核酸探针技术
- 格式:ppt
- 大小:2.45 MB
- 文档页数:16
现代食品检测技术第二部分第12章核酸探针检测技术赵杰文邹小波江苏大学食品与生物工程学院第十二章核酸探针检测技术1 核酸探针的种类及其制备方法2 探针标记物与标记方法3 探针杂交与信号检测4 核酸探针在食品微生物检测中的应用1核酸探针的种类及其制备方法一、基因组DNA探针二、cDNA探针三、RNA探针四、寡核苷酸探针一、基因组DNA探针这类探针多采用分子克隆或PCR技术从基因文库筛选或扩增方法制备。
二、cDNA探针cDNA探针是以RNA为模板,在反转录酶的作用下合成的互补DNA,因此它不含有内含子及其他非编码序列,是一种较理想的核酸探针。
三、RNA探针mRNA作为核酸分子杂交的探针是较为理想四、寡核苷酸探针用人工合成的寡聚核苷酸片段作为分子杂交的探针,其优点是可根据需要随心所欲地合成相应的序列,避免了天然核酸探针中存在的高度重复序列所带来的不利影响2 探针标记物与标记方法一、核酸探针标记物种类及其特点二、探针标记方法三、探针的纯化四、探针标记效率的评估一、核酸探针标记物种类及其特点 标记探针的目的是为了跟踪探针的去向,确定探针是否与相应的基因组DNA杂交一、核酸探针标记物种类及其特点 一种理想的探针标记物,应具备以下几种特性:1、高度灵敏性;;2、标记物与核酸探针分子的结合;;3、应不影响探针分子的主要理化特性;4、当用酶促方法进行标记时,应对酶促活性(Km值)无较大的影响;5、检测方法除要求高度灵敏性外,还应具有高度特异性二、探针标记方法(一)探针的放射性核素标记法(二)探针的非放射性标记法(一)探针的放射性核素标记法1.缺口平移法2.随机引物法3.单链DNA探针的标记4.cDNA探针的标记5.寡核苷酸探针的标记缺口平移法(二)探针的非放射性标记法1.PCR标记法2.体外转录标记RNA探针PCR标记法体外转录标记RNA探针三、探针的纯化(一)凝胶过滤柱层析法(二)反相柱层析法(三)乙醇沉淀法四、探针标记效率的评估通过测定标记产物的量来估计每一次标记反应的效率,这可以准确了解杂交液中应加探针的量。
核酸荧光探针的设计和应用随着生物技术的发展和突破,核酸荧光探针在遗传学、病毒学、药物研发等领域中得到广泛的应用。
本文将介绍核酸荧光探针的设计和应用。
一、核酸荧光探针的设计核酸荧光探针可以被分为两类,一类是“探针+靶标”,另一类是“探针+氧化还原剂”。
前者的原理是利用探针与靶标结合后,通过信号转导发出关于靶标的信息。
而后者则是直接在探针上标记一个氧化还原剂,使其发生氧化还原反应,从而发出荧光信号。
设计核酸荧光探针需要考虑两个因素:探针本身的性质和靶标的特异性。
探针本身应具有良好的荧光性质,如高荧光强度和较长的寿命,以便于准确测定其信号。
同时,探针应该具有发光与反应的特异性,以保证不受其他杂质或干扰物的影响。
在设计核酸荧光探针时,需要注意一些重要的角度:首先是选择标记物。
标记物的大小和化学活性将决定探针的靶向特异性和探针的合成方法。
其次是选择反映机制。
不同的反映机制可以用于反映核酸的变化,我们需根据实际情况选择不同的反映机制。
最后是考虑自身的生物学意义。
我们需对不同的机制研究设计探针,以满足不同的生物学需要。
二、核酸荧光探针的应用核酸荧光探针可以广泛应用于多种领域中。
下面我们将重点介绍一些常用的应用举例。
1、基于核酸荧光探针的分子诊断技术核酸荧光探针可以非常灵敏地检测DNA和RNA的变化,这为分子诊断技术提供了基础。
