:()1,4-【分析】根据关于y 轴对称的点的特征即可得解;【详解】∵点P 的坐标是(1,4),∴点P 关于y 轴的点是()1,4-;故答案是()1,4-.【点睛】本题主要考查了关于对称轴对称点的应用,准确计算是解题的关键.14.505【分析】由图可得分别表示246通过找规律可得表示1010进而可得的长根据三角形的面积公式计算即可求解;【详解】由题意得分别表示246∴表示1010∴=1010∴△的面积为=故答案为:505【点解析:505【分析】由图可得2348121A A A A A =,,, 分别表示2,4,6,通过找规律可得2020A 表示1010,进而可得23A A ,2020OA 的长,根据三角形的面积公式计算即可求解;【详解】由题意得2348121A A A A A =,,,分别表示2,4,6,∴ 2020A 表示1010,∴ 2020OA =1010,∴ △22020OA A 的面积为=111010=5052⨯⨯ , 故答案为:505.【点睛】本题主要考找规律,三角形的面积,找规律求解2020OA 是解题的关键. 15.(65)【分析】通过新数组确定正整数n 的位置An=(ab)表示正整数n 为第a 组第b 个数(从左往右数)所有正整数从小到大排列第n 个正整数第一组(1)1个正整数第二组(23)2个正整数第三组(456)三解析:(6,5)【分析】通过新数组确定正整数n的位置,A n=(a,b)表示正整数n为第a组第b个数(从左往右数),所有正整数从小到大排列第n个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n,而1+2+3+4+…+(a-1)<n,能确第a组a个数从哪一个是开起,直到第b个数(从左往右数)表示正整数nA7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P7=(4,1),理解规律A20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【详解】A20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A20=(6,5).故答案为:(6,5).【点睛】本题考查按规律取数问题,关键是读懂An=(a,b)的含义,会用新数组来确定正整数n 的位置.16.A2020【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外)逐步探索出下标和个点坐标之间的关系总结出规律根据规律推理点A2020的坐标从而确定点【详解】解:通过观察可得数解析:A2020【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2020的坐标,从而确定点.【详解】解:通过观察可得数字是4的倍数的点在第三象限,∵2020÷4=505,∴点A2020在第三象限,∴A2020是第三象限的第505个点,∴点A2020的坐标为:(﹣505,﹣505).故答案为:A2020.【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标规律,然后由此规律求解即可.17.-7或9【分析】根据纵坐标相同可知MN∥x轴然后分点N在点M的左边与右边两种情况求出点N的横坐标即可得解【详解】∵点M(13)与点N(x3)的纵坐标都是3∴MN∥x轴∵MN=8∴点N在点M的左边时x解析:-7或9【分析】根据纵坐标相同可知MN∥x轴,然后分点N在点M的左边与右边两种情况求出点N的横坐标,即可得解.【详解】∵点M(1,3)与点N(x,3)的纵坐标都是3,∴MN∥x轴,∵MN=8,∴点N在点M的左边时,x=1−8=−7,点N在点M的右边时,x=1+8=9,∴x的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.18.7或﹣4【分析】根据题意可以求得a的值然后再对t进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t>2时h=t﹣1则3(t﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值.【详解】由题意可得,“水平底”a=1﹣(﹣2)=3,当t>2时,h=t﹣1,则3(t﹣1)=18,解得,t=7;当1≤t≤2时,h=2﹣1=1≠6,故此种情况不符合题意;当t<1时,h=2﹣t,则3(2﹣t)=18,解得t=﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.19.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x对称则y相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键. 20.【分析】根据平面直角坐标系确定坐标原点和xy 轴的位置进而解答即可【详解】解:如图所示:卒的坐标为(-2-1)故答案为:(-2-1)【点睛】此题考查坐标确定位置解题的关键就是确定坐标原点和xy 轴的位置解析:(2,1)--【分析】根据平面直角坐标系确定坐标原点和x ,y 轴的位置,进而解答即可.【详解】解:如图所示:“卒”的坐标为(-2,-1),故答案为:(-2,-1).【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x ,y 轴的位置.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用关于y 轴对称的点的坐标特征写出点A 1和点B 1、点C 1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点A2和点B2、点C2的坐标,然后描点即可.【详解】解:如图所示,△A1B1C1和△A2B2C2即为所求:【点睛】本题考查轴对称变换,解题的关键是熟练掌握轴对称的性质,属于中考常考题型.22.(1)A(3,4),B(1,2)C(5,1);(2)△ABC与△A′B′C′关于y轴对称;见解析【分析】(1)根据直角坐标系即可依次写出坐标;(2)根据△ABC各顶点的纵坐标不变,横坐标都乘﹣1,得到对应点的坐标,再顺次连接,根据对称性即可判断.【详解】(1)点的坐标为:A(3,4),B(1,2)C(5,1);故答案为:(3,4),(1,2),(5,1);(2)△A′B′C′即为所求,△ABC与△A′B′C′关于y轴对称.【点睛】此题主要考查了作图−−轴对称变换,关键是掌握几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也就是要确定一些特殊的对称点,然后再连接即可.23.(1)见解析;(2)见解析;P ()2,0【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(2)作点A 关于x 轴的对称点,再连接A′B ,与x 轴的交点即为所求.【详解】(1)如图所示,111A B C △即为所求.(2)如图所示,点P 即为所求,其坐标为()2,0.【点睛】本题主要考查作图−轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.24.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得 ()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.25.(1)图见解析;(2)图见解析;(3)ABC 的周长为2510,面积为52. 【分析】(1)利用A ,B ,C 各点坐标在平面坐标系中描出即可;(2)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得;(3)利用割补法求解可得到面积,借助网格利用勾股定理分别求出三边即可求得周长.【详解】解:(1)ABC 如图所示;(2)DEF 如图所示; (3)1115231212132222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=, ABC 的周长=2222221212132510AB AC BC +++++=【点睛】本题考查坐标与图形变换——轴对称,勾股定理.熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.(1)A(−1,6),B(−2,0),C(−4,3);(2)见解析;(3)7.5.【分析】(1)根据A,B,C的位置写出坐标即可;(2)分别作出A,B,C关于y轴对称的对应点A′,B′,C′,依次连接各点即可;(3)利用割补法求三角形的面积即可.【详解】解:(1)A(−1,6),B(−2,0),C(−4,3).(2)如图,△A'B'C'即为所求.(3)S△ABC=3×6−12×3×3−12×2×3−12×1×6=7.5.【点睛】本题考查作图−轴对称变换,解题的关键是熟练掌握轴对称变换的性质.。
一、选择题1.已知点(,2)A m 和(3,)B n 关于y 轴对称,则2021()m n +的值为( )A .0B .1C .1-D .2020(5)-2.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( ) A .()2,2B .(2,1)-C .()2,1-D .(2,1)--3.已知点Q 与点(3,)P a 关于x 轴对称点是(,2)Q b -,那么点(,)a b 为( ) A .(2,3)-B .(2,3)C .(3,2)D .(3,2)-4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( ) A .-1 B .1C .5D .-5 5.点A (3,4)关于x 轴的对称点的坐标为( )A .(3,﹣4)B .(﹣3,﹣4)C .(﹣3,4)D .(﹣4,3)6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 8.在平面直角坐标系中,若0a <,则点(﹣2,﹣a )的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,若象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点( )A .(1,-1)B .(-1,1)C .(-1,2)D .(1,-2) 10.点()4,0P -位于平面直角坐标系的( ) A .第二象限 B .第三象限C .x 轴上D .y 轴上11.点M 在x 轴上方,y 轴左侧,距离x 轴1个单位长度,距离y 轴4个单位长度,则点M 的坐标为( )A .(1,4)B .(﹣1,﹣4)C .(4,﹣1)D .(﹣4,1)12.一个点在第一象限及x 轴正半轴、y 轴正半轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→……,且每秒移动一个单位,那么第47秒时,这个点所在位置的坐标是( )A .(1,7)B .(7,1)C .(6,1)D .(1,6)二、填空题13.平面直角坐标系中,点()()4,2,2,4A B -,点(),0P x 在x 轴上运动,则AP BP +的最小值是_________.14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.15.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.16.在平面直角坐标系中,(0,1)A 、(0,2)B 、(2,3)C ,则ABC ∆的面积为______. 17.