步进电机控制系统设计
- 格式:doc
- 大小:73.13 KB
- 文档页数:8
基于PID控制的步进电机位置闭环控制系统设计一、引言在现代自动化控制系统中,步进电机广泛应用于各种精密定位和定量控制需求的场景。
步进电机的控制涉及到位置的精确定位和稳定性的维持,这就需要一个有效的闭环控制系统来实现。
PID控制器被广泛应用于步进电机的闭环控制系统设计中,本文将探讨基于PID控制的步进电机位置闭环控制系统的设计原理和实现方法。
二、步进电机简介步进电机是一种特殊的直流电动机,通过控制脉冲信号的频率和顺序来实现精确控制。
步进电机的圆周分为若干等角度的步进角,每个步进角对应一个旋转角度,这使得步进电机在控制方面更加便捷和精确。
由于步进电机无需传感器反馈,因此常用于定量控制和精确位置控制的场合。
三、PID控制器原理PID控制器是一种经典的闭环控制器,其由比例(P)、积分(I)、微分(D)三个部分组成。
比例控制决定输出与偏差的比例关系,积分控制消除系统稳态误差和提高系统的响应速度,微分控制用于抑制系统对于负荷变化的敏感性。
PID控制器采用反馈控制策略,利用实际输出和期望输出之间的偏差来调整控制量。
四、步进电机位置闭环控制系统设计步进电机的位置闭环控制系统设计基于PID控制器。
首先,需要传感器来获得实际位置信息,然后与期望位置进行比较以获取偏差。
接下来,将偏差作为输入,经过PID控制器计算出控制量,并输出给步进电机驱动器。
步进电机驱动器根据控制量控制步进电机的旋转,从而实现位置的精确控制。
五、传感器选择为了获取步进电机的实际位置信息,需要选择合适的传感器。
常用的传感器包括光电编码器和霍尔传感器。
光电编码器具有高精度和高分辨率的特点,但价格较高;霍尔传感器则具有较低的价格和较高的可靠性,但分辨率较低。
根据具体需求和预算可选择合适的传感器。
六、PID参数调整PID控制器的性能很大程度上取决于参数的选择。
比例参数决定了响应的速度和稳定性,过大的比例参数会导致系统震荡,过小则导致响应速度慢;积分参数消除稳态误差,过大的积分参数会导致系统震荡,过小则无法消除稳态误差;微分参数能够抑制系统对负荷变化的敏感性,过大的微分参数会导致系统噪声,过小则无法起到抑制作用。
摘要步进电机是一种将输入的电脉冲信号变换为阶跃性角位移或直线位移的电机,既给一个脉冲信号,电机就转动一个角度或前进一步,故而又称为脉冲电机。
它输出的角位移与输入的脉冲数成正比,转速与脉冲频率成正比。
步近电机必须与驱动器、控制器配套使用才能完成工作要求。
本设计既有硬件电路设计,也包括软件电路设计。
其中硬件电路设计主要有键盘电路,串行显示电路,驱动电路等。
软件设计主要有主程序,键盘扫描子程序,串行显示子程序和延时子程序等。
硬件设计采用57BYG350A型号的步进电机,与其配套的驱动器型号为MS-3H057M系列驱动器。
采用AT89S51单片机对步进电机进行控制,通过4×4矩阵键盘对步进电机的状态进行控制,采用LED数码管来显示步进电机的运行步数和运行速度。
关键字:步进电机,AT89C51,硬件接口电路,软件模块AbstractTread into the electrical engineering(The Stepping Motors) is a kind of electricity pulse signal transformation that will input to jumpssex Cape move or the straight line to move for the rank of electrical engineering, since give a pulse signal, the electrical engineering turns to move an angle or fronts further, hence be called the pulse electrical engineering again.Its output's Cape move with the importation of pulse the number becomes the direct proportion, turning to become the direct proportion with the pulse frequency soon.Tread the near electrical engineering must then can complete the work request with actuator, the controller kit usage.The design of both hardware circuit design, including software design. One major hardware circuit design circuit has a keyboard, serial show circuit, the driver circuit. Software Design main main program, keyboard scanning routines, serial display routines and routines, and so delayed. 57 BYG350A hardware design using models of stepping motor, instead of supporting the drive models for MS-3H057M series drives. AT89S51 microcontroller used to stepping motor control, through the 4 × 4 matrix key board on the status of stepping motor control, the use of LED digital display of the stepping motor running steps and speed.Keyword: stepping motor,AT89S51, Hardware circuit, Software module1 绪论1.1 课题背景步进电机是一种将电脉冲转化为角位移的机电执行元件,每外加一个控制脉冲,电机就运行一步故称为步进电机或脉冲马达。
Design of PLC Control System for Stepper MotorWu Ziming,Zhao Weixue(Heilongjiang University of Business and Technology, Harbin, Heilongjiang 150025, CHN)【Abstract】Firstly, designs the overall scheme of the stepper motor speed regulation electrical control system, and analyzes and selects the functions of the existing stepper drive functional mod⁃ules based on the corresponding modules. It mainly includes PLC control module, sensor module, motor drive module, power supply, and other parts. Secondly, a programming tool for the stepper motor speed control electrical control system was provided to control the sensors and the specific program for controlling the motor, and automatic cyclic positioning was achieved. In the field ex⁃periment, the specific methods of multiple working modes of the system are debugged, the physical objects of step positioning are analyzed, and the man-machine interface is added to realize the vi⁃sualization of the step motor speed control system.Key words:stepper motor;PLC;sensors;man-machine interface1引言在工业4.0的时代,步进驱动自动化的应用越来越广泛,其中,又以基于PLC的自动化控制系统最先进。
基于stm32103的步进电机控制系统设计步进电机是一类常用的电机,广泛应用于控制系统中。
本文旨在介绍步进电机及其在控制系统中的应用,并概述本文的研究目的和重要性。
步进电机是一种将电脉冲信号转换为旋转运动的电机。
构成和工作方式步进电机由定子、转子和驱动电路组成。
定子是电磁铁,可以根据输入的电流控制电磁铁产生磁场。
转子是由磁性材料制成的旋转部分,定子的磁场会使得转子受到磁力的作用而旋转。
步进电机的工作方式是通过不断输入脉冲信号来控制电机的运动。
每一次输入一个脉冲信号,步进电机就会转动一定的步进角度。
步进角度取决于步进电机的类型和驱动电路的设置,常见的步进角度有1.8度和0.9度。
输入脉冲信号旋转的步进角度输入脉冲信号的频率和方向决定了步进电机的转动速度和方向。
每一个脉冲信号的到来,步进电机会按照预定的步进角度旋转。
例如,若步进电机的步进角度为1.8度,那么每接收一个脉冲信号,步进电机就会旋转1.8度的角度。
综上所述,步进电机通过输入脉冲信号实现了精确而可控的旋转运动。
本文将阐述基于STM单片机的步进电机控制系统设计。
该设计包括硬件电路设计和软件程序设计。
本文将介绍如何通过STM与步进电机进行通信和控制,以实现预定的步进运动。
步进电机控制系统的硬件电路设计主要包括以下部分:步进电机驱动电路:通过STM的GPIO口控制步进电机驱动电路,实现电机的正转、反转和停止等操作。
电源电路:为步进电机提供稳定的电源供电,保证系统正常工作。
外设接口:设计相应的接口电路,实现STM与外部设备的连接。
步进电机控制系统的软件程序设计主要涉及以下方面:初始化设置:在程序开始运行时,对STM进行初始化设置,包括引脚配置、时钟设置等。
步进电机驱动程序:编写相应的程序代码,通过GPIO口控制步进电机的驱动电路,实现电机的正转、反转和停止等操作。
运动控制程序:编写相应的程序代码,通过控制步进电机的驱动电路,实现预定的步进运动,包括移动一定的步数、以特定的速度旋转等。
基于单片机的步进电机控制系统设计引言:步进电机是一种常用的电机类型,具有精准的位置控制、高效的能量转换等特点。
在许多自动化设备中广泛应用,如数控机床、3D打印机、机器人等。
本文将以基于单片机的步进电机控制系统设计为主题,介绍系统的硬件设计、软件设计以及实验验证。
一、硬件设计1.步进电机选型:根据实际应用需求,选择适当的步进电机。
包括步距角、转速范围、扭矩要求等等。
2.电源设计:步进电机需要驱动电压和电流,根据步进电机的额定电压和电流选用适当的电源。
3.驱动电路设计:步进电机通常需要驱动电路来控制电流和脉冲序列。
常见的驱动电路有全桥驱动器、半桥驱动器等。
4.信号发生器设计:步进电机通过脉冲信号来控制转动角度和速度,因此需要信号发生器来产生合适的脉冲序列。
常见的信号发生器有定时器、计数器等。
5.单片机接口设计:单片机作为步进电机控制系统的核心,需要与其他硬件进行通信。
因此需要设计合适的接口电路,将单片机的输出信号转换为驱动电路和信号发生器所需的电压和电流。
二、软件设计1.单片机程序框架设计:根据具体的单片机型号和开发环境,设计合适的程序框架。
包括初始化设置、主循环、中断处理等。
2.脉冲生成程序设计:根据步进电机的控制方式(如全步进、半步进、微步进等),设计脉冲生成程序。
通过适当的延时和输出信号控制,产生合适的脉冲序列。
3.运动控制程序设计:设计运动控制程序,实现步进电机的前进、后退、加速、减速等功能。
根据具体需求,可以设计不同的运动控制算法,如速度环控制、位置环控制等。
4.保护机制设计:为了保护步进电机和控制系统,设计合适的保护机制。
如过流保护、过压保护、过载保护等。
三、实验验证1.硬件连接:将步进电机、驱动电路和单片机按照设计进行连接。
2.软件调试:通过单片机编程,调试程序代码。
确保脉冲生成、运动控制等功能正常工作。
3.功能测试:对步进电机控制系统进行功能测试,包括正转、反转、加速、减速等功能。
通过观察步进电机的运动状态和测量相关参数来验证系统设计的正确性和性能。
文章标题:基于51单片机的步进电机红外控制系统的设计引言在现代科技发展迅速的时代,控制系统已经被广泛应用于各个领域。
其中,基于51单片机的步进电机红外控制系统的设计,不仅在工业领域有着重要的作用,同时也在家电领域、智能家居等方面得到了广泛的应用。
本文将从步进电机控制系统的设计原理、红外控制的基本概念以及基于51单片机的系统设计方案等方面展开深入探讨。
一、步进电机控制系统的设计原理步进电机是一种将电脉冲信号转换为机械位移的执行元件,其控制系统设计原理是核心。
以步进电机为执行元件的控制系统通常包括电脉冲发生电路、电流驱动电路、位置控制逻辑电路以及接口电路等模块。
在系统设计中,需要考虑步进电机的类型、工作方式、转动角度以及控制精度等因素,以选择合适的控制方案和相关元器件。
针对步进电机的控制系统设计,首先需要从硬件电路和软件控制两个方面进行综合考虑。
硬件方面需要设计合适的脉冲发生电路和驱动电路,并根据具体场景考虑相关的接口电路,以实现步进电机的控制和驱动。
而软件控制方面,则需要编写相应的控制程序,使得系统能够根据具体的控制要求进行精准的控制和调节。
二、红外控制的基本概念红外控制是一种常见的无线遥控技术,通过使用红外线传输信号来实现对设备的控制。
通常包括红外发射器和红外接收器两个部分,发射器将控制信号转换成红外信号发送出去,接收器接收红外信号并将其转换成电信号进行处理。
在实际应用中,红外控制技术已经被广泛应用于各种家电遥控器、智能家居系统以及工业自动化领域。
红外控制的基本原理是在发射器和接收器之间通过红外线进行双向通信,通过调制解调的方式进行信号的传输和解析。
设计基于红外控制的步进电机系统需要考虑红外信号的发射和接收过程,以及相关的解析算法和信号处理。
信号的稳定性、抗干扰能力以及传输距离等也是需要考虑的重要因素。
三、基于51单片机的系统设计方案在步进电机红外控制系统的设计中,选择合适的控制芯片和处理器是至关重要的。
《基于单片机的步进电机控制系统研究》篇一一、引言随着科技的发展,步进电机因其高精度、低噪音、易于控制等优点,在各个领域得到了广泛的应用。
然而,传统的步进电机控制方式存在控制精度低、响应速度慢等问题。
因此,基于单片机的步进电机控制系统应运而生,其具有体积小、控制精度高、响应速度快等优点。
本文旨在研究基于单片机的步进电机控制系统的设计原理、实现方法以及应用前景。
二、步进电机控制系统的基本原理步进电机是一种将电信号转换为机械运动的设备,其运动过程是通过一系列的步进动作实现的。
步进电机的控制原理主要是通过改变电机的电流和电压,使电机按照设定的方向和速度进行旋转。
三、基于单片机的步进电机控制系统设计基于单片机的步进电机控制系统主要由单片机、步进电机驱动器、步进电机等部分组成。
其中,单片机是控制系统的核心,负责接收上位机的指令,并输出相应的控制信号给步进电机驱动器。
步进电机驱动器则负责将单片机的控制信号转换为适合步进电机工作的电流和电压。
在硬件设计方面,我们选择了一款性能稳定、价格适中的单片机作为主控制器,同时设计了相应的电路和接口,以实现与上位机和步进电机驱动器的通信。
在软件设计方面,我们采用了模块化设计思想,将系统分为初始化模块、控制模块、通信模块等部分,以便于后续的维护和升级。
四、基于单片机的步进电机控制系统的实现在实现过程中,我们首先对单片机进行了初始化设置,包括时钟设置、I/O口配置等。
然后,通过编程实现了对步进电机的控制,包括步进电机的启动、停止、正反转以及速度调节等功能。
此外,我们还实现了与上位机的通信功能,以便于实现对步进电机的远程控制和监控。
五、实验结果与分析我们通过实验验证了基于单片机的步进电机控制系统的性能。
实验结果表明,该系统具有较高的控制精度和响应速度,能够实现对步进电机的精确控制。
同时,该系统还具有较好的稳定性和可靠性,能够在各种复杂环境下正常工作。
此外,我们还对系统的抗干扰能力进行了测试,结果表明该系统具有较强的抗干扰能力。
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,具有快速启动能力,定位精度高,能够直接接受数字量,因此被广泛地应用于数字控制系统中,如数模转换装置、精确定位、计算机外围设备等,在现代控制领域起着非常重要的作用。
本设计运用了8086 CPU芯片以及74273芯片、8255A芯片和步进电机以及7位小功率驱动芯片ULN2003A、指示灯等辅助硬件电路,设计了步进电机正反转及调速系统。
绘制软件流程图,进行了软件设计并编写了源程序,最后对软硬件系统进行联合调试。
该步进电机的正反转及调速系统具有控制步进电机正反转的功能,还可以对步进电机进行调速。
关键词:步进电机;正反转;调速控制;ULN2003A芯片;8086微机系统1、课程设计任务书1.1任务和目的 (4)1.2设计题目 (4)1.3内容和要求 (4)1.4列出使用元器件和设备清单 (4)2、绪论 (4)3、步进电机的总体方案 (6)4、步进电机的硬件设计 (7)4.1总体设计思路 (7)4.2电路原理图 (10)4.3线路连接图 (11)5、步进电机软件设计 (12)5. 1流程图 (12)5.2控制程序 (14)&调试说明 (19)6.1调试过程 (19)6.2调试缺陷 (19)7、总结收获 (19)8、参考文献 (20)附录:元器件及设计清单1. 课程设计任务书1.1任务和目的掌握微机硬件和软件综合设计的方法。
1.2设计题目步进电机控制系统设计1.3内容和要求1. 基本要求:控制步进电机转动,要求转速1步/1秒;设计实现接口驱动电路。
2. 提高要求:改善步进电机的控制性能,控制步进电机转/停;正转/反转;改变转速(至少3挡);1.4列出使用元器件和设备清单8086cpu可编程并行接口8255指示灯键盘74LS138译码器驱动模块步进电机2. 绪论步进电机又称脉冲电动机或阶跃电动机,国外一般称为Step motor或Steeping motor、Stepper servo Steppe,等等。
附一:封面**********学院毕业设计(论文)题目:步进电机控制系统设计专业:班级:姓名:学号:指导教师:2055 年 5 月 5 日附二:成绩评议表*************学院毕业设计(论文)成绩评议专业班级姓名学号题目步进电机控制系统设计指导教师评阅成绩评定:指导教师:年月日评阅教师意见评阅教师:年月日答辩小组意见答辩小组负责人:年月日中文摘要1、步进电机概述列出了步进电机的特点、技术参数和分类,并阐述了详细调速原理。
2、方案的论证确定了步进电机的控制方法、驱动方式、驱动电路以及基本方案。
3、硬件电路的设计对单片机、步进电机、驱动电路、显示电路与键盘、反馈电路进行了选择,并设计了电源电路、抗干扰及看门狗电路。
4、软件的设计对显示子程序、键盘子程序、驱动程序流程进行了设计,并绘制了正反转程序流程图。
5、总结关键词:步进电机 单片机 调速系统目录前言-----------------------------------------------05第一章步进电机概述---------------------------------061.1 步进电机的特点-----------------------------061.2 步进电机的技术参数-------------------------071.2.1步进电机的基本参数---------------------071.2.2步进电机动态指标及术语-----------------081.3步进电机的分类------------------------------101.4步进电机详细调速原理------------------------12第二章方案的论证-----------------------------------142.1控制方式的确定------------------------------142.2驱动方式的确定------------------------------162.3驱动电路的选择------------------------------172.4基本方案的确定------------------------------18第三章硬件电路的设计-------------------------------203.1单片机的选择--------------------------------203.1.1单片机的选择---------------------------203.1.2主要特性-------------------------------223.2步进电机的选择------------------------------233.2.1三相单三拍通电方式---------------------243.2.2三相双三拍通电方式---------------------253.3驱动电路的选择------------------------------293.4显示电路与键盘的选择------------------------313.5反馈电路的选择------------------------------34第四章软件的设计-----------------------------------374.1显示子程序的设计----------------------------374.2键盘子程序的设计----------------------------374.3驱动程序流程的设计--------------------------384.4正反转程序流程图----------------------------394.4.1正反转程序流程图----------------------394.4.2转速快慢程序流程图--------------------404.4.3定时中断流程图------------------------41五总结-------------------------------------------42前言第一章步进电机概述1.1步进电机的特点:1)一般步进电机的精度为步进角的3-5%,且不累积。
基于STM32的步进电机控制系统设计与实现1. 引言步进电机是一种常见的电动机类型,具有定位准确、结构简单、控制方便等优点,在自动化控制领域得到广泛应用。
本文将介绍基于STM32单片机的步进电机控制系统设计与实现,包括硬件设计、软件开发和系统测试等内容。
2. 硬件设计2.1 步进电机原理步进电机是一种将输入脉冲信号转换为角位移的设备。
其工作原理是通过改变相邻两相之间的电流顺序来实现转子旋转。
常见的步进电机有两相、三相和五相等不同类型。
2.2 STM32单片机选择在本设计中,我们选择了STM32系列单片机作为控制器。
STM32具有丰富的外设资源和强大的计算能力,非常适合用于步进电机控制系统。
2.3 步进电机驱动模块设计为了实现对步进电机的精确控制,我们需要设计一个步进电机驱动模块。
该模块主要包括功率放大器、驱动芯片和保护电路等部分。
2.4 电源供应设计步进电机控制系统需要稳定可靠的电源供应。
我们设计了一个电源模块,用于为整个系统提供稳定的直流电源。
3. 软件开发3.1 开发环境搭建在软件开发过程中,我们需要搭建相应的开发环境。
首先安装Keil MDK集成开发环境,并选择适合的STM32单片机系列进行配置。
3.2 步进电机控制算法步进电机控制算法是实现步进电机精确控制的关键。
我们可以采用脉冲计数法、速度闭环控制等方法来实现对步进电机的位置和速度控制。
3.3 驱动程序编写根据硬件设计和步进电机控制算法,我们编写相应的驱动程序。
该程序主要负责将控制信号转换为驱动模块所需的脉冲信号,并通过GPIO口输出。
3.4 系统调试与优化在完成软件编写后,我们需要对系统进行调试和优化。
通过调试工具和示波器等设备,对系统进行性能测试和功能验证,以确保系统工作正常。
4. 系统测试与评估在完成硬件设计和软件开发后,我们需要对系统进行全面的测试和评估。
主要包括功能测试、性能测试和稳定性测试等内容。
4.1 功能测试功能测试主要验证系统是否按照预期工作。
步进电机控制系统的设计
步进电机控制系统是一种常见的电机控制系统,用于控制步进电机的速度和方向。
设计步进电机控制系统需要考虑以下几个方面:
1. 选择合适的步进电机:根据应用场景,选择适合的步进电机型号和规格。
根据步进电机的电阻、电感等参数,计算出合适的电流和电压。
2. 选择合适的驱动器:根据步进电机的规格和控制要求,选择适合的驱动器型号。
常见的驱动器有常流驱动器和常压驱动器两种。
常流驱动器适用于控制步进电机的转速和保证输出力矩的精度;常压驱动器适用于控制步进电机的位置和运动精度。
3. 设计控制电路:根据步进电机的控制要求,设计相应的控制电路,包括信号输入电路、脉冲控制电路和电源电路。
根据实际需求,可以选择使用微控制器、PLC或者其他控制器实现控制。
4. 编写控制程序:根据实际控制要求,编写相应的控制程序。
程序可以使用各种高级语言编写,如C语言、Python等。