分子诊断技术通过检测某些特定基因或蛋白质的变化,以诊断一些常见疾病,如艾滋病、癌症等。
分子诊断技术具有高灵敏度、高特异性和快速等优点。
核酸荧光探针在诊断方面的应用已被广泛研究和开发。
例如,某些病毒、细菌或寄生虫性疾病的核酸荧光探针已被广泛应用。
2、基于核酸荧光探针的基因表达分析技术核酸荧光探针可以非常灵敏地检测基因的变化,包括基因表达和调节。
基因表达分析技术通过检测某些基因的变化,以研究这些基因的生物学功能和生物学作用。
基因表达分析技术具有高灵敏度、高特异性和快速等优点。
核酸荧光探针在基因表达分析方面的应用已被广泛研究和开发。
常用核酸探针标记方法1、切口平移法(nick translation)原理:先用适量的DNase I 在Mg2+存在下,在双链DNA 上打开若干个单链缺口。
利用E. coli DNA 聚合酶I 的5'- 3' 核酸外切酶活性在切处将旧链从5’-末端逐步切除。
同时DNA 聚合酶I的5'- 3'聚合酶活性的作用下,顺序将dNTP连接到切口的3’-末端-OH上,以互补的DNA 单链为模板合成新的DNA单链。
图1 切口平移法原理示意图特点:1)各种螺旋状态(超螺旋、闭环及开环)及线性的双链DNA均可作为缺口平移法的标记底物。
但单链DNA和RNA不能采用此方法进标记。
双链DNA小片段(>100-200bp)也不是此法标记的理想底物。
2)DNA多聚酶必须是E·Coli DNA多聚酶的全酶。
3)DNA模板要用纯化过DNA2、随机引物法(random priming)原理:将待标记的DNA探针片段变性后与随机引物一起杂交,然后以此杂交的寡核苷酸为引物,大肠杆菌DNA聚合酶I大片段(E·Coli DNA polymerase I Klenow Fragment)的催化下,合成与探针DNA互补的DNA链。
当反应液中含有标记的dNTP时,即形成标记的探针。
图2 随机引物标记法原理示意图特点:1)除了能进行双链DNA标记外,也可用于单链DNA和RNA探针的标记。
2)所得到的标记产物是新合成的DNA单链,而所加入的DNA片段本身并不能被标记。
3)新形成的标记DNA单链的长度与加入寡核苷酸引物的量成反比,因为加入的寡核苷酸数量越多,合成起点也越多,得到的片段的长度也越短。
按标准方法得到的标记产物长度一般为200-400bp。
3、末端标记与切口平移法和随机引物法不同,DNA末端标记法并不将DNA片段的全长进行标记,而是只将其一端(5’或3’端)进行部分标记。
其特点是可得到全长DNA片段,DNA片段并非均匀标记,标记活性不高。
核酸探针的原理及应用1. 导言核酸探针是一种用于检测和鉴定核酸分子的分子探针。
它通过特异性识别目标核酸序列,可广泛应用于基因组学、生物医学研究、临床诊断等领域。
本文将介绍核酸探针的原理和应用。
2. 核酸探针的原理2.1 核酸杂交原理核酸探针的原理基于核酸的互补配对特性。
当目标核酸序列与探针的互补序列相遇时,它们之间会发生杂交反应。
杂交后,探针会与目标核酸形成稳定的双链结构,从而实现对目标核酸的特异性识别和检测。
2.2 核酸标记技术核酸探针通常需要标记以便于检测。
常用的核酸标记技术包括荧光标记、放射性标记和酶标记等。
这些标记可以通过特定的检测方法,如荧光显微镜、放射性测量和酶反应等,来检测探针与目标核酸之间的杂交情况。
2.3 核酸探针的设计核酸探针的设计需要考虑多个因素,包括目标序列的长度、杂交条件、标记方式等。
