3 4. tan30°= 3 ,tan60°= 3.
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .