高中必修一 集合与函数综合练习题1套(有答案)
- 格式:pdf
- 大小:1.55 MB
- 文档页数:10
高中数学必修1第一章集合与函数概念专项练习题一、单选题1.若函数f(x)= |x +2| 的单调递增区间是( )A. (0,+∞)B. (−∞,+∞)C. [2,+∞)D. [−2,+∞)2.设全集 U ={-2,-1,0,1,2} , A ={−2,−1,0} , B ={0,1,2} ,则图中阴影部分所表示的集合为( )A. {0}B. {−2,−1}C. {1,2}D. {0,1,2} 3.函数 f(x)=2xe x +e −x 的大致图像是( )A. B. C. D.4.已知集合A={x|y= √(1−x)(x +3) },B={x|log 2x≤1},则A∩B=( ) A. {x|﹣3≤x≤1} B. {x|0<x≤1} C. {x|﹣3≤x≤2} D. {x|x≤2}5.设函数 f(x)={|x +1|,x ≤0,|log 4x|,x〉0, 若关于 x 的方程 f(x)=a 有四个不同的解 x 1,x 2,x 3,x 4, 且 x 1<x 2<x 3<x 4, 则 x 3(x 1+x 2)+1x32x 4 的取值范围是( )A. (−1,72] B. (−1,72) C. (−1,+∞) D. (−∞,72]6.已知全集U=N ,集合P ={1,2,3,4,6},P ={1,2,3,5,9}则P ∩(C U Q )=( )A. {1,2,3}B. {5,9}C. {4,6}D. {1,2,3,4,6} 7.函数 y =√−x 2−3x+4的定义域为( )A. (−4,−1)B. (−4,1)C. (−1,1)D. (−1,1]8.已知实数 a >0 , a ≠1 ,函数 f(x)=log a |x| 在 (−∞,0) 上是减函数,又 g(x)=a x +1a x ,则下列选项正确的是( )A. g(−2)<g(1)<g(3)B. g(1)<g(−2)<g(3)C. g(3)<g(−2)<g(1)D. g(−2)<g(3)<g(1)9.已知奇函数 y =f(x) 在 (−∞,0) 上单调递减,且 f(1)=0 ,若 a =f(log 318) , b =f(log 214) , c =f(log 23) ,则 a,b,c 的大小关系是( )A. c <b <aB. a <b <cC. a <c <bD. c <a <b10.设a=√2+√3 , M={x|x≤√10},给出下列关系:①a ⊂M ; ②M ⊇{a}; ③{a}∈M ; ④{Ф}⊆{a}; ⑤2a ∉M ; 其中正确的关系式共有( )A. 2个B. 3个C. 4个D. 5个 11.集合 A ={−1,0,1,2,3} , B ={x|log 2(x +1)<2} ,则 A ∩B 等于( )A. {−1,0,1,2}B. {0,1,2}C. {−1,0,1,2,3}D. {0,1,2,3} 12.函数 y =xe cosx (−π≤x ≤π) 的大致图象为( )A. B. C. D.13.若定义在R 上的偶函数f (x )在[0,+∞)上是减函数,则有( )A. f (3)<f (﹣2)<f (1)B. f (1)<f (﹣2)<f (3)C. f (﹣2)<f (1)<f (3)D. f (3)<f (1)<f (﹣2) 14.设f (x )的定义域为D ,若f (x )满足下面两个条件,则称f (x )为闭函数.①f (x )在D 内是单调函数;②存在[a,b ]⊆D , 使f (x )在[a,b ]上的值域为[a,b ] , 如果f (x )=√2x +1+k 为闭函数,那么k 的取值范围是( )A. −1<k ≤−12 B. 12≤k <1 C. k >−1 D. k <1 15.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=sinxcosx ; ②f (x )=2sin (x+π4);③f (x )=sinx+√3cosx ; ④f (x )=√2sin2x+1. 其中“同簇函数”的是( )A. ①②B. ①④C. ②③D. ③④ 16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A. y =−x 2+1B. y =lg |x |C. y =1x D. y =e −x 17.下列函数中,是偶函数且在区间 (0,+∞) 上为增函数的是( ) A. y =2ln x B. y =|x 3| C. y =x −1x D. y =cosx18.已知 f(12x −1)=2x +3,f(m)=6 ,则 m 等于( ) A. −14 B. 14 C. 32 D. −32 19.若函数y=x 2﹣3x ﹣4的定义域为[0,m],值域为 [−254,−4] ,则m 的取值范围是( )A. (0,4]B. [−254,−4] C. [32,3] D. [32,+∞)20.下列函数中,既是偶函数又存在零点的是( )A. y=x 2+1B. y=|lgx|C. y=cosxD. y=e x ﹣1二、填空题21.已知集合A={1,m+2,m 2+4},且5∈A ,则m=________.22.已知函数 f(x)={x +1,x ≤1f(log 2x),x >1 ,则 f(4)= ________; f(x) 的零点为________.23.函数f (x )=lg (2sinx ﹣1)的定义域为________.24.已知函数 f(x) 是定义在R 上的奇函数,当 x ≥0 时, f(x)=2x −c ,则 f(−2)= ________ 25.已知集合 A ={x|x 2−3x +2=0,x ∈R},B ={x|0<x <5,x ∈N} ,则满足条件 A ⊆C ⊆B 的集合 C 的个数为________.26.若函数 f(x)=lnx −kx 在区间 [1,+∞) 上单调递减,则实数 k 的取值范围是________ 27.设集合A={x|x 2﹣2ax+a=0,x ∈R},B={x|x 2﹣4x+a+5=0,x ∈R},若A 和B 中有且仅有一个是∅,则实数a 的取值范围是________.28.已知函数f (x )满足f (x ﹣1)=x 2﹣x+1,则f (3)=________. 29.函数 f(x)=lg(x −3)+(x−2)0x+1的定义域是________30.函数 y =√5+4x −x 2 的值域是________.31.已知函数f (x )= {log 2(1−x),x ≤0f(x −1)−f(x −2),x >0,则f (2016)=________32.已知定义在R 上的奇函数f (x ),当x≥0时,f (x )=x 2﹣3x .则关于x 的方程f (x )=x+3的解集为________. 33.如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1 , x 2 , 都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数①y=x 2;②y=e x +1;③y=2x ﹣sinx ;④f (x )={ln |x |,x ≠00,x =0.以上函数是“H 函数”的所有序号为 ________. 34.已知函数f (x )= {(2−a)x +1(x <1)a x (x ≥1) 在(﹣∞,+∞)上单调递增,则实数a 的取值范围是________.35.函数 y =√3−xlog2(x+1)的定义域是________ .三、解答题36.设f (x )=x 2﹣2|x|+3(﹣3≤x≤3) (1)证明f (x )是偶函数; (2)指出函数f (x )的单调增区间; (3)求函数f (x )的值域.37.已知函数f(x)=(x+1)(x+a)x为奇函数. (1)求实数a的值;(2)当x∈[1m ,1n](m>0,n>0)时,若函数f(x)的值域为[3−3m,3−3n],求m,n的值.38.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?39.设函数f(x)=x2−2|x−a|+3,x∈R.(1)王鹏同学认为,无论a取何值,f(x)都不可能是奇函数,你同意他的观点吗?请说明你的理由;(2)若f(x)是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单独递增区间.40.已知集合A={a,b,2},B={2,b2,2a},若A=B,求实数a,b的值.41.设f(x)=14x+2,先分别求f(0)+f(1),f(﹣1)+f(2),f(﹣2)+f(3),然后归纳猜想一般性结论,并给出证明.42.已知函数f(x)=log a(x+1),g(x)=log a(4−2x)(a>0,且a≠1),设F(x)=f(x)−g(x).(1)求函数F(x)的定义域;(2)求使函数F(x)的值为正数的x的取值范围.43.求函数y=2x﹣3+ √13−4x的值域.44.某通讯公司需要在三角形地带OAC 区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC 内,乙中转站建在区域AOB 内.分界线OB 固定,且OB=(1+ √3 )百米,边界线AC 始终过点B ,边界线OA 、OC 满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x (3≤x≤6)百米,OC=y 百米.(1)试将y 表示成x 的函数,并求出函数y 的解析式;(2)当x 取何值时?整个中转站的占地面积S △OAC 最小,并求出其面积的最小值.45.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值.46.已知 y =f(x) 为二次函数,其图象顶点为 (1,−3) ,且过坐标原点. (1)求 y =f(x) 的解析式;(2)求 y =f(x) 在区间 [0,m] 上的最大值.47.设全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0} 求A∩B ,A ∪B ,A∩∁U B .48.已知函数 f(x)=√x , g(x)=|x −2| . (1)求方程 f(x)=g(x) 的解集;(2)定义: max{a,b}={a,a ≥bb,a <b .已知定义在 [0,+∞) 上的函数 ℎ(x)=max{f(x),g(x)} . ①求 ℎ(x) 的单调区间;②若关于 x 的方程 ℎ(x)=m 有两个实数解,求 m 的取值范围.49.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象,并根据图象写出函数f(x)(x∈R)的递增区间;(2)写出函数f(x)(x∈R)的值域;(3)写出函数f(x)(x∈R)的解析式.50.已知函数f(x)=|x+1|−|x|.(1)解关于x的不等式f(x)+f(x−1)<1;(2)若关于x的不等式f(x)−f(x−1)<m−2|x|有解,求m的取值范围.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】D10.【答案】A11.【答案】B12.【答案】A13.【答案】A14.【答案】A15.【答案】C16.【答案】A17.【答案】B18.【答案】A19.【答案】C20.【答案】C二、填空题21.【答案】3或122.【答案】2;-123.【答案】(π6+2kπ,5π6+2kπ),k∈Z24.【答案】25.【答案】426.【答案】[1,+∞)27.【答案】(﹣1,0]∪[1,+∞)28.【答案】1329.【答案】(3,+∞)30.【答案】[0,3]31.【答案】032.【答案】{2+ √7,﹣1,﹣3}33.【答案】②③34.【答案】 [ 32 ,2) 35.【答案】 (−1,0)∪(0,3] 三、解答题36.【答案】 (1)证明:f (x )的定义域为{x|﹣3≤x≤3},关于原点对称 又f (﹣x )=(﹣x )2﹣2|﹣x|+3=x 2﹣2|x|+3=f (x ),∴f (x )是偶函数;(2)解: f(x)={x 2+2x +3=(x +1)2+2(−3≤x ≤0)x 2−2x +3=(x −1)2+2(0<x ≤3) 作出函数的图象,如图,可知:f (x )的单调增区间为[﹣1,0]和[1,3](3)解:由(2)知,x=±1时,函数取得最小值;x=±3时,函数取得最大值 ∴函数f (x )的值域为[2,6].37.【答案】 (1)解:函数f (x )的定义域为: {x ∈R|x ≠0} , f(x)=(x+1)(x+a)x=x +ax+1+a ,∴ f(−x)+f(x)=−x −ax +1+a +x +ax +1+a =0 , ∴ a =−1 ;(2)解:由(1)可知: f(x)=x −1x , 显然 f(x)=x −1x 在 [1m ,1n ] 上单调递增,∴{1m −m =3−3m 1n−n =3−3n,∴ m , n 是方程 2x 2−3x +1=0 的两个实根,且 m >n , ∴ m =1,n =12 .38.【答案】 解:(Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为 ,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元, 则租赁公司的月收益为,整理得.所以,当x=4050时,f (x )最大,最大值为f (4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元 39.【答案】 (1)解:我同意王鹏同学的看法,理由如下: f(a)=a 2+3,f(−a)=a 2−4|a|+3若 f(x) 为奇函数,则有 f(a)+f(−a)=0 , ∴a 2−2|a|+3=0显然 a 2−2|a|+3=0 无解, 所以 f(x) 不可能是奇函数(2)解:若 f(x) 为偶函数,则有 f(x)=f(−x) ∴2|a|=0 , 解得 a =0 ,此时 f(x)=x 2−2|x|+3 ,是偶函数.(3)解:由(2)知 f(x)=x 2−2|x|+3 ,其图象如图所示其单调递增区间是 (−1,0) 和 (1,+∞) .40.【答案】 解:由已知 A =B ,得 {a =2a b =b 2 (1)或 {a =b 2b =2a .(2) 解(1)得 {a =0b =0 或 {a =0b =1 , 解(2)得 {a =0b =0 或 {a =14b =12,又由集合中元素的互异性 得 {a =0b =1 或 {a =14b =12 . 41.【答案】解:f (0)+f (1)= , 同理可得:f (﹣1)+f (2)= ,f (﹣2)+f (3)=.一般性结论:或写成“若x 1+x 2=1,则f (x 1)+f (x 2)=.”证明: ==42.【答案】 (1)解:∵函数 f(x)=log a (x +1) , g(x)=log a (4−2x) ∴ F(x)=f(x)−g(x)=log a (x +1)−log a (4−2x) ∴其定义域满足: {x +1>04−2x >0 ,解得 −1<x <2∴函数 F(x) 的定义域为 (−1,2)(2)解:要使函数 F(x) 的值为正数,等价于 f(x)>g(x) ,即 log a (x +1)>log a (4−2x) . ①当 a >1 时,可得 x +1>4−2x ,解得 x >1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (1,2)②当 0<a <1 时,可得 x +1<4−2x ,解得 x <1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (−1,1)综上,当 a >1 时,解集为 (1,2) ;当 0<a <1 ,解集为 (−1,1) 43.【答案】解:令则,t≥0 ∴y=﹣3+t=﹣t 2+t+=﹣ (t ﹣1)2+4(t≥0)根据二次函数的性质可知,当t=1即x=3时,函数有最大值4 故答案为:(﹣∞,4]44.【答案】 (1)解:结合图形可知,S △BOC +S △AOB =S △AOC .于是, 12 x (1+ √3 )sin30°+ 12 y (1+ √3 )sin45°= 12 xysin75°,解得:y= √2xx−2 ,(其中3≤x≤6)(2)解:由(1)知,y= √2x x−2 (3≤x≤6),因此,S △AOC = 12 xysin75°= 1+√34 • x 2x−2= 1+√34[(x ﹣2)+ 4x−2 +4] ≥2+2 √3 (当且仅当x ﹣2= 4x−2 ,即x=4时,等号成立).∴当x=400米时,整个中转站的占地面积S △OAC 最小,最小面积是(2+2 √3 )×104平方米. 45.【答案】解:当k =0时,原方程变为-8x +16=0,所以x =2,此时集合A 中只有一个元素2.当k≠0时,要使一元二次方程kx 2-8x +16=0有一个实根,需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或146.【答案】 (1)解:设 f(x) 解析式为: f(x)=a(x −1)2−3 ∵f(x) 过坐标原点 ∴f(0)=a −3=0 ,解得: a =3∴f(x)=3(x −1)2−3=3x 2−6x(2)解:由(1)知: f(x) 为开口方向向上,对称轴为 x =1 的二次函数 ①当 0<m <2 时, f(x)max =f(0)=0 ,当 m =2 时, f(x)max =f(0)=f(m)=0 , ②当 m >2 时, f(x)max =f(m)=3m 2−6m47.【答案】解:全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0}={x|x <1或x >3},所以A∩B={x|﹣2<x <1},A ∪B={x|x <2或x >3},∁U B={x|1≤x≤3},所以A∩∁U B={x|1≤x <2}48.【答案】 (1)解:当 x ≥2 时,方程 f(x)=g(x) 为 √x =x −2 ,即 (√x −2)(√x +1)=0 ,解得 x =4 ,当 0≤x <2 时,方程 f(x)=g(x) 为 √x =2−x ,即 (√x +2)(√x −1)=0 ,解得 x =1 , 综上,方程 f(x)=g(x) 的解集为 {1,4} .(2)解:① f(x)≥g(x)⇒1≤x ≤4 , f(x)<g(x)⇒0≤x <1 或 x >4所以 ℎ(x)=max{f(x),g(x)}={2−x,0≤x <1√x,1≤x ≤4x −2,x >4 ,所以, ℎ(x) 的单调递增区间为 [1,+∞) ,单调递减区间为 [0,1) .②由①知 ℎ(x)min =ℎ(1)=1 , ℎ(0)=2 ,当 1<m ≤2 时,方程 ℎ(x)=m 有两个实数解, 综上,实数 m 的取值范围为 (1,2] .49.【答案】 (1)解:根据偶函数的图象关于y 轴对称,作出函数在R 上的图象, 结合图象可得函数的增区间为(﹣1,0)、减区间为(1,+∞)(2)解:结合函数的图象可得,当x=1,或 x=﹣1时,函数取得最小值为﹣1, 函数没有最大值,故函数的值域为[﹣1,+∞)(3)解:当x >0时,﹣x <0,再根据x≤0时,f (x )=x 2+2x ,可得f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x .再根据函数f (x )为偶函数,可得f (x )=x 2﹣2x .综上可得,f (x )= {x 2+2x,x ≤0x 2−2x,x >050.【答案】 (1)解: f(x)+f(x −1)<1⇔|x +1|−|x −1|<1⇔{x ⩽−1−x −1−1+x <1 或 {−1<x <1x +1−1+x <1 或 {x ⩾1x +1−x +1<1⇔x ⩽−1 或 −1<x <12⇔x <12所以,原不等式的解集为 (−∞,12)(2)解: f(x)−f(x −1)<m −2|x| 有解即 |x +1|+|x −1|<m 有解则 m >(|x +1|+|x −1|)min 即可.由于 |x +1|+|x −1|⩾|(x +1)−(x −1)|=2 ,当且仅当 (x +1)(x −1)≤0 ,即当 −1≤x ≤1 时等号成立,故 m >2 . 所以, m 的取值范围是 (2,+∞) .。
必修1综合能力测试题一一.选择题(本大题共12小题,第小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.) 1.函数21y x =-的定义域是( )1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞2.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则集合)A B = U (C ( ) A .{0,2,3,6} B .{ 0,3,6} C . {2,1,5,8} D . ∅ 3.已知集合{}{}13,25A x x B x x A B =-≤<=<≤= ,则( ) A. ( 2, 3 ) B. [-1,5] C. (-1,5) D. (-1,5]4.下列函数是奇函数的是( )A .x y =B .322-=x y C .21x y = D .]1,0[,2∈=x x y5.化简:2(4)ππ-+=( )A . 4B . 2 4π-C .2 4π-或4D . 4 2π- 6.设集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )7.下列说法正确的是( )A .对于任何实数a ,2142||a a =都成立 B .对于任何实数a ,||n n a a =都成立C .对于任何实数,a b ,总有ln()ln ln a b a b ⋅=+D .对于任何正数,a b ,总有ln()ln ln a b a b +=⋅8.如图所示的曲线是幂函数ny x =在第一象限内的图象.已知n 分别取1-,l ,12,2四个值,则与曲线1C 、2C 、3C 、4C 相应的n 依次为( )A .2,1,12,1- B .2,1-,1,12 C .12,1,2,1-D .1-,1,2,129.函数2()log f x x x π=+的零点所在区间为( )A .1[0,]8B .11[,]84C .11[,]42D .1[,1]210.函数32++=bx ax y 在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则( ) A .00<>a b 且 B .02<=a b C .02>=a b D .的符号不确定b a , 11.奇函数)(x f 在区间[]a b --,上单调递减,且)0(0)(b a x f <<>,那么)(x f 在区间[]b a ,上( )A .单调递减B .单调递增C .先增后减D .先减后增12.设()f x 是定义在R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则(1)f -=( )A .3B .3-C .1D .1- 二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.)13.已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f = .14.已知2(1)f x x -=,则 ()f x = .15. 方程 496770xx-⋅-=的解是 . 16.关于下列命题:①若函数x y 2=的定义域是{}0|≤x x ,则它的值域是}1|{≤y y ; ② 若函数xy 1=的定义域是}2|{>x x ,则它的值域是}21|{≤y y ;③若函数2x y =的值域是}40|{≤≤y y ,则它的定义域一定是}22|{≤≤-x x ;④若函数x y 2log =的值域是}3|{≤y y ,则它的定义域是}80|{≤<x x .其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上). 三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1)4160.25343216(23)(22)4()28(2009)49-⨯+--⨯--︒;(2)21log 32.5log 6.25lg0.01ln 2e +++-.18.已知全集{1,2,3,4,5,6,7,8}U =,2{|320}A x x x =-+=,{|15,}B x x x Z =≤≤∈,{|29,}C x x x Z =<<∈.(1)求()A B C ; (2)求()()U U C B C C .19. 已知函数()f x 是定义在R 上的偶函数,且当x ≤0时,()f x 22x x =+. (1)现已画出函数()f x 在y 轴左侧的图像,如图所示,请补出完整函数()f x 的图像,并根据图像写出函数()f x 的增区间; (2)写出函数()f x 的解析式和值域.20.已知10x -≤≤,求函数2234x xy +=-⋅的最大值和最小值.21.已知函数22()log (1)log (1)f x x x =--+.(1)求函数()f x 的定义域;(2)判断()f x 的奇偶性.22.设()f x 124lg ()3x x aa R ++=∈,若当(,1]x ∈-∞时,()f x 有意义,求a 的取值范围.备选题一.选择题1. 函数1log (82)x x y +=-的定义域是( ) A. (1,3)- B. (0,3) C. (3,1)- D. (1,0)(0,3)-2.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤二.填空题 3.设函数f(x)=log a (x+b)(a>0,a ≠1)的图象过点(2,1),其反函数的图像过点(2,8),则a+b 等于__.4.如果函数y=x 2+2x+m+3至多有一个零点,则m 的取值范围是_________________. 三.解答题5.设a >0,f(x)=a e x +xe a是R 上的偶函数.(1)求a 的值;(2)证明f(x)在(0,+∞)上是增函数.6.已知函数y =x 2-2ax +1(a 为常数)在21x -≤≤上的最小值为()h a ,试将()h a 用a 表示出来,并求出()h a 的最大值.必修1综合能力测试题一答案以及提示一.选择题(本大题共12小题,第小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.) 1.B .提示:210x -≥. 2.A .3.B .提示:运用数轴.4.A .提示:B 为偶函数,C 、D 为非奇非偶函数.5.B .提示:2(4)ππ-+=44ππππ-=-++=2 4π-.6.C .提示:A 定义域不对;D 值域不对;C 不是函数关系.7.A .提示:a 为负数,n 为奇数时B 不成立; a ,b 为负数,C 不成立; D 显然不对. 8.A . 9.C .提示:由1142f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<0. 10.B .提示:开口向下,对称轴为-1. 11.B .提示:)(x f 为偶函数.12.B .提示:(1)f -=(1)f -=()()12214b b -++=-+,又(0)0f =,所以b =-1,故(1)f -=-3.二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 13.8.提示:(1)f =3,(3)f =8.14. ()f x =()21x +.提示:∵()22(1)11f x x x -==-+⎡⎤⎣⎦,∴()f x =()21x +.15.x=1.提示:设7x=t,则2670t t --=,∴()()710t t -+=,∴t=7, ∴x=1.16.①②.提示:若函数x y 2=的定义域是{}0|≤x x ,则它的值域是{|01}y y <≤;若函数xy 1=的定义域是}2|{>x x ,则它的值域是1{|0}2y y <<.三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)原式=141311136233222444(23)(2)4[()]2217-⨯⨯+-⨯-⋅- =342314342324()217⋅-⋅+-⨯--=108+2-7-3=100 .(2)原式=122232-+-⨯=112-. 18.解:(1)依题意有:{1,2},{1,2,3,4,5},{3,4,5,6,7,8}A B C ===∴{3,4,5}B C = ,故有(){1,2}{3,4,5}{1,2,3,4,5}A B C == . (2)由{6,7U U C B C C ==;故有()(){6U UB C ==痧 .19.(1)函数图像如右图所示:()f x 的递增区间是(1,0)-,(1,)+∞.(2)解析式为:222,0()2,0x x x f x x x x ⎧+≤=⎨->⎩,值域为:{}|1y y ≥-.20.解:x x x x y 24)2(343222⋅+⋅-=⋅-=+,令t t y t x 43,22+-==则34)32(32+--=t01≤≤-x ,]1,21[1221∈≤≤∴t x 即 ,又∵对称轴]1,21[32∈=t ,∴当32=t ,即3432log max 2==y x 时 ;当1=t 即x=0时,1min =y .21.解:(1)要使函数有意义,则1010x x ->⎧⎨+>⎩,∴11x -<<,故函数的定义域为(1,1)-(2)∵22()log (1)log (1)()f x x x f x -=+--=-,∴()f x 为奇函数.22. 解:根据题意,有12403x x a++>,(,1]x ∈-∞, 即11()()42x x a ⎡⎤>-+⎢⎥⎣⎦,(,1]x ∈-∞,∵ 11()()42x x --与在(,1]-∞上都是增函数, ∴ 11[()()]42x x -+在(,1]-∞上也是增函数,∴ 它在1x =时取最大值为113()424-+=-, 即113()()424x x ⎡⎤-+≤-⎢⎥⎣⎦, ∴34a >-.备选题一.选择题1. D.提示:由1010820x x x +>⎧⎪+≠⎨⎪->⎩,得10x -<<,或03x <<.2.A . 二.填空题3.4.提示:函数f (x )=log a (x +b )(a >0,a ≠1)的图象过点(2,1),其反函数的图象过点(2,8),则log (2)1log (8)2a a b b +=⎧⎨+=⎩,∴228b ab a+=⎧⎨+=⎩,3a =或2a =-(舍),b =1,∴a +b =4.4.[-2,+∞).提示:Δ=4-4(m+3)≤0,解得m ≥-2. 三.解答题5.解:(1)依题意,对一切x ∈R ,有a e x +x e a =x ae1+ae x ,所以(a-a 1)(e x -x e 1)=0, 对一切x ∈R 成立. 由此得到a-a1=0,即a 2=1. 又因为a >0,所以a=1. (2)证明:设0<x 1<x 2,f(x 1)-f(x 2)=1x e -2x e +11x e -21x e =(2x e -1x e )(211x x e +-1)=1x e (12x x e +-1)·12121x x x x ee ++-, 由x 1>0,x 2>0,x 2-x 1>0,得x 1+x 2>0,12x x e--1>0,1-12x x e+<0,∴f(x 1)-f(x 2)<0,即f(x)在(0,+∞)上是增函数.6.解:∵y =(x -a )2+1-a 2, ∴抛物线y =x 2-2ax +1的对称轴方程是x a =.(1)当21a -≤≤时,由图①可知,当x a =时,该函数取最小值 2()1h a a =-;(2) 当2a <-时, 由图②可知, 当2x =-时,该函数取最小值 ()45h a a =+;(3) 当a >1时, 由图③可知, 当1x =时,该函数取最小值 ()22h a a =-+ 综上,函数的最小值为245,2,()1,21,22, 1.a a h a a a a a +<-⎧⎪=--≤≤⎨⎪-+>⎩(1)当2a <-时,()3h a <- (2) 当21a -≤≤时,3()1h a -≤≤(3) 当a >1时,()0h a <, 综上所述,max ()1h a =.yO -2 1 x =a①xxyO -2 1x =a② xyO-2 1 x =a③。
集合练习题1一、选择题1.集合},{b a 的子集有 ( ) A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,那么AB = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,那么()x f 的表达式是 ( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.概念集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,那么集合A B * 的所有元素之和为( )A .0B .2C .3D .65.以下四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)x x y x x⎧-≤⎪=⎨->⎪⎩.其中值域为R 的函数有 ( ) A .1个 B .2个 C .3个 D .4个6. 已知函数212x y x⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是 ( )A .-2B .2或52-C . 2或-2D .2或-2或52- 7.以下函数中,概念域为[0,∞)的函数是 ( ) A .x y =B .22x y -=C .13+=x yD .2)1(-=x y8.假设R y x ∈,,且)()()(y f x f y x f +=+,那么函数)(x f ( ) A . 0)0(=f 且)(x f 为奇函数 B .0)0(=f 且)(x f 为偶函数 C .)(x f 为增函数且为奇函数 D .)(x f 为增函数且为偶函数9.以下图象中表示函数图象的是 ( )A. B. C. D. 10. 函数)23(,32)(-≠+=x x cx x f 知足,)]([x x f f =那么常数c 等于( ) A .3 B .3- C .33-或 D .35-或11.已知函数()∞+,在0)(x f 上是减函数,那么)43()1(2f a a f 与+-的大小关系是 ( ) A. )43()1(2f a a f ≤+- B. )43()1(2f a a f ≥+-C. )43()1(2f a a f <+-D. )43()1(2f a a f =+-12.已知集合{}a x x A ≤≤-=2|是非空集合,集合{},,32|A x x y y B ∈+==集合=C{}A x xy y ∈=,|2,假设B C ⊆,那么实数a 的取值范围是 ( )A. 321≤≤aB.221≤≤-a C. 32≤≤a D. 31≤≤-a二、填空题13.假设{}{}0,1,2,3,|3,A B x x a a A ===∈,那么AB = .14.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M∩N = . 15.函数()1,3,x f x x +⎧=⎨-+⎩1,1,x x ≤>则()()4f f = . 16.===+=)36(,)3(,)2(),()()()(f q f p f y f x f xy f x f 那么且满足已知函数.三、解答题17.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R . (Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)若是A∩C≠Φ,求a 的取值范围.x y 0 x y 0 x y 0 xy 018.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}. (Ⅰ)假设A =B,求a 的值;(Ⅱ)假设ΦA ∩B ,A ∩C =Φ,求a 的值.19.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A ,=B {2,4,5,6},=C {1,2,3,4},A∩C =A ,A∩B =Φ,求q p ,的值?20.已知函数2()21f x x =-. (Ⅰ)用概念证明()f x 是偶函数;(Ⅱ)用概念证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值. yox21.设函数1)(2++=bx ax x f (0≠a 、R b ∈),假设0)1(=-f ,且对任意实数x (R x ∈)不等式)(x f ≥0恒成立.(Ⅰ)求实数a 、b 的值;(Ⅱ)当∈x [-2,2]时,kx x f x g -=)()(是单调函数,求实数k 的取值范围.22.已知)(x f 是概念在R 上的函数,假设关于任意的,,R y x ∈,都有),()()(y f x f y x f +=+ 且0>x 时,有0)(>x f . (1)求证0)0(=f ; (2)判定函数的奇偶性;(3)判定函数)(x f 在R 上的单调性,并证明你的结论.集合练习题2一、选择题:1.已知集合M={x N|4-x N}∈∈,那么集合M 中元素个数是( ) A .3 B .4 C .5 D .62.以下集合中,能表示由一、二、3组成的集合是( ) A .{6的质因数} B .{x|x<4,*x N ∈} C .{y||y|<4,y N ∈} D .{持续三个自然数}3. 已知集合{}1,0,1-=A ,那么如下关系式正确的选项是 A A A ∈ B 0A C A ∈}0{ D ∅A4.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B A ( )A. }32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 5.已知集合}01|{2=-=x x A ,那么以下式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,那么a 的值为( )A .-3或1B .2C .3或1D .17. 假设集合}8,7,6{=A ,那么知足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 88. 概念A —B={x|x A x B ∈∉且},假设A={1,3,5,7,9},B={2,3,5},那么A —B 等于( ) A .A B .B C .{2} D .{1,7,9}9.设I 为全集,1S ,2S ,3S 是I 的三个非空子集,且123S S S I ⋃⋃=,那么下面论断正确的选项是( )A .()I 123(C S )S S ⋂⋃= φB .()1I 2I 3S [C S )(C S ]⊆⋂ C .I 1I 2I 3(C S )(C S )(C S )⋂⋂=∅D .()1I 2I 3S [C S )(C S ]⊆⋃10.如下图,I 是全集,M ,P ,S 是I 的三个子集,那么阴影部份所表示的集合是( ) A .()M P S ⋂⋂ B .()M P S ⋂⋃ C .()I (C )M P S ⋂⋂ D .()I (C )M P S ⋂⋃11. 设},2|{R x y y M x ∈==,},|{2R x x y y N ∈==,那么( )A. )}4,2{(=⋂N MB. )}16,4(),4,2{(=⋂N MC. N M =D. N M ≠⊂12.已知集合M={x|x 1},N={x|x>}a ≤-,假设M N ≠∅,那么有( )A .1a <-B .1a >-C . 1a ≤-D .1a ≥-二、填空题:13.用描述法表示右边图中阴影部份的点(含边界上的点)组成的集合M 是___________________________.14. 若是全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ,}5,4{)()(=⋂B C A C U U ,}6{=⋂B A ,那么A 等于_________15. 假设集合{}2,12,4aa A --=,{}9,1,5a a B --=,且{}9=B A ,那么a 的值是________;16.设全集{|230}U x N x =∈≤≤,集合*{|2,,15}A x x n n N n ==∈≤且,*{|31,,9}B x x n n N n ==+∈≤且,C={x|x 是小于30的质数},那么[()]U C AB C =________________________.17.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且,那么实数a 的取值范围是________________18.某城市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名,假设该班学生共有48名,那么没有参加任何一科竞赛的学生有____________名三、解答题:解许诺写出文字说明,证明进程或演算步骤.19.已知:集合{|A x y ==,集合2{|23[03]}B y y x x x ==-+∈,,, 求A B20.假设A={3,5},2{|0}B x x mx n =++=,A B A =,{5}A B =,求m 、n 的值。
数学必修1第一章集合与函数测试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号 内(每小题5分,共50分)。
1 •用描述法表示一元二次方程的全体,应是()2A. { x | ax+bx+c=O , a , b , c € R }B. { x | ax 2+bx+c=0, a , b , c € R ,且 a ^ 0} 2C. { ax +bx+c=0 | a , b , c € R }D . { ax 2+bx+c=0 | a , b ,c € R ,且 a ^ 0} 2•图中阴影部分所表示的集合是()A. B n : C U (A U C):B.(A U B) U (B U C)C .(A U C) n (C U B )D . :C U (A n C)]U B3•设集合P= {立方后等于自身的数},那么集合A . 3B . 44 •设P= {质数},Q= {偶数},贝U P n Q 等于A . ?B . 215•设函数y的定义域为M ,值域为N ,1丄 xA . M= {x | X K 0}, N= {y | y 工 0}B. M= {x | x v 0且X K — 1,或 x > 0},N={y | y v 0,或0v y v 1,或 y > 1 }C. M= {x | X K 0},N= {y | y € R }D . M= {x | x v — 1,或—1 v x v 0,或 x > 0 =, N= {y | y K 0}6•已知A 、B 两地相距150千米,某人开汽车以 60千米/小时的速度从 A 地到达B 地,在B 地停留1小时后再 以50千米/小时的速度返回 A 地,把汽车离开 A 地的距离x 表示为时间t (小时)的函数表达式是 ()A . x=60tB . x=60t+50t60t,(0 t 2.5)C . x=D .150 50t, (t 3.5)1 x 27•已知 g(x)=1-2x, f[g(x)]= 2 (xxA . 1B . 3p 的真子集个数是() C . 7D . 8()C . { 2}D . N那么()60t,(0 t 2.5)x= 150,(2.5 t 3.5)150 50( t 3.5),(3.5 t 6.5) 10)则f(—)等于()2C . 15D . 308.函数 y= 丁1 ------- i 是()1 x|A •奇函数B •偶函数C .既是奇函数又是偶函数D •非奇非偶数9•下列四个命题(1) f(x)= x 2 1 x 有意义;(2)函数是其定义域到值域的映射 ;(3) 函数y=2x(x N )的图象是一直线;得x 2+(m-1)x=0在0 x 2内有解,2(m 1)4 0 即 m3 或 m -1.A B,求实数m 的取值范围Vx 3 2x 2 x (,1)17.( 12 分)已知 f(x)=,求 f[f(0)]的值.x 3 x 3 x (1,)18. ( 12分)如图,用长为 1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为 x ,求此框架围成的面积 y 与x 的函数式y=f(x),并写出它的定义域. 19.(14分)已知f(x)是R 上的偶函数,且在(0,+ )上单调递增,并且f(x)<0对一切x R 成立,试判断在(—,0)上的单调性,并证明你的结论 .120. ( 14分)指岀函数 f(X ) x —在 ,1,1,0上的单调性,并证明之.x参考答案(5)一、 DACCBDCBAD二、 11. { k 1 k —} ; 12. [a,-a]; 13. [0, +]; 14. [ - 2 1, . 3];2三、 15・解:C u A={ x|-1 < x < 3} ; C u B={ x|-5< x<-1 或 1< x < 3};(C u A) A (C u B)={x|1< x < 3} ; (C u A) U (C u B)={ x|-5< x < 3}=U ; C u (A A B)=u ; C u (A U B)={ x|1 < x < 3}.相等集合有(C u A) A (C u B)=C u (A U B) ; (C u A) U (C u B)=C u (A A B).(4)函数y= 的图象是抛物线,其中正确的命题个数是()A . 110 .设函数f(x)是(—A . f(a)>f(2a)C . f(a 2+a)<f(a),+)上的减函数,又若 a R ,贝UB . f(a 2)<f(a) D . f(a 2+1)<f(a) ()、填空题:请把答案填在题中横线上(每小题6分,共24分)11•设集合 A={ x 3 x 2},B={x 2k 1 x 2k 1},且A B ,则实数k 的取值范围是 12 •函数f(x)的定义域为[a,b],且b>-a>0,则F ( x ) =f(x)-f(-x)的定义域是 13•若函数f(x)=(K-2) x 2+(K-1) x+3是偶函数,则f(x)的递减区间是. 14 .已知x [0,1],则函数y= . x 2. 1 x 的值域是.三、解答题:解答应写岀文字说明、证明过程或演算步骤 15. ( 12分)已知,全集 U={x|-5W x < 3},A={x|-5W x<-1}, B={ x|-1 < x<1},求C u A ,C U B ,(C U A) A (C U B),(C U A) U (C U B), C U (A A B),C u (A U B),并指岀其中相关的集合.16.( 12 分)集合 A ={ ( x,y ) x 2 mx y 20},集合 B={ (x,y ) |x y 1 0,且 0 x(共76分).-1 0 I2},又1 f (x)16•解:由A B知方程组2x mx x y 1y 20在0 x 2内有解,消去y,若m 3,贝U x i +x 2=1-m<0,x i x 2=1,所以方程只有负根. 若m -1,x i +x 2=1-m>0,x i x 2=1,所以方程有两正根,且两根均为 1或两根一个大于1,一个小于1,即至少有一根在[0,2]内.17•解:•/ 0(-,1 ),••• f(0)= 3 2 ,又 3 2 >1,•- f( 3 2 )=( 3 2 )3+(3 2 )-3=2+ 丄=5 ,即 f[f(0)]= 52 2 22x,于是 AD= 1_竺 x ,因此,y=2x • 1 2x X +_^,2 2 21).219 .解:设 x 1<x 2<0,则一x 1> — x 2>0, • f(— x 1)>f( — X 2), T f(x)为偶函数,• f(x 1)>f(x 2)(T f(x 1)<0,f(x 2)<0)由X 1<X 2- 11 知 X 1X 2>1, • 1X 1X 20,即 f(X 2) f(X 1)• f(x)在,1上是增函数;当 1 X 1 <X 2<0 时, 1有 0<X 1X 2<1,得 1X 1X 2... f(X 1)f(X2)f(x)在人0上是减函数.X 1X2X 2 X 1且 X 1<X 2X 2 X 1再利用奇偶性,给岀(0,1], (1,)单调性,证明略因此{m<m -1}. 18.解:AB=2 x,CD =即 y=- ------ 4 X 222x 0由” c1 2x x2lx .得 0<x< —1—,2函数的定义域为(0,f(X 2)f(xjf(X 1)f(X 2)f (X 2)f (X 1)1是(f (X),0)上的单调递减函数.f(X 2) f(xjX 2 1 X 1%1 20 .解:任取X 1,X 2。
集合与函数 综合练习一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是 ( )A .1B .3C .4D .82.已知集合M ={x |0)1(3≥-x x},N ={y |y =3x 2+1,x ∈R },则M ⋂N = ( )A .∅B .{x |x ≥1}C .{x |x >1}D .{x | x ≥1或x <0}3.有限集合S 中元素个数记作card ()S ,设A 、B 都为有限集合,给出下列命题:①φ=B A 的充要条件是card ()B A = card ()A + card ()B ; ②B A ⊆的必要条件是card ()≤A card ()B ; ③B A ⊄的充分条件是card ()≤A card ()B ; ④B A =的充要条件是card ()=A card ()B . 其中真命题的序号是A .③、④B .①、②C .①、④D .②、③4.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3} 5.函数2log (1)1xy x x =>-的反函数是( )A .2(0)21xxy x =>- B .2(0)21xxy x =<-C .21(0)2x x y x -=>D .21(0)2x x y x -=<6.函数)13lg(13)(2++-=x xx x f 的定义域是( )A .),31(+∞-B .)1,31(-C .)31,31(-D .)31,(--∞7.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .R x x y ∈-=,3B .R x x y ∈=,sinC .R x x y ∈=,D .R x x y ∈=,)21(8.函数)(x f y =的反函数)(1x f y -=的图象与y 轴交于点)2,0(P (如图2所示),则方程0)(=x f 的根是=x ( )A .4B .3C .2D .19.已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( ) A .12()()f x f x > B .12()()f x f x <C .12()()f x f x =D .1()f x 与2()f x 的大小不能确定10.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 ( )A .7,6,1,4B .6,4,1,7C .4,6,1,7D .1,6,4,711.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所 围成的弓形面积的2倍,则函数y =f (x )的图象是( )12.关于x 的方程()011222=+---k x x ,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根.其中假命题的个数是( )A .0B .1C .2D .3 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______.14.设f (x )=log 3(x +6)的反函数为f -1(x ),若〔f -1(m )+6〕〔f -1(n )+6〕=27,则f (m +n )=___________________.15.设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________.16.设()x x x f -+=22lg ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为_____________ . 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数b x a x x f lg )2(lg )(2+++=满足2)1(-=-f 且对于任意R x ∈, 恒有x x f 2)(≥成立.(1)求实数b a ,的值; (2)解不等式5)(+<x x f .18(本小题满分12分)20个下岗职工开了50亩荒地,这些地可以种蔬菜、棉花、水稻,如果种这些农作物每亩地所需的劳力和预计的产值如下:问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高?19.(本小题满分12分)已知函数,),,( 1)(2R x b a bx ax x f ∈++=为实数⎩⎨⎧<->=)0( )( )0()()(x x f x x f x F (1)若,0)1(f =-且函数)x (f 的值域为),0[∞+ ,求)(x F 的表达式;(2)在(1)的条件下, 当]2 ,2[-∈x 时, kx x f x g -=)()(是单调函数, 求实数k 的取值范围; (3)设0<⋅n m , ,0>+n m 0>a 且)(x f 为偶函数, 判断)(m F +)(n F 能否大于零?20.(满分12分)已知定义域为R 的函数f (x )满足f (f (x )-x 2+y _=f (x )-x 2+x .(1)若f (2)-3,求f (1);又若f (0)=a ,求f (a );(2)设有且仅有一个实数x 0,使得f (x 0)= x 0,求函数f (x )的解析表达式.21.(本小题满分12分)设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像;(2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出证明;(3)当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的 上方.22.(本小题满分14分)设a 为实数,记函数x x x a x f -+++-=111)(2的最大值为g (a ).(1)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t ); (2)求g (a );(2)试求满足)1()(ag a g =的所有实数a .参考答案1.C .{1,2}A =,{1,2,3}A B ⋃=,则集合B 中必含有元素3,即此题可转化为求集合{1,2}A =的子集 个数问题,所以满足题目条件的集合B 共有224=个.故选择答案C . 2.C .M ={x |x >1或x ≤0},N ={y |y ≥1}故选C3.B .选由ca r d ()B A = ca r d ()A + ca r d ()B + ca r d ()A B 知ca r d ()B A = ca r d ()A + ca r d ()B ⇔ca r d ()A B =0⇔φ=B A .由B A ⊆的定义知ca r d ()≤A ca r d ()B .4.D . {}{}2log 12N x x x x =>=>,用数轴表示可得答案D .5.A .∵ 2log 1x y x =- ∴21y x x =- 即221xx y =-∵1x > ∴11111x x x =+>-- 即2log 01x y x =>-∴函数2log (1)1x y x x =>-的反函数为2(0)21xx y x =>-.6.B .由13101301<<-⇒⎩⎨⎧>+>-x x x ,故选B . 7.B .在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A .8.C .利用互为反函数的图象关于直线y =x 对称,得点(2,0)在原函数)(x f y =的图象上,即0)2(=f , 所以根为x =2.故选C9. B .取特值()()22,2,2,121->=-==f f x x a ,选B ;或二次函数其函数值的大小关系,分类研究对 成轴和区间的关系的方法, 易知函数的对成轴为1-=x ,开口向上的抛物线, 由12x x <, x 1+x 2=0,需 分类研究12x x <和对成轴的关系,用单调性和离对成轴的远近作判断,故选B ;10.B .理解明文→密文(加密),密文→明文(解密)为一种变换或为一种对应关系,构建方程组求解,依提意用明文表示密文的变换公式为⎪⎪⎩⎪⎪⎨⎧=+=+=+=d m d c z c b y ba x 43222,于是密文14,9,23,28满足,即有⎪⎪⎩⎪⎪⎨⎧====∴⎪⎪⎩⎪⎪⎨⎧=+=+=+=6417,428322329214a b c d d d c c b b a ,选B ;11.D .当x =2π时,阴影部分面积为14个圆减去以圆的半径为腰的等腰直角三角形的面积,故此时12()2[]24222f ππππ-=-=<,即点(2,22ππ-)在直线y =x 的下方,故应在C 、D 中选;而当x =32π时, ,阴影部分面积为34个圆加上以圆的半径为腰的等腰直角三角形的面积,即32()2[]222f ππππ-=⨯-=+32π>,即点(3,22ππ+)在直线y =x 的上方,故选D . 12.B .本题考查换元法及方程根的讨论,要求考生具有较强的分析问题和解决问题的能力;据题意可令21x t -=(0)t ≥①,则方程化为20t t k -+=②,作出函数21y x =-的图象,结合函数的图象可知:(1)当t =0或t >1时方程①有2个不等的根;(2)当0<t <1时方程①有4个根;(3)当t =1时,方程①有3个根.故当t =0时,代入方程②,解得k=0此时方程②有两个不等根t =0或t =1,故此时原方程有5个根;当方程②有两个不等正根时,即104k <<此时方程②有两根且均小于1大于0,故相应的满足方程21x t -=的解有8个,即原方程的解有8个;当14k =时,方程②有两个相等正根t =12,相应的原方程的解有4个;故选B . 13.由()()12f x f x+=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.14.f -1(x )=3x -6故〔f -1(m )+6〕•〔f -1(x )+6〕=3m •3n =3m +n =27∴m +n =3∴f (m +n )=log 3(3+6)=2. 15.1ln 2111(())(ln )222g g g e===. 16.由202x x +>-得,()f x 的定义域为22x -<<。
高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
高一数学集合与函数测试题一、选择题:(本大题共12小题,每小题5分,共60分)2.设函数y=1+x 的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .φB .NC .[1,+∞)D .M 5.下列各组函数中,表示同一函数的是 ( ) A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==6. 下列函数在)(0,∞-上是增函数的是 ( ) A.1()1f x x=-B.1)(2-=x x f C.x x f -=1)( D.x x f =)( 7.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( )A .1+πB .0C .πD .1-8.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围( ) A .2-≥bB .2-≤bC .2->bD . 2-<b 9.已知函数f (x +1)=x +1,则函数f (x )的解析式为 ( )A .f (x )=x 2B .f (x )=x 2+1(x ≥1) C .f (x )=x 2-2x +2(x ≥1) D .f (x )=x 2-2x (x ≥1)10.函数x xx y +=的图象是( )ABCD11.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 ( ) A .3(,]2-∞ B .3(,]2-∞-C .3(,)2+∞D .33(,]22-12.已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点, 那么| f (x +1)|<1的解集是( )A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞) 二、填空题:本大题共4小题,每小题5分,共20分。
2016届高一年级数学第2次测试--集合与函数部分一、选择题:(每个5分,共45分)1、如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U)B 等于( )(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1 2.设函数y=1+x 的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .φB .NC .[1,+∞)D .M3.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M B. M ∪N=UC .M )(=M N C u D. N N M C u = )(4.已知集合A ={x ||x -1|<2},B ={x ||x -1|>1},则A ∩B 等于 ( )A .{x |-1<x <3}B .{x |x <0或x >3}C .{x |-1<x <0}D .{x |-1<x <0或2<x <3} 5.下列各组函数中,表示同一函数的是 ( ) A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==6.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)))1(f f f (( ( )A .1+πB .0C .πD .1- 7.已知函数f (x +1)=x +1,则函数f (x )的解析式为 ( )A .f (x )=x 2B .f (x )=x 2+1(x ≥1) C .f (x )=x 2-2x +2(x ≥1) D .f (x )=x 2-2x (x ≥1)8.函数x xx y +=的图象是( )ABCD9.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 ( )A .3(,]2-∞B .3(,]2-∞-C .3(,)2+∞D .33(,]22-O yx OyxO yxOyx-11 1-1 -1 -1 11二、填空题(每个5分,共10分)10.已知函数=)(x f21,0221,0+≤-+>x x x x ,若17)(=x f ,则x =11. 已知:两个函数()f x 和()g x 的定义域和值域都是{1,23},,其定义如下表: x 1 2 3x 1 2 3x 1 2 3 f(x)231g(x)132g[f(x)]填写后面表格,其三个数依次为:三、解答题(每个15分,共45分)12:已知函数()3212=++-f x x x(1)求函数的定义域 (2)求f(-1),f(0)的值(3)当a 满足定义域时,求f(2a+1)+f(a-1)中a 的取值范围13.已知函数解析式为 ()24,02,042,4+≤⎧⎪=-<≤⎨⎪-+>⎩x x f x x x x x x(1)计算()()()5f f f 的值?(2)画出函数的图像(不要求列表但关键点和趋势要对) (3)求函数f(x)的值域,并写出()13-≤≤f x 的区间14.设U R =,2{|3100}A x x x =-->,{|121}B x a x a =+≤≤-,且U B C A ⊆,求实数a 的取值范围.。
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2D .42.设函数f (x )=,则f (f(31)的值为( )A.128127B .-128127C.81D.1613.若函数y =f (x )的定义域是[0,2],则函数g (x )=x -1f(2x的定义域是( ) A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.已知f (x )=(m -1)x 2+3mx +3为偶函数,则f (x )在区间(-4,2)上为( ) A .增函数B .减函数C .先递增再递减D .先递减再递增5.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a6.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(0,1)或(1,2)内有零点C .函数f (x )在区间[2,16)内无零点D .函数f (x )在区间(1,16)内无零点7.已知0<a <1,则方程a |x |=|log a x |的实根个数是( ) A .2 B .3C .4D .与a 值有关8.函数y =1+ln(x -1)(x >1)的反函数是( ) A .y =e x +1-1(x >0)B .y =e x -1+1(x >0)C .y =e x +1-1(x ∈R )D .y =e x -1+1(x ∈R )9.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .1<a <45D .-45<a <-110.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[-2,-1]即为“同族函数”.请你找出下面函数解析式中能够被用来构造“同族函数”的是( )A .y =xB .y =|x -3|C .y =2xD .y =11.下列4个函数中: ①y =2008x -1;②y =log a 2 009+x 2 009-x(a >0且a ≠1); ③y =x +1x2 009+x2 008;④y =x (a -x -11+21)(a >0且a ≠1). 其中既不是奇函数,又不是偶函数的是( ) A .①B .②③C .①③D .①④12.设函数的集合P ={f (x )=log 2(x +a )+b |a =-21,0,21,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-21,0,21,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好经过Q 中两个点的函数的个数是( )A .4B .6C .8D .10第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321则不等式f [g (x )]>g [f (x )]的解为________. 