探针的长度应足够长以确保与目标序列的特异性结合,同时要避免与非目标序列的杂交。
此外,探针和目标序列的杂交温度、盐浓度等条件也需要进行优化。
3. 核酸探针的应用3.1 基因组学研究核酸探针在基因组学研究中扮演着重要角色。
通过使用特异性的核酸探针,可以对基因组进行定位、定序和变异等研究。
同时,核酸探针也可用于基因表达分析和基因功能研究,例如通过反转录聚合酶链式反应(RT-PCR)技术检测目标基因的表达水平。
3.2 生物医学研究核酸探针可用于生物医学研究中的疾病诊断和治疗。
例如,在肿瘤学研究中,核酸探针可以用于检测肿瘤相关基因的异常改变,从而实现早期诊断和治疗监测。
此外,核酸探针还可用于检测病毒和细菌感染,诊断遗传性疾病等。
3.3 临床诊断核酸探针在临床诊断中有着广泛应用。
通过对特定的核酸序列进行检测,可以实现对疾病的早期筛查和诊断。
常见的应用包括艾滋病病毒检测、乙肝病毒检测、人类乳头瘤病毒(HPV)检测等。
核酸探针的应用具有高度特异性和灵敏性,可以提供准确的诊断结果。
4. 总结核酸探针作为一种重要的生物技术工具,具有广泛的应用前景。
核酸探针杂交技术核酸探针杂交技术是一种重要的分子生物学技术,也是基因工程研究中不可缺少的手段。
核酸探针杂交技术凭借其高度灵敏度和特异性,广泛应用于基因诊断、基因功能研究、基因表达定量分析等领域。
本文将详细介绍核酸探针杂交技术的原理、应用及其优缺点等方面。
一、核酸探针杂交技术的原理核酸探针杂交技术是指将标记有一定信号的核酸探针与待检测样品中的目标核酸序列进行杂交,然后利用特定的检测方法检测杂交产物,从而确定目标核酸序列的存在和数量。
核酸探针杂交技术通常可分为非放射性和放射性两种技术,其中非放射性核酸探针杂交技术应用更为广泛。
核酸探针杂交技术的原理基于两条互补的单链核酸分子可以通过碱基配对形成稳定的双链结构,当核酸探针与待检测样品中的目标核酸序列互补配对时,就会形成稳定的探针-目标杂交双链结构。
利用检测方法检测杂交产物的特定信号,即可确定目标核酸序列的存在和数量。
二、核酸探针杂交技术的应用1.基因诊断:核酸探针杂交技术可以用于检测许多人类疾病的基因突变、缺陷等变异,例如乳腺癌、先天性失聪等。
2.基因功能研究:核酸探针杂交技术可以用来检测基因表达水平的变化、基因启动子的区域及启动子序列。
3.基因表达定量分析:核酸探针杂交技术可以在高通量测序技术出现之前对基因进行表达定量研究。
4.生物学研究:核酸探针杂交技术可用于鉴定微生物特征DNA序列,研究细胞核酸拷贝数变异等。
三、核酸探针杂交技术的优缺点优点:1.特异性高:核酸探针杂交技术具有高度特异性,只能与完全互补的目标核酸生成双链结构,具有极低的假阳性率。
2.灵敏度高:核酸探针杂交技术具有高灵敏度,可以检测非常微小的核酸样品。
3.可操作性强:核酸探针杂交技术易于操作,不需要复杂的仪器设备。
缺点:1.核酸探针设计难度大:核酸探针杂交技术需要准确、特异性地设计核酸探针,相对来说比较困难。
2.分子杂交的条件严格:核酸探针杂交需要特定的配合物和条件,唯有达到特定的温度、离子强度等,才能保证探针与目标核酸的正确杂交。
核酸荧光探针及其分子诊断随着生物技术的不断发展和进步,现代医学研究已经越来越注重从微观角度来研究病因和治疗方法。
而核酸荧光探针及其分子诊断技术作为分子生物学领域的一项核心技术,已经被广泛应用于医学、生物学、化学等领域。