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.18.在第二象限,到x 轴距离为4,到y 轴距离为3的点P 的坐标是 . 19.点A 的坐标为()5,3-,点A 关于x 轴的对称点为点B ,则点B 的坐标是______.20.平面直角坐标系上有点A (﹣3,4),则它到坐标原点的距离为_____.三、解答题21.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC 是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)在x 轴上画出一点D ,使DA +DB 最小,保留作图痕迹.22.在平面直角坐标系中,点P(2﹣m ,3m +6). (1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标. 23.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形 ()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OABS=?若存在,求出点B 的坐标;若不存在说明理由.24.在如图所示的平面直角坐标系中,完成下列任务.(1)描出点(1,1)A ,(3,1)B ,(3,2)C -,(1,2)D -,并依次连接A ,B ,C ,D ; (2)画出四边形ABCD 关于y 轴对称的四边形1111D C B A ,并写出顶点1A ,1C 的坐标. 25.在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”); ()3试写出点n A 的坐标(n 是正整数).26.如图,在平面直角坐标系中,A (-2,4),B (-3,1),C (1,-2). (1)在图中作出△ABC 关于y 轴的对称图形△A′B′C′; (2)写出点A′、B′、C′的坐标;(3)连接OB 、OB′,请直接回答: ①△OAB 的面积是多少?②△OBC 与△OB′C′这两个图形是否成轴对称.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据平面直角坐标系中点的对称的知识点可得到m 、n 的值,代入求值即可. 【详解】∵点(,2)A m 与点(3,)B n 关于y 轴对称, ∴32m n =-⎧⎨=⎩, ∴()()202120213+21m n +=-=-,故选择:C .【点睛】本题主要考查了平面直角坐标系点的对称,代数式求值,掌握平面直角坐标系点的对称,代数式求值方法,根据对称性构造方程组是解题的关键.2.C解析:C 【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标. 【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1) 故选:C .本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.3.B解析:B 【分析】根据关于x 轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案. 【详解】解:∵点P (3,a )关于x 轴的对称点为Q (b ,-2), ∴a=2,b=3,∴点(a ,b)的坐标为(2,3), 故选:B . 【点睛】此题主要考查了关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.4.B解析:B 【分析】先根据第二象限点坐标符号特点可得0,0x y <>,再化简绝对值可得x 、y 的值,然后代入即可得. 【详解】点(,)P x y 在第二象限,0,0x y ∴<>,又2,3x y ==,2,3x y ∴=-=, 231x y ∴+=-+=,故选:B . 【点睛】本题考查了第二象限点坐标符号特点、化简绝对值,熟练掌握第二象限点坐标符号特点是解题关键.5.A解析:A 【分析】利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ),得出即可. 【详解】点A (3,4)关于x 轴对称点的坐标为:(3,-4). 故选:A .此题主要考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.A解析:A 【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题. 【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A . 【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--, . 7.B解析:B 【分析】直接利用关于y 轴对称点的性质得出答案. 【详解】解:∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m=-3,n=2. 故选:B . 【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.8.B解析:B 【分析】根据各象限的点的坐标特征解答. 【详解】 解:∵a <0, ∴-a >0,∴点(-2,-a )在第二象限. 故选:B .本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.B解析:B 【解析】试题分析:先利用“象”所在点的坐标画出直角坐标系,然后写出“炮”所在点的坐标即可. 解:如图,“炮”位于点(﹣1,1). 故选B .考点:坐标确定位置.10.C解析:C 【分析】根据点的横纵坐标特点,判断其所在象限,四个象限的符号特点分别是:第一象限(+,+) ;第二象限(-,+) ;第三象限(-,-);第四象限(+,-) ;x 轴纵坐标为0;y 轴横坐标为0. 【详解】解:点()4,0P -的纵坐标为0,∴点()4,0P -位于平面直角坐标系的x 轴上. 故选:C . 【点睛】本题考查了各象限内、坐标轴上点的坐标的符号,记住各象限内点的坐标的符号是解决的关键.11.D解析:D 【分析】由点M 在x 轴的上方,在y 轴左侧,判断点M 在第二象限,符号为(-,+),再根据点M 到x 轴的距离决定纵坐标,到y 轴的距离决定横坐标,求M 点的坐标. 【详解】解:∵点M 在x 轴上方,y 轴左侧,∴点M 的纵坐标大于0,横坐标小于0,点M 在第二象限;∵点M距离x轴1个单位长度,距离y轴4个单位长度,∴点的横坐标是-4,纵坐标是1,故点M的坐标为(-4,1).故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.D解析:D【分析】先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3秒,5秒,7秒,9秒…此时点在坐标轴上,进而得到规律,问题得解.【详解】解:这个点3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);35秒到了(5,0);48秒到了(0,6);∵(0,6)之前经过的点的坐标为(1,6),∴第47秒后点所在位置的坐标是(1,6).故选:D.【点睛】本题考查了平面直角坐标系内规律型点的坐标,数形结合并发现点运动的坐标规律是解题的关键.二、填空题13.【分析】根据题意先做点A关于x轴的对称点求出坐标连结A′B交x轴于C用勾股定理求出A′B即可【详解】解:如图根据题意做A点关于x轴的对称点A'连结A′B交x轴于C=A′P+BP≥A′B得到A'(-4解析:【分析】根据题意先做点A关于x轴的对称点'A,求出'A坐标,连结A′B,交x轴于C,用勾股定理求出A′B即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B , 得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4) 由勾股定理()()222+4+4+2=62AP BP +的最小值为:62故答案为: 2 【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.14.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0) 【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标. 【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的, 蚂蚁每运动4次为一个周期, 可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,A,此时与之对应的点是4A的坐标为(2,0),点4A的坐标为(1010,0)则点2020【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.15.【分析】作AD⊥OB于D则∠ADB=90°OD=1AD=3OB=3得出BD=2由勾股定理求出AB即可;由题意得出AC+BC最小作A关于y轴的对称点连接交y 轴于点C点C即为使AC+BC最小的点作轴于E解析:513+【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,'⊥轴于E,由勾股定理求出A B',即可得出结果.点C即为使AC+BC最小的点,作A E x【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C即为使AC+BC最小的点,'⊥轴于E,作A E x由对称的性质得:AC=A C',则AC+BC=A B',A E'=3,OE=1,∴BE=4,由勾股定理得:A B'22+=,345∴△ABC13+5.13+5.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.16.【分析】在坐标系内描出各点再顺次连接即可计算出△ABC的面积【详解】解:在平面直角坐标系中画出ABC三点的坐标如下图所示:则故答案为1【点睛】本题考查了三角形的面积坐标和图形的性质正确描出各点坐标画解析:1【分析】在坐标系内描出各点,再顺次连接,即可计算出△ABC的面积.【详解】解:在平面直角坐标系中画出A、B、C三点的坐标,如下图所示:则11==12=122∆⨯⨯⨯⨯ABCS AB CH,故答案为1.【点睛】本题考查了三角形的面积,坐标和图形的性质,正确描出各点坐标画出图形是解题的关键.17.(-43)【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A的坐标为(-43)故答案为:解析:(-4,3) .【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.所以点A的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.18.(﹣34)【解析】试题分析:应先判断出点P的横纵坐标的符号进而根据到坐标轴的距离判断点P的具体坐标解:∵P在第二象限∴点P的横坐标小于0纵坐标大于0;又∵点P到x轴的距离是4即点P的纵坐标为4;点P解析:(﹣3,4)【解析】试题分析:应先判断出点P的横、纵坐标的符号,进而根据到坐标轴的距离判断点P的具体坐标.解:∵P在第二象限,∴点P的横坐标小于0,纵坐标大于0;又∵点P到x轴的距离是4,即点P的纵坐标为4;点P到y轴的距离为3,即点P的横坐标为﹣3,∴点P的坐标是(﹣3,4);故答案是:(﹣3,4).点评:本题考查的是点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.19.