14.已知log a 21>0,若≤a 1,则实数x 的取值范围为______________.15.直线y =1与曲线y =x 2-+a 有四个交点,则a 的取值范围为________________.16.已知下表中的对数值有且只有一个是错误的.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设全集为R,A={x|3≤x<7},B={x|2<x<10}.求:A∪B,∁R(A∩B),(∁R A)∩B.18.(本小题满分12分)(1)已知全集U=R,集合M={x|≤0},N={x|x2=x+12},求(∁U M)∩N;(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁U B).19.(本小题满分12分)已知集合A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A ∩B={x|1<x<3},求实数a,b的值.20.(本小题满分12分)已知集合A={x|x≤a+3},B={x|x<-1或x>5}.(1)若a=-2,求A∩∁R B;(2)若A⊆B,求a的取值范围.21.(本小题满分12分)设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=51,判断集合A与B的关系;(2)若A∩B=B,求实数a组成的集合C.22.(本小题满分12分)已知集合A={x|(a-1)x2+3x-2=0},B={x|x2-3x+2=0}.(1)若A≠∅,求实数a的取值范围;(2)若A∩B=A,求实数a的取值范围.参考答案与解析1.D [∵A ∪B ={0,1,2,a ,a 2}, 又∵A ∪B ={0,1,2,4,16}, ∴a2=16,a =4,即a =4. 否则有a2=4a =16矛盾.]2.A [∵f (3)=32+3×3-2=16, ∴f(31=161,∴f (f(31)=f (161)=1-2×(161)2=1-2562=128127.] 3.B [由题意得:x ≠10≤2x ≤2,∴0≤x <1.] 4.C [∵f (x )=(m -1)x 2+3mx +3是偶函数,∴m =0,f (x )=-x 2+3,函数图象是开口向下的抛物线,顶点坐标为(0,3),f (x )在(-4,2)上先增后减.]5.C [20.3>20=1=0.30>0.32>0=log 21>log 20.3.]6.C [函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点.] 7.A [分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.]8.D [∵函数y =1+ln(x -1)(x >1),∴ln(x -1)=y -1,x -1=e y -1,y =e x -1+1(x ∈R ).] 9.C [∵f (x )=x 2-2ax +1, ∴f (x )的图象是开口向上的抛物线.由题意得:f(2>0.f(1<0,即4-4a +1>0,1-2a +1<0,解得1<a <45.] 10.B11.C [其中①不过原点,则不可能为奇函数,而且也不可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数.] 12.B [当a =-21,f (x )=log 2(x -21)+b , ∵x >21,∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(21,-1),(1,0), f (x )=log 2x +1经过(21,0),(1,1);当a =1时,f (x )=log 2(x +1)+1经过(-21,0),(0,1), f (x )=log 2(x +1)-1经过(0,-1),(1,0); 当a =21时,f (x )=log 2(x +21)经过(0,-1),(21,0) f (x )=log 2(x +21)+1经过(0,0),(21,1).]13.x =2解析 ∵f (x )、g (x )的定义域都是{1,2,3},∴当x =1时,f [g (1)]=f (3)=1,g [f (1)]=g (1)=3,不等式不成立; 当x =2时,f [g (2)]=f (2)=3,g [f (2)]=g (3)=1,此时不等式成立; 当x =3时,f [g (3)]=f (1)=1,g [f (3)]=g (1)=3, 此时,不等式不成立. 因此不等式的解为x =2. 14.(-∞,-3]∪[1,+∞) 解析 由log a 21>0得0<a <1. 由≤a 1得≤a -1,∴x 2+2x -4≥-1,解得x ≤-3或x ≥1. 15.1<a <45解析 y =x2+x +a ,x <0,x2-x +a ,x ≥0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -41,要使y =1与其有四个交点,只需a -41<1<a ,∴1<a <45. 16.lg1.5解析 ∵lg9=2lg3,适合,故二者不可能错误,同理:lg8=3lg2=3(1-lg5),∴lg8,lg5正确.lg6=lg2+lg3=(1-lg5)+lg3=1-(a +c )+(2a -b )=1+a -b -c ,故lg6也正确.17.解:∵全集为R ,A ={x |3≤x <7},B ={x |2<x <10}, ∴A ∪B ={x |2<x <10},A ∩B ={x |3≤x <7}, ∴∁R (A ∩B )={x |x ≥7或x <3}. ∵∁R A ={x |x ≥7或x <3},∴(∁R A )∩B ={x |2<x <3或7≤x <10}.18.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4}, ∴(∁U M )∩N ={4}.(2)∵A ={x |x <-1或x >1},B ={x |-1≤x <0}, ∴∁U B ={x |x <-1或x ≥0}. ∴A ∪(∁U B )={x |x <-1或x ≥0}. 19.解:∵A ∩B ={x |1<x <3},∴b =3,又A∪B={x|x>-2},∴-2<a≤-1,又A∩B={x|1<x<3},∴-1≤a<1,∴a=-1.20.解:(1)当a=-2时,集合A={x|x≤1},∁R B={x|-1≤x≤5},∴A∩∁R B={x|-1≤x≤1}.(2)∵A={x|x≤a+3},B={x|x<-1或x>5},A⊆B,∴a+3<-1,∴a<-4.解题技巧:本题主要考查了描述法表示的集合的运算,集合间的关系,解决本题的关键是借助于数轴求出符合题意的值.在解决(2)时,特别注意参数a是否取到不等式的端点值.21.解:A={x|x2-8x+15=0}={3,5}.(1)若a=51,则B={5},所以B A.(2)若A∩B=B,则B⊆A.当a=0时,B=∅,满足B⊆A;当a≠0时,B=a1,因为B⊆A,所以a1=3或a1=5,即a=31或a=51;综上所述,实数a组成的集合C为51.22.解:(1)①当a=1时,A=32≠∅;②当a≠1时,Δ≥0,即a≥-81且a≠1,综上,a≥-81;(2)∵B={1,2},A∩B=A,∴A=∅或{1}或{2}或{1,2}.①A=∅,Δ<0,即a<-81;②当A={1}或{2}时,Δ=0,即a=0且a=-81,不存在这样的实数;③当A={1,2},Δ>0,即a>-81且a≠1,解得a=0.综上,a<-81或a=0.11。
第一章 集合与函数概念同步练习1.1.1 集合的含义与表示 一. 选择题:1.下列对象不能组成集合的是( )A.小于100的自然数B.大熊猫自然保护区C.立方体内若干点的全体D.抛物线2x y =上所有的点 2.下列关系正确的是( )A.N 与+Z 里的元素都一样B.},,{},,{c a b c b a 与为两个不同的集合C.由方程0)1(2=-x x 的根构成的集合为}1,1,0{D.数集Q 为无限集 3.下列说法不正确的是( )A.*0N ∈B.Z ∉1.0C.N ∈0D.Q ∈24.方程⎩⎨⎧-=-=+3212y x y x 的解集是( )A.}1,1{-B.)1,1(-C.)}1,1{(-D.1,1-二.填空题:5.不大于6的自然数组成的集合用列举法表示______________.6.试用适当的方式表示被3除余2的自然数的集合____________.7.已知集合}7,3,2,0{=M ,由M 中任取两个元素相乘得到的积组成的集合为 ________. 8.已知集合}012{2=++∈=x ax R x M 只含有一个元素,则实数=a ______,若M 为空集,可a 的取值范围为_________.三.解答题:9.代数式}{)8(2x x x ∈-- ,求实数x 的值。
10.设集合A=},,2),{(N y x x y y x ∈+-=,试用列举法表示该集合。
11.已知}33,2{12+++∈x x x 试求实数x 的值。
1.1.2 集合的含义与表示一. 选择题:1.集合Φ与}0{的关系,下列表达正确的是( ) A.φ=}0{ B.φ⊆}0{ C.}0{∈φ D.φ}0{⊇2.已知集合A=}3,2,1{,则下列可以作为A 的子集的是( )A.}4,1{B.}3,2{C.}4,2{D.}4,3,1{ 3.集合},,{c b a 的非空真子集个数是( )A.5B.6C.7D.8 4.已知集合M={正方形},N={菱形},则( )A.N M =B.N M ∈C.M ≠⊂ND.N ≠⊂M二.填空题5.用适当的符号填空①},2_____{0Z n n x x ∈=②}_____{1质数③},,_____{}{c b a a ④}0))((_____{},{=--b x a x x b a ⑤},12______{},14{++∈+=∈+=N k k x x N k k x x 6.写出集合}1{2=x x 的所有子集_______________________7.设集合}{},63{a x x B x x A <=≤<-=,且满足A ≠⊂,B 则实数a 的取值范围是_________三.解答题8.已知集合B 满足}2,1{≠⊂B ⊆}5,4,3,2,1{,试写出所有这样的集合 9.已知}5{>=x x A ,}3{x x B <=,试判断A 与B 的关系 10.已知A=}3,4,1{},2,1{a B a =+,且B A ⊆,求a 的值1.1.3集合的基本运算(一)一.选择题1.已知集合A=}4,3,2,1{,}6,4,1{=B ,则=B A I ( ) A.}4,2,1{ B.}6,4,3,2,1{ C.}4,1{ D.}4,3,1{2.设A=}2{->x x ,}21{<<-=x x B ,则=B A Y ( ) A.R B.}2{<x x C.}1{->x x D.}2{->x x3.设{=A 等腰三角形} ,B={等边三角形},C={直角三角形},=C B A I Y )(( ) A.{等腰三角形} B.{直角三角形} C.φ D.{等腰直角三角形}4.已知集合}90{<<∈=x Z x M ,},2{+∈==N n n x x N ,则=N M I ( )A.