本文将探讨核酸荧光探针的基本原理和应用,以及分子诊断技术的发展和前景。
一、核酸荧光探针的基本原理核酸荧光探针是一种利用荧光技术来检测DNA或RNA的分子探针。
它通常由靶标区域的亲疏水性荧光基团和一个特异的核酸序列构成,在特定条件下通过荧光发射来检测靶标核酸序列。
核酸荧光探针基于荧光探针的原理,即当荧光分子受到光激发后,能量从高能级的激发态转移到低能级的基态时会发射光子。
核酸荧光探针的基本主要有以下三种:1.探针结构上融合有一些特定结构,例如融合环、芳香素等。
2.荧光染料作为基团标识,例如草酸羧基荧光素、罗丹明染料等。
3.与核酸序列配对的荧光标记物。
对于核酸荧光探针,可以根据其所含荧光标记的特异性,分为两种类型:基于荧光共振能量转移(Fluorescence Resonance Energy Transfer, FRET)和基于荧光探针的杂交。
这两种方法不同于其他光学检测技术,因为它们不依赖于化学物质反应。
这种无需化学处理的技术是非常强大和灵敏的,因为它可以直接观察到包括DNA 结构突变等的生物反应。
二、核酸荧光探针的应用1、靶向分子的检测核酸荧光探针常用于靶向分子的检测。
例如Covid-19病毒核酸检测,是目前检测Covid-19病毒的主流检测方法之一。
核酸荧光探针能够与Covid-19病毒的核酸相结合,将分子自身和确诊病人样本抗原的能力结合,成为病毒检测的一种主要手段。
2、单细胞定量分析核酸荧光探针可用于单个活细胞的定量分析。
这项技术被广泛应用于癌症细胞免疫治疗、生理学研究等领域。
通过将特定荧光探针标记在细胞上,可以在特定条件下实现单个细胞级别的靶标检测和定量分析。
3、非侵入式实时检测核酸荧光探针可以通过实时荧光放大(Droplet Digital PCR, dPCR)技术进行非侵入性实时检测。
核酸探针技术的原理和应用引言核酸探针技术是一种重要的分子生物学工具,通过利用特异性的核酸序列与待测样品中的目标序列进行特异性配对,从而实现对目标序列的检测和定量分析。
本文将介绍核酸探针技术的原理以及其在生物学研究、医学诊断和药物开发等领域的应用。
一、核酸探针技术的原理核酸探针技术利用两条互补的核酸分子之间的碱基配对原理,通过标记的核酸序列与待测样品中的特定目标序列进行靶向配对。
该技术的原理主要包括以下几个方面:1.互补配对:核酸分子由四种碱基(腺嘌呤,胸腺嘧啶,鸟嘌呤和胞嘧啶)组成,它们之间可以通过碱基配对形成双链结构。
腺嘌呤与胸腺嘧啶之间形成两个氢键,鸟嘌呤与胞嘧啶之间形成三个氢键。
根据这种碱基配对原理,核酸探针可以与目标序列中的特定碱基序列进行互补配对。
2.标记物:核酸探针常常需要进行标记以便于检测。
常用的标记物包括荧光染料、放射性同位素、酶和磁珠等。
标记物的选择取决于具体的实验需求和检测方法。
3.检测方法:核酸探针技术可以通过不同的检测方法进行信号的读取和分析。
常见的检测方法包括荧光检测、放射性测量、酶促反应和磁性检测等。
这些方法可以实现对标记物信号的定量分析和可视化显示。
二、核酸探针技术的应用核酸探针技术具有高灵敏度、高特异性和高选择性的优势,被广泛应用于各个领域。
以下是核酸探针技术在生物学研究、医学诊断和药物开发等领域的应用:1.基因表达分析:核酸探针技术可用于研究基因的表达模式、调控机制和功能。
通过对目标基因的探针设计和合成,可以检测该基因在不同组织、细胞或条件下的表达水平。
2.病毒检测:核酸探针技术在病毒检测中具有重要意义。
例如,针对新型冠状病毒(COVID-19)的核酸探针被广泛应用于病毒的快速检测和筛查。
3.癌症诊断:核酸探针技术可用于癌症诊断和预后评估。
通过检测肿瘤标志物的核酸序列,可以快速、准确地判断患者是否患有癌症,以及癌症的类型和分级。
4.药物研发:核酸探针技术在新药研发中发挥重要作用。
rt-pcr 探针原理
RT-PCR(逆转录聚合酶链式反应)探针原理是一种基于实时荧光检测的核酸扩增技术,用于定量分析目标RNA分子。
其原理如下:
1. 首先,从目标组织或细胞中提取总RNA,然后通过逆转录酶将RNA 转化为cDNA。
2. 采用特定引物和探针进行PCR扩增。
探针是一种荧光标记的DNA 分子,能够与目标cDNA序列特异性地结合。
3. 在PCR反应过程中,荧光探针与目标cDNA结合,随着扩增产物的形成,探针的荧光强度逐渐增强。
4. 通过实时监测扩增过程中荧光信号的变化,可以计算出目标分子的拷贝数。
荧光信号的强度与目标RNA分子的数量成正比,从而实现对RNA分子的定量分析。
5. 利用特定的软件和数据分析,可以得到目标RNA分子的相对表达量,从而分析不同样本之间基因表达的差异。
RT-PCR探针原理具有高度敏感性和特异性,广泛应用于基因表达研
究、病毒载量检测、突变检测等领域。
需要注意的是,RT-PCR实验过程中需要严格控制实验条件,以确保结果的准确性和可重复性。
核酸探针的名词解释核酸探针是一种生物技术工具,用于检测和定量分析某个特定的核酸序列。
核酸探针广泛应用于生命科学研究、临床诊断、药物研发等领域,发挥着重要的作用。
本文将对核酸探针进行全面的解释和概述。
首先,核酸探针是由特定的DNA或RNA序列构成的分子探针,可以与目标核酸序列发生亲和作用。
这种亲和作用是通过碱基之间的氢键和静电相互作用来实现的。
当核酸探针与目标序列结合时,可以通过不同的手段进行检测,如荧光、放射性同位素、酶等。
因此,核酸探针可以用于检测及定量分析目标核酸的存在和数量。
核酸探针通常分为两类:探针和探针靶标。
探针是指通过标记物标记的核酸序列,用于寻找、结合和识别特定的目标序列。
标记物可以是荧光染料、放射性同位素、酶等,通过这些标记物的特性,可以将目标序列的存在转化为可见的荧光信号或颜色变化等。
探针的设计需要根据目标序列的特点和要求进行选择,以确保能够高效地与目标序列结合。
而探针靶标是指与探针结合的目标核酸序列。
探针靶标可以是基因、RNA、病毒等,通过与探针的结合,可以准确地检测和定量目标核酸的存在和数量。
探针靶标的选择是基于研究的目的和所需的结果,不同的探针靶标可以提供不同的信息和数据。
核酸探针的优点是具有高度的特异性和灵敏性。
由于核酸探针是专门设计的,可以针对目标序列的独特特点进行选择和设计,使其具有非常高的特异性。
此外,核酸探针的灵敏性也很高,可以检测到非常低浓度的目标分子。
因此,核酸探针常被用于疾病的早期诊断、药物研发、基因工程和环境监测等领域。
然而,核酸探针也存在一些限制和挑战。
首先,核酸探针对目标序列的特异性要求非常高,如果目标序列发生了变异或突变,可能会导致探针无法与其结合,从而导致检测结果的错误。
此外,核酸探针的设计和合成成本相对较高,需要专业的实验室和设备支持。
因此,在使用核酸探针进行研究和应用时,需要充分考虑这些限制和挑战。
目前,核酸探针已经广泛应用于各个领域。
在生命科学研究中,核酸探针常用于基因表达分析、突变检测、病毒感染研究等。