【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点的坐标为∴关于轴的对称点为点;故答案是【点睛】本题主要考查了关于x轴对称点的坐标准确计算是解题的关键5,3解析:()【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;【详解】5,3-,∵点A的坐标为()∴关于x轴的对称点为点B()5,3;5,3.故答案是()【点睛】本题主要考查了关于x轴对称点的坐标,准确计算是解题的关键.20.5【分析】根据勾股定理即可得到结论【详解】解:∵点A(﹣34)∴它到坐标原点的距离==5故答案为:5【点睛】本题考查了勾股定理熟练掌握勾股定理是解题的关键解析:5【分析】根据勾股定理即可得到结论.【详解】解:∵点A(﹣3,4),∴它到坐标原点的距离=22-+=5,(3)4故答案为:5.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)分别作出A,B,C 的对应点A1,B1,C1,顺次连接即可;(2)作出点B关于x轴的对称点B2,连接AB2交x轴于点D,则点D即为所求.【详解】解:(1)如图所示;(2)如图所示.【点睛】本题考查作图-轴对称变换,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)1或﹣5;(2)(2,6)【分析】m+,解出m的值即可;(1)由点P与x轴的距离为9可得36=9(2)由点P在过点A(2,-3)且与y轴平行的直线上可得2-m=2,解出m的值即可.【详解】(1)点P(2-m,3m+6),点P在x轴的距离为9,∴|3m+6|=9,解得:m=1或-5.答:m的值为1或-5;(2)点P在过点A(2,-3)且与y轴平行的直线上,∴2-m=2,解得:m=0,∴3m+6=6,∴点P 的坐标为(2,6).【点睛】本题主要考查点到坐标轴的距离以及在与坐标轴平行的直线上点的坐标的特点,熟练掌握点到坐标轴的距离的意义以及与坐标轴平行的直线上点的坐标的特点是解题关键. 23.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.24.(1)见解析;(2)见解析,1(1,1)A -,1(3,2)C --【分析】(1)直接利用已知点坐标在坐标系中描出各点得出答案;(2)画出四边形ABCD 关于y 轴对称的对称点,顺次连接对称点即可得到四边形1111D C B A ,再写出顶点1A ,1C 的坐标即可.【详解】解:(1)四边形ABCD 即为所求作的图形.(2)四边形1111D C B A 即为所求作的图形.此时1(1,1)A -,1(3,2)C --【点睛】本题考查了作图中的轴对称变换,熟练掌握对称的作图方法是解题的关键.25.()()514,0A ,()65,1A ,()76,0A ,()87,1A -;()2x 轴上方;()3 A (n-1,0)或()1,1A n -或()1,0A n -或()1,1A n --【分析】()1可根据点在图形中的位置及前4点坐标直接求解;()2根据图形可知点的位置每4个数一个循环,20184504...2÷=,进而判断2018A 与2A 的纵坐标相同在x 轴上方,即可求解;()3根据点的坐标规律可分4种情况分别写出坐标即可求解.【详解】解:(1)由数轴可得:()54,0A ,()65,1A ,()76,0A ,()87,1A -;(2)根据图形可知点的位置每4个数一个循环,20184504...2÷=,2018A ∴与2A 的纵坐标相同,在x 轴上方,故答案为:x 轴上方;(3)根据图形可知点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0、1、0、-1循环,∴点n A 的坐标(n 是正整数)为A (n-1,0)或()1,1A n -或()1,0A n -或()1,1A n --.【点睛】本题主要考查找点的坐标规律,点的坐标的确定,方法,根据已知点的坐标及图形总结点坐标的变化规律,并运用规律解决问题是解题的关键.26.(1)见解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC与△OB′C′这两个图形关于y轴成轴对称.【分析】(1)先确定A、B、C关于y轴的对称点A′、B′、C′,然后再顺次连接即可;(2)直接根据图形读出A′、B′、C′的坐标即可;(3)①运用△OAB所在的矩形面积减去三个三角形的面积即可;②根据图形看△OBC与△OB′C′是否有对称轴即可解答.【详解】解:(1)如图;△A′B′C′即为所求;(2)如图可得:A′(2,4).B′(3,1).C′(-1,-2);(3)①△OAB的面积为:4×3-12×3×1-12×4×2-12×3×1=5;②∵△OBC与△OB′C′这两个图形关于y轴成轴对称∴△OBC与△OB′C′这两个图形关于y轴成轴对称.【点睛】本题主要考查了轴对称变换和不规则三角形面积的求法,作出△ABC关于y轴的对称图形△A′B′C′以及运用拼凑法求不规则三角形的面积成为解答本题的关键.。