5. 测试和调试:完成步进电机控制系统的设计后,需要进行测试和调试。
测试包括电路测试和控制程序测试。
进行测试时需要注意安全,避免电路短路、过载等问题。
在调试过程中,需要根据测试结果进行调整优化,直到达到预期的控制效果。
总之,步进电机控制系统的设计需要充分考虑电机的规格和控制要求,选择合适的驱动器和控制器,设计合适的控制电路和编写适合的控制程序,并进行充分的测试和调试。
基于51单片机的步进电机控制系统设计与实现步进电机控制系统是基于51单片机的一种控制系统,它主要用来控制步进电机的转动方向和转速等参数。
下面详细解释一下这个系统的设计和实现。
1. 系统硬件设计步进电机控制系统的硬件主要包括51单片机、驱动电路、步进电机和电源等部分。
其中,驱动电路是控制步进电机的关键,它通常采用L298N芯片或ULN2003芯片等常用的驱动模块。
在硬件设计方面,主要需要考虑以下几个方面:(1)步进电机的种类和规格,以便选择合适的驱动电路和电源。
(2)驱动电路的接线和参数设置,例如步进电机的相序、脉冲频率和电流大小等。
(3)电源的选取和参数设置,以满足系统的供电要求和安全性要求。
2. 系统软件设计步进电机控制系统的软件设计主要包括编写控制程序和调试程序。
其中,控制程序是用来实现步进电机的正转、反转、加速和减速等控制功能,而调试程序则用来检测系统的电路和程序的正确性和稳定性。
在软件设计方面,主要需要考虑以下几个方面:(1)确定控制程序的算法和流程,例如使用“循环控制法”或“PID控制法”等控制方法。
(2)选择编程语言和编译器,例如使用汇编语言或C语言等。
(3)编写具体的控制程序和调试程序,并进行测试和调试,以确保程序的正确性和稳定性。
3.系统实现步进电机控制系统的实现主要包括硬件组装和软件烧录两个部分。
在硬件组装方面,需要按照硬件设计图纸进行零部件的选取和电路的组装,同时进行电源和信号线的接入。
在软件烧录方面,需要使用专用的编程器将程序烧录到51单片机的芯片中,并进行相应的设置和校验。
总之,基于51单片机的步进电机控制系统是一个功能强大、应用广泛的控制系统,可以实现精密控制和自动化控制等多种应用,具有很高的实用价值和研究价值。
步进电机控制系统设计目录1绪论 (3)1.1 步进电机概述 (3)1.2 步进电机的特征 (3)1.3 步进电机驱动系统概述 (4)1.4 课题研究的主要内容 (4)2步进电机驱动系统的方案论证 (5)2.1 步进电机驱动系统简介 (5)2.2 步进电机驱动器的特点 (5)2.3 混合式步进电机的驱动电路分类和性能比较 (6)2.3.1 双极性驱动器与单极性驱动器 (6)2.3.2 单电压驱动方式 (8)2.3.3 高低压驱动方式 (9)2.3.4 斩波恒流驱动 (10)2.4 方案的确定 (10)3混合式步进电动机驱动控制系统硬件设计 (11)3.1单片机最小系统 (11)3.2 红外遥控电路 (12)3.2.1 红外发射电路 (12)3.2.2 红外接收电路 (13)3.3 LCD显示电路 (14)3.4 双机通讯 (15)3.5 步进电机驱动部分 (16)3.5.1 单极性步进电机驱动 (16)3.5.2 双极性步进电机驱动 (18)3.6 电源电路 (18)4 软件设计 (19)4.1 主机LCD显示菜单程序 (19)4.2 双机通讯程序 (20)4.3 下位机步进电机驱动程序 (22)5 驱动器试验结果 (24)5.1 概述 (24)5.2 试验内容和结论 (24)总结 (26)参考文献 (27)1绪论1.1 步进电机概述步进电机是将电脉冲信号转换为角位移或线性运动的执行器。
它由步进电机及其动力驱动装置组成,形成开环定位运动系统。
当步进驱动器接收到脉冲信号时,它驱动步进电机以设定方向以固定角度(步进角度)旋转。
脉冲输入越多,电机旋转的角度越大;输入脉冲的频率越高,电机的速度越快。
因此,可以通过控制脉冲数来控制角位移,从而达到精确定位的目的;同时,通过控制脉冲频率可以控制电机转速,从而达到调速的目的。
根据自身结构,步进电机可分为三类:反应型(VR),永磁型(PM)和混合型(HB)。
混合式步进电机具有无功和永磁两种优点,应用越来越广泛。
步进电机系统开发方案
步进电机是一种通过控制电流大小和方向来驱动转子旋转的电机,它具有定位精度高、控制简单、响应迅速等优点,因此在许多自动化控制系统中得到了广泛应用。
步进电机的系统开发方案主要包括硬件设计和软件编程两个方面。
首先是硬件设计方面,主要需要设计电机驱动电路、控制器和电源等。
1. 电机驱动电路:根据步进电机的特性,采用适当的驱动方式,如全步进驱动、半步进驱动或微步进驱动。
电机驱动电路可以选择使用集成驱动芯片,也可以使用离散元件组成的驱动电路。
2. 控制器:设计一个控制器来控制步进电机的运动,通常采用单片机作为控制器,通过读取传感器的反馈信号确定电机的位置,并根据预定的控制算法来驱动电机旋转。
3. 电源:选择合适的电源供应步进电机系统,电源的稳定性和功率大小需要满足电机系统的需求。
其次是软件编程方面,主要包括控制算法的设计和编程实现。
1. 控制算法设计:根据步进电机的运动特性和系统需求,设计合适的控制算法,确定电机应该如何旋转以达到预定位置。
2. 程序编写:使用编程语言编写程序,在控制器上实现控制算法。
程序需要读取传感器数据、控制驱动电路以及与外部设备进行通信。
最后是整体系统测试和调试。
进行系统集成后,需要进行综合测试,验证硬件和软件的功能正常,并且达到了预期的性能要求。
如果发现问题,需要进行调试和优化,直到系统能够稳定
可靠地运行。
在步进电机系统的开发过程中,需要充分考虑各个组件之间的配合和协作,选用合适的硬件和软件设计方案,并进行系统测试和调试,才能确保最终的步进电机系统性能优良、稳定可靠。
步进电机多轴运动控制系统的研究1. 本文概述随着现代工业自动化和精密控制技术的快速发展,步进电机因其高精度、易于控制等特点,在多轴运动控制系统中扮演着至关重要的角色。
本文旨在深入研究步进电机在多轴运动控制系统中的应用,探讨其控制策略、系统设计及性能优化等方面的问题。
本文将概述步进电机的基本原理和工作特性,分析其在多轴运动控制中的优势。
接着,将重点探讨步进电机在多轴控制系统中的控制策略,包括开环控制和闭环控制,以及这两种控制策略在实际应用中的优缺点比较。
本文还将详细讨论多轴运动控制系统的设计与实现,包括硬件选型、软件编程及系统集成等方面。
特别关注步进电机与控制器之间的接口技术、运动控制算法的实现,以及系统在实际工作环境中的稳定性和可靠性。
本文将探讨步进电机多轴运动控制系统的性能优化方法,包括速度、精度和效率等方面的提升策略。
通过实验验证和数据分析,评估不同优化策略的实际效果,为步进电机在多轴运动控制系统中的应用提供理论指导和实践参考。
本文将从原理分析、控制策略、系统设计到性能优化等多个方面,全面深入研究步进电机在多轴运动控制系统中的应用,旨在为相关领域的研究和实践提供有益的参考和指导。
2. 步进电机原理及特性步进电机是一种特殊的电机类型,其运动不是连续的,而是按照固定的步长进行。
这种电机的特性使其非常适合需要精确控制位置和速度的应用场景。
步进电机通常被用在开环控制系统中,因为它们不需要持续的反馈信号来调整其运动。
步进电机的工作原理基于电磁学。
电机内部包含一系列电磁极,当电流通过这些电磁极时,它们会产生磁场。
这些磁场与电机内部的永磁体相互作用,产生旋转力矩,从而使电机转动。
通过控制电流的方向和顺序,可以控制电机的旋转方向和步长。
步进电机的主要特性包括其步距角、定位精度和动态性能。
步距角是电机每接收一个脉冲信号所转动的角度,这个角度通常很小,可以在5到8之间。
定位精度是指电机能够准确到达的目标位置,这主要取决于电机的制造精度和控制系统的精度。
摘要:着重对步进电动机的PLC控制系统作了研究。
步进电动机的
拍数控制采用步进指令,分别实现单三拍、双三拍、六拍控制的独立模块,按照指令执行相应的模块即可。
正反转控制是用一个输出继电器实现输出脉冲顺序的控制。
速度的控制就是对输出脉冲时间的控制,本设计用时间继电器指令、数据加减1指令、数据比较指令、位数据传输指令等实现了它的控制。
采用PLC控制步进电动机可以用很低的成本实现很复杂的控制方案,而且由于PLC编程的灵活性,使修改控制方案成为轻而易举的事情,只要重新编程序即可。
关键词:步进电机单三拍双三拍六拍
1、目的与要求
综合运用所学的《单片机原理与应用》理论知识,通过实践加强对所学知识的理解,具备设计单片机应用系统的能力,以单片机为核心设计一个步进电机控制系统,要求能够通过键盘设置步进电机的转向和转速,并在LED显示器上显示步进电机转速或工作状态。
本课题以单片机为核心,设计并制作出步进电机控制系统,设计要求:
1、按下不同的键,分别使步进电机实现顺时针和逆时针旋转。
2、电机运转状态可以是正反转,加速减速,五种不同速度的各种组
合。
3、通过LED数码管显示电机运行状态。
2、步进电机的原理介绍
2.1 步进电机的工作原理
步进电机是纯粹的数字控制电动机。
它将电脉冲信号转变为角位移或线位移的开环控制元件,在非超载的情况下,电机的转速、停止的位置只
取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
如下图所示,驱动方式为二相四拍方式各线圈通通电顺序如下表:
A B A’B’
相
顺序
0 1 1 0 0
1 0 1 1 0
2 0 0 1 1
3 1 0 0 1
表1-1
电机正反转控制和速度控制:
当电机绕组通电时序为AB-BA’-A’B’-B’A-AB时为正转,通电时序为AB-B’A-A’B’-BA’-AB时为反转。
步进电机的驱动电路,微电脑向步进电机输入端传送1或0信息,则可实现上述操作。
通过不同长度的延时来得到不同频率的步进电机输入脉冲,从而得到多种步进速度,也就是改变电机的转动速度。
2.2 步进电机的基本术语
2.2.1 相数
产生不同对极N、S磁场的激磁线圈对数,常用m表示。
2.2.2 拍数
完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以两相电机为例,有两相四拍运行方式即AB-BA’-A’B’-B’A-AB,
两相八拍运行方式AB-B-BA’-A’-A’B’-B’-B’A-A-AB。
2.2.3 步距角
对应一个脉冲信号,电机转子转过的角位移用θ表示。
θ=360度(转子齿数J*运行拍数),以常规二相,转子齿为50齿电机为例。
四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。
2.2.4 信号分配
二相步进电机,工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8度;二相八拍为,步距角为0.9度。
两相四拍为AB-BA’-A’B’-B’A-AB,步距角为1.8度;两相八拍为
AB-B-BA’-A’-A’B’-B’-B’A-A-AB,步距角为0.9度。
这里选取四拍的的工作方式。
3 、设计总体思路
3.1 方案与思路
因为步进电机的控制是通过脉冲信号来控制的,将电脉冲信号转变为角位移或线位移的开环控制元件。
所以怎样产生这个脉冲信号和产生怎样的信号是电机控制的关键。
用单片机来产生这个脉冲信号,通过单片机的P1口输出脉冲信号,因为所选电机是两相的,所以只需要P1口的低四位P1.0~P1.3分别接到电机的四根电线上。
定时器定时来调整电机的转速,通过键盘的按钮,就可以改变定时初值从而改变了电机的转速,P0口接LED数码管,可以显示当前的电机转速和按钮状态。
4、程序设计
4.1 主程序
进入主程序显示初始化状态,主程序由键盘程序、显示程序、步进电机驱动程序三部分组成,主程序首先初始化各变量,步进电机驱动的各引脚均输出高电平,然后调用键盘程序,并作判断,有键按下,则调用键盘程序,并显示出状态。
图4-1开始
显示初始化状态
“—00”
按键检测
Flag==0 Flag==1 Flag==2
以初始速度正向旋转“0—10”以初始速度反向旋转“1—10”
加速减速减速
加速
是否为极限速度是否为极限速度
保持速度显示上限速度加/减
显示改变
保持速度
显示上限
速度加/减
显示改变
结束
N
Y
N
Y
N
Y
N
Y
4.2 显示子程序
转速的显示是给用户最直观的概念,知道电机的转的快慢,知道电机当前的转速,而需要怎样的速度,再对它进行加减速。
而这个显示是调用显示子程序。
具体流程图如下:
图4-2
显示
Flag==0? 第一个数码管显示“0”(正传)
Y
Flag==2
? N
第一个数码管显示“1”(反转)
N
复位显示
“—00” Y
第二位显示
“—” 第3、4位显示转速。
第三位显示转速/10,第四位显示转速%10 NEXT
4.3 键盘扫描子程序
键盘是我们唯一和电机沟通的桥梁,通过键盘的输入从而改变电机的运行状态,这里所需要的键盘数量不多,可以根据学习板做成独立式键盘,键盘的焊接是行线接单片机P3口的p3.0~p3.4,通过调用KEY 扫描键盘,调用延时程序,再判断是否有键按下,如果无键按下就返回继续扫描,如果有键按下,则调用delay 延时去抖动,再读键值,等待键释放,具体流程如下图:
图4-3
键盘扫描
复位是否按下 正转是否按下 Flag==0转速为10
反转是否按下 Flag==1转速为10
减? 为最高速度?
速度加1
保持20
加?
为最低速度?
速度减1
保持1
返回
Flag==2 转速=0
N Y
Y
N
N
Y
Y
N
N Y
Y
N
Y
N
五、硬件设计
5.1 硬件的设计与选取
5.1.1步进电机的特点
感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。
因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。
感应子式步进电机某种程度上可以看作是低速同步电机。
一个四相电机可以作四相运行,也可以作二相运行。
(必须采用双极电压驱动),而反应式电机则不能如此。
5.1.2 步进电机的分类
感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。
以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。
5.1.3步进电机的注意点
步进电机应用于低速场合---每分钟转速不超过1000转,(0.9度时6666PPS),最好在1000-3000PPS(0.9度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。
这里规定电机转速1~20转每分钟。
步进电机最好不使用整步状态,整步状态时振动大。
这里要求不高,使用整步状态。
于历史原因,只有标称为12V电压的电机使用12V外,其他电机的电压值不是驱动电压伏值,可根据驱动器选择驱动电压(建议:57BYG采用直流24V-36V,86BYG采用直流50V,110BYG采用高于直流80V),当然12V的电压除12V恒压驱动外也可以采用其他驱动电源,不过要考虑温升。
应遵循先选电机后选驱动的原则。
综上所述,电机选取42BYG系列感应子式步进电机,两相四拍整步状态。
第8章参考文献
[1]王迎旭.单片机原理及及应用.北京:机械工业出版社
[2]张迎新.单片微型计算机原理、应用及接口技术.北京:国防工业出版社
[3]周向红.51系列单片机应用与实践教程.北京:北京航天航空大学出版
社
[4]郭天祥.新概念51单片机C语言教程.北京:电子工业出版社
.。