第三章位置与坐标第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是( )A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是( )A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为( )图1A.(-4,6) B.(4,6)C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在( )A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]( )图2A.黑(3,7),白(5,3) B.黑(4,7),白(6,2)C.黑(2,7),白(5,3) D.黑(3,7),白(2,6)甲:从学校向北直走500米,再向东直走100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到博物馆; 丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( )A .向南直走300米,再向西直走200米B .向南直走300米,再向西直走600米C .向南直走700米,再向西直走200米D .向南直走700米,再向西直走600米7.若点P(-m ,3)与点Q(-5,n)关于y 轴对称,则m ,n 的值分别为( )A .-5,3B .5,3C .5,-3D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A(1,0),B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0)请将选择题答案填入下表:二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l 过点M(3,0)且平行于y 轴.(1)如果△ABC 三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC 关于y 轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点的坐标;(2)如果点P 的坐标是(-a ,0),其中a >0,点P 关于y 轴的对称点是P 1,点P 1关于直线l 的对称点是P 2,求PP 2的长.图91.B 2.B 3.B 4.C 5.C 6.A 7.A 8.C 9.C 10.B 11.一 12.(-7,-7) 13.关于x 轴对称14.(-5,0),(5,0),(0,4),(0,-4) 15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,3 3);同理,当点C 在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3.第三跳落到A3(4,2),第四跳落到A4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A5(9,6).到达A2n后,要向正东方向跳(2n+1)个单位长度落到A2n+1.17.解:答案不唯一,如以BC所在直线为x轴,过点B作BC的垂线为y轴建立平面直角坐标系,由图可知,点A(12,5),B(0,0),C(24,0).18.解:(1)由题意可得5+a+a-3=0,解得a=-1.(2)由题意可得|2-a|=|3a+6|,即2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点N的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图.(1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB∥x轴,且AB=3-(-2)=5,1(3)存在.因为AB=5,S△ABP=10,所以点P到AB的距离为4.又因为点P在y轴上,所以点P的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m+4=0,解得m=-2,则m-1=-3,所以点P的坐标为(0,-3).(2)由题意,得m-1=0,解得m=1,则2m+4=6,所以点P的坐标为(6,0).(3)由题意,得m-1=(2m+4)+3,解得m=-8,则2m+4=-12,m-1=-9, 所以点P的坐标为(-12,-9).(4)由题意,得m-1=-3,解得m=-2,则2m+4=0,所以点P的坐标为(0,-3).22.解:由题意,可知折痕AD所在的直线是四边形OAED的对称轴.在Rt△ABE中,AE=OA=10,AB =8,所以BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又DE=OD,所以(8-OD)2+42=OD2,所以OD=5,所以D(0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A(-3,4),D(8,1),E(7,4),F(4,3),G(1,7).(2)连接BE和CG相交于点H,由题意,得BE=72+42=65,CG=72+42=65,所以BE=CG.借助全等及三角形内角和等性质可得∠BHC的度数:∠BHC=90°.24.解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)①如图①,当0<a≤3时,因为点P与点P1关于y轴对称,P(-a,0),所以P1(a,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。
苏教版八年级上册数学《平面直角坐标系》一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。
1、记作(a ,b );横坐标写在前,纵坐标写在后 2、注意:a 、b 的先后顺序对位置的影响. (二)平面直角坐标系 简称直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。
(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标:六、用坐标表示平移:见下图平面直角坐标系 同步练习题 一、判断题(1)坐标平面上的点与全体实数一一对应( )(2)横坐标为0的点在轴上( )(3)纵坐标小于0的点一定在轴下方( )(4)到轴、轴距离相等的点一定满足横坐标等于纵坐标( ) (5)若直线轴,则上的点横坐标一定相同( )坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴 Y 轴 原点平行X 轴平行Y 轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x ,0)(0,y )(0,0) 纵坐标相同横坐标不同横坐标相同纵坐标不同x >0 y >0x <0 y >0x <0 y <0x >0 y <0(m,m )(m,-m)P (x ,y )P (x ,y -a )P (x -a ,y )P (x +a ,y )P (x ,y +a )向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位(6)若,则点P()在第二或第三象限( )(7)若,则点P ()在轴或第一、三象限( )二、选择题1、若点P ()n m ,在第二象限,则点Q ()n m --,在( )A .第一象限B .第二象限C .第三象限D .第四象限2、点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A. (5,-3)或(—5,—3)B. (—3,5)或(—3,—5) C 。
第三章 位置与坐标 一、知识要点 一、平面直角坐标系 (一)有序数对:有顺序的两个数a与b组成的数对。 1、记作(a ,b); 2、注意:a、b的先后顺序对位置的影响。 (二)平面直角坐标系 1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ; 2、构成坐标系的各种名称; 3、各种特殊点的坐标特点。 (三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移。 二、平行于坐标轴的直线的点的坐标特点: 平行于x轴(或横轴)的直线上的点的纵坐标相同; 平行于y轴(或纵轴)的直线上的点的横坐标相同。 三、各象限的角平分线上的点的坐标特点: 第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。 四、与坐标轴、原点对称的点的坐标特点: 关于x轴对称的点的横坐标相同,纵坐标互为相反数 关于y轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标:
六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下: • 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 七、用坐标表示平移:见下图
二、例题及练习 知识一、坐标系的理解 例1、平面内点的坐标是( )
坐标轴上 点P(x,y) 连线平行于 坐标轴的点 点P(x,y)在各象限 的坐标特点 象限角平分线上 的点 X轴 Y轴 原点 平行X轴 平行Y轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x>0 y>0 x<0 y>0 x<0 y<0 x>0 y<0 (m,m) (m,-m)
P(x,y) P(x,yP(x-a,P(x+a,P(x,y向上平移a个
向下平移a个向右平移a个向左平移a个 A 一个点 B 一个图形 C 一个数 D 一个有序数对 学生自测 1.在平面内要确定一个点的位置,一般需要________个数据; 在空间内要确定一个点的位置,一般需要________个数据. 2、在平面直角坐标系内,下列说法错误的是( ) A 原点O不在任何象限内 B 原点O的坐标是0 C 原点O既在X轴上也在Y轴上 D 原点O在坐标平面内 知识二、已知坐标系中特殊位置上的点,求点的坐标 点在x轴上,坐标为(x,0)在x轴的负半轴上时,x<0, 在x轴的正半轴上时,x>0 点在y轴上,坐标为(0,y)在y轴的负半轴上时,y<0, 在y轴的正半轴上时,y>0 第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy>0 第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x直线上);坐标点(x,y)xy<0 例1 点P在x轴上对应的实数是3,则点P的坐标是 ,若点Q在y
轴上 对应的实数是31,则点Q的坐标是 , 例2 点P(a-1,2a-9)在x轴负半轴上,则P点坐标是 。 学生自测 1、点P(m+2,m-1)在y轴上,则点P的坐标是 . 2、已知点A(m,-2),点B(3,m-1),且直线AB∥x轴,则m的值为 。 3、 已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是 . 4.平行于x轴的直线上的点的纵坐标一定( ) A.大于0 B.小于0 C.相等 D.互为相反数 (3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= . (3)已知点P(x2-3,1)在一、三象限夹角平分线上,则x= . 5.过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为( ). A.(0,2) B.(2,0)C.(0,-3)D.(-3,0) 6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是( ). A.横坐标相等 B.纵坐标相等 C.横坐标的绝对值相等 D.纵坐标的绝对值相等 知识点三:点符号特征。 点在第一象限时,横、纵坐标都为 ,点在第二象限时,横坐标为 ,纵坐标为 ,点有第三象限时,横、纵坐标都为 ,点在第四象限时,横坐标为 ,纵坐标为 ;y轴上的点的横坐标为 ,x轴上的点的纵坐标为 。 例1 .如果a-b<0,且ab<0,那么点(a,b)在( ) A、第一象限 B、第二象限 C、第三象限, D、第四象限. 例2、如果xy<0,那么点P(x,y)在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 学生自测 1.点P的坐标是(2,-3),则点P在第 象限. 2、点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的坐标是 。 3.点 A在第二象限 ,它到 x轴 、y轴的距离分别是 3 、2,则坐标是 ; 4. 若点P(x,y)的坐标满足xy﹥0,则点P在第 象限;
若点P(x,y)的坐标满足xy﹤0,且在x轴上方,则点P在第 象限. 若点P(a,b)在第三象限,则点P'(-a,-b+1)在第 象限; 5.若点P(m1, m)在第二象限,则下列关系正确的是
( ) A.10m B.0m C.0m D.1m 6.点(x,1x)不可能在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.已知点P(102x,x3)在第三象限,则x的取值范围是 ( ) A .53x ≤x≤5 C.5x或3x D.x≥5或x≤3 8.(本小题12分)设点P的坐标(x,y),根据下列条件判定点P在坐标平面内的
位置: (1)0xy;(2)0xy;(3)0xy. (2)点A(1-,2)在第 象限. (3)横坐标为负,纵坐标为零的点在( ) (A)第一象限 (B)第二象限 (C)X轴的负半轴 (D)Y轴的负半轴 (4)如果a-b<0,且ab<0,那么点(a,b)在( ) (A)第一象限, (B)第二象限 (C)第三象限, (D)第四象限. (5)已知点A(m,n)在第四象限,那么点B(n,m)在第 象限 (6)若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a= 知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。 过点作x轴的 线,垂足所代表的 是这点的横坐标;过点作y轴的垂线,垂足所代表的实数,是这点的 。点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第 个位置,中间用 隔开。
例1、X轴上的点P到Y轴的距离为,则点P的坐标为( ) A(,0) B ,0) C(0, D,0)或,0) 学生自测 1、点A(2,3)到x轴的距离为 ;点B(-4,0)到y轴的距离为 ;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是 。 2.若点A的坐标是(-3,5),则它到x轴的距离是 ,到y轴的距离是 . 3.点P到x轴、y轴的距离分别是2、1,则点P的坐标可能为 。 4.已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为( ). A.(3,2) B.(-3,-2) C.(3,-2) D.(2,3),(2,-3),(-2,3),(-2,-3) 5.若点P(a,b)到x轴的距离是2,到y轴的距离是3,则这样的点P有 ( ) A.1个 B.2个 C.3个 D.4个 6.已知直角三角形ABC的顶点A(2 ,0),B(2 ,3).A是直角顶点,斜边长为5,求顶点C的坐标 . 7. 直角坐标系中,正三角形的一个顶点的坐标是(0,3),另两个顶点B、C都在x轴上,求B,C的坐标. 9.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限. 10.直角坐标系中,一长方形的宽与长分别是6,8,对角线的交点在原点,两组对边分别与坐标轴平行,求它各顶点的坐标. 11.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限. 14.已知等边△ABC的两个顶点坐标为A(-4,0),B(2,0),求:(1)点C的坐标;(2)•△ABC的面积 知识点五:对称点的坐标特征。 关于x对称的点,横坐标不 ,纵坐标互为 ;关于y轴对称的点, 坐标不变, 坐标互为相反数;关于原点对称的点,横坐标 ,纵坐标 。 例1. 已知A(-3,5),则该点关于x轴对称的点的坐标为_________;关于y轴对的点的坐标为____________;关于原点对称的点的坐标为___________;关于直线x=2对称的点的坐标为____________。 例2. 将三角形ABC的各顶点的横坐标都乘以1,则所得三角形与三角形ABC的关系( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.将三角形ABC向左平移了一个单位 学生自测 1在第一象限到x轴距离为4,到y轴距离为7的点的坐标是______________;在第四象限到x轴距离为5,到y轴距离为2的点的坐标是________________; 3.点A(-1,-3)关于x轴对称点的坐标是 .关于原点对称的点坐标是 。 4.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= . 5.已知:点P的坐标是(m,1),且点P关于x轴对称的点的坐标是(3,n2),则_________,nm; 6.点P(1,2)关于x轴的对称点的坐标是 ,关于y轴的对称点的坐标是 ,关于原点的对称点的坐标是 ; 7.若 ),()与,(13mnNmM关于原点对称 ,则 __________,nm; 9.直角坐标系中,将某一图形的各顶点的横坐标都乘以1,纵坐标保持不变,得到的图形与原图形关于________轴对称;将某一图形的各顶点的纵坐标都乘以1,横坐标保持不变,得到的图形与原图形关于________轴对称. 10.点A(3,4)关于x轴对称的点的坐标是 ( ) A.(3,4) B. (3,4) C . (3, 4) D. (4, 3) 11.点P(1,2)关于原点的对称点的坐标是 ( ) A.(1,2) B (1,2) C (1,2) D. (2,1) 12.在直角坐标系中,点P(2,3)关于y轴对称的点P1的坐标是
( )