{}6,4,2B.{}8,6,4,2C.{}7,6,5,4,3,2D.{}8,7,6,5,4,3,2,1 二.填空题5.{偶数}I {奇数}=__________.6.已知集合}31{<≤-=x x A ,}13{≤<-=x x B ,则=B A I __________.7.若集合A B A =I ,则=B A Y ___________.8.已知集合}33{<≤-=x x A ,}2{≤=x x B ,则=B A Y ___________.三.解答题9.集合},,523),{(R y x y x y x A ∈=-=},,132),{(R y x y x y x B ∈-=+=,求 B A I 10.已知集合},3,1{a A =,}1,1{2+-=a a B ,且A B A =Y ,求a 的值 11.已知集合},02{2=+-∈=b ax x R x A }05)2(6{2=++++∈=b x a x R x B且}21{=B A I ,求B A Y1.1.3集合的基本运算(二)一.选择题1.已知全集R U =,集合}1{<=x x M ,则M C u 为( ) A.}1{≥x x B.}1{>x x C.}1{<x x D.}1{≤x x2.设全集}4,3,2{=U ,}2,3{-=a A ,}3{=A C u ,则a 的值是( ) A.7 B.1- C.17-或 D.71-或3.已知全集R U =,集合}32{<≤-=x x A ,则A C u =( )A.}32{≥-≤x x x 或B.}32{>-≤x x x 或C.}32{>-<x x x 或D.}32{≥-<x x x 或 4.已知全集}8,7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,那么集合 C={2,7,8}可以表示为( )A.B C uB.B A IC.B C A C u u ID.B C A C u u Y二.填空题5.设全集R U =,}62{<≤=x x A ,}4{≤=x x B ,则B A I =__,__=B C A u I ,__=B A C u I .6.全集=U {三角形},=A {直角三角形},则A C u =____________.7.设全集}4,3,2,1,0{=U }3,2,1,0{=A ,}4,3,2{=B ,则=B A C u I ____8.已知全集},2,1,0{=U 且}2{=A C u ,则A 的真子集共有___个.三.解答题9.设全集R U =,集合},43{R x x x M ∈<≤-=,},51{R x x x N ∈≤<-=,求①N M Y ②N C M C u u I10.设全集=U {1,2,3,4,5,6,7,8,9},集合}2{=B A I ,}9,1{=B C A C u u I ,}8,6,4{=B A C u I ,求B A ,11.已知}1,4,2{2+-=x x U ,}1,2{+=x B ,}7{=B C u ,求x 的值1.2.1函数的概念(一)一.选择题1.函数13)(+=x x f 的定义域为( )A.)31,(--∞B.),31(+∞- C.),31[+∞- D.]31,(--∞2.已知函数q px x x f ++=2)(满足0)2()1(==f f ,则)1(-f 的值为( ) A.5 B.5- C.6 D.6-3.下列函数中)()(x g x f 与表示同一函数的是( )A.1)()(0==x g x x f 与 B.xx x g x x f 2)()(==与C.22)1()()(+==x x g x x f 与D.33)()(x x g x x f ==与 4.下列各图象中,哪一个不可能为)(x f y =的图象( )二.填空题5.已知x x x f 2)(2-=,则=)2(f ______________.6.已知12)1(2+=+x x f ,则=)(x f ______________.7.已知)(x f 的定义域为],4,2[则)23(-x f 的定义域为_______________. 8.函数11)(22---=x x x f 的定义域为______________.三.解答题9.设⎩⎨⎧≥+<-=)0(22)0(12)(2x x x x x f ,求)2(-f 和)3(f10.求下列函数的定义域 (1)321)(+=x x f (2)x x x g -++=1)10()(011.已知)(x f 为一次函数,且34)]([+=x x f f ,求)(x fx(D)(B)(C) (A)x1.2.1函数的概念(二)一、 选择题1.函数x x y 22-=的定义域为}3,2,1,0{,其值域为( ) A.}3,0,1{- B.}3,2,1,0{ C.}31{≤≤-y y D.}30{≤≤y y2.函数)(11)(2R x xx f ∈+=的值域是( ) A.)1,0( B.]1,0( C.)1,0[ D.]1,0[ 3.下列命题正确的有( ) ①函数是从其定义域到值域的映射②x x x f -+-=23)(是函数③函数)(2N x x y ∈=的图象是一条直线④x x g xx x f ==)()(2与是同一函数 A.1个 B.2个 C.3个 D.4个 4.函数xx x y -+=)32(的定义域为( )A.⎭⎬⎫⎩⎨⎧-≠<230x x x 且B.{}0<x xC.{}0>x xD.⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且二.填空题5.已知函数⎪⎩⎪⎨⎧≥<<--≤+=2,221,1,2)(2x x x x x x x f ,若3)(=x f ,则x 的值为__________.6.设函数33)(2+-=x x x f ,则)()(a f a f --等于____________.7.设函数x x x f --=1)(,则=)]1([f f ____________.8.函数[]3,1,322∈+-=x x x y 的值域是________________.三.解答题9.求函数242x x y --=的值域10.已知函数1122---=x x y ,求20072008y x +的值 11.已知函数bax xx f +=)((a .0≠a ,b 且为常数)满足1)2(=f ,x x f =)(有唯一解,求函数)(x f y =的解析式和)]3([-f f 的值.1.2.2 函数表示法(一) 一、 选择题1.设集合{}c b a A ,,=,集合B=R ,以下对应关系中,一定能成建立A 到B 的映射的是( )A.对A 中的数开B.对A 中的数取倒数C.对A 中的数取算术平方D.对A 中的数开立方2.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图是( )3.已知函数23)12(+=+x x f ,且2)(=a f ,则a 的值等于( )A.8B.1C.5D.1-4.若x xx f -=1)1(,则当10≠≠x x 且时,)(x f 等于( )A.x 1B.11-xC.x -11D.11-x二.填空题5.若[]36)(+=x x g f ,且12)(+=x x g ,则=)(x f ______________.6.二次函数的图象如图所示,则此函数的解析式为___________.ttt ABDC7.已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f 则=-)2(f ________,)4(f =_______8.集合}5,3,1{-=B ,12)(-=x x f 是A 到B 的函数,则集合 A 可以表示为____________________三.解答题9.已知函数)(x f 是一次函数,且14)]([-=x x f f ,求)(x f 的解析式10.等腰三角形的周长为24,试写出底边长y 关于腰长x 的函数关系式,并画出它的图象 11.作出函数31--+=x x y 的图象,并求出相应的函数值域1.2.2 函数表示法(二) 一、 选择题1.已知集合{}{}20,40≤≤=≤≤=y y B x x A ,按对应关系f ,不能成为从A 至B 的映射的一个是( ) A.x y x f 21:=→ B.2:-=→x y x f C.x y x f =→: D.2:-=→x y x f2.如图,函数1+=x y 的图象是( )y3.设}8,6,2,1,0,21{},4,2,1,0{==B A ,下列对应关系能构成A 到B 的映射的是( )A.1:3-→x x fB.2)1(:-→x x fC.12:-→x x fD.x x f 2:→4.已知函数⎩⎨⎧>+-≤+=1,31,1)(x x x x x f ,则⎥⎦⎤⎢⎣⎡)25(f f =( ) A.21 B.23 C.25 D.29 二.填空题5.设函数⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤-+=2,320,2101,22)(x x x x x x f ,则)43(-f 的值为______, )(x f 的定义域为_____.6.)(x f 的图象如图,则)(x f =____________.7.对于任意R x ∈都有)(2)1(x f x f =+,当10≤≤x 时,)5.1-的值是____________.8.23)1(+=+x x f ,且2)(=a f ,则a 的值等于____________.三.解答题9.作出下列函数的图象(1)x y -=1,)2(≤∈x Z x 且 (2)3422--=x x y ,)30(<≤xA B CD10.已知函数⎩⎨⎧<+≥-=4),3(4,4)(x x f x x x f ,求)1(-f 的值11.求下列函数的解析式(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f (2)已知x x f x f 5)()(3=-+,求)(x f1.3.1 函数单调性与最大(小)值(一) 一.选择题1.若),(b a 是函数)(x f y =的单调递增区间,()b a x x ,,21∈,且21x x <,( ) A.)()(21x f x f < B.)()(21x f x f = C.)()(21x f x f > D.以上都不正确2.下列结论正确的是( )A.函数x y -=在R 上是增函数B.函数2x y =在R 上是增函数C.x y =在定义域内为减函数D.xy 1=在)0,(-∞上为减函数 3.函数111--=x y ( ) A.在),1(+∞-内单调递增 B.在),1(+∞-内单调递减 C.在),1(+∞内单调递增 D.在),1(+∞内单调递减 4.下列函数在区间),0(+∞上为单调增函数的是( ) A.x y 21-= B.x x y 22+= C.2x y -= D.xy 2=二.填空题5.已知函数)(x f 在),0(+∞上为减函数,那么)1(2+-a a f 与)43(f 的大小关系是________.6.函数)(x f y =7.已知13)(22-+-=a ax ax x f )0(<a ,则3(f ______.8.函数342+--=x x y 的单调递增区间为_______,当=x _______时,y 有最______值为____.三.解答题9.已知)(x f y =在定义域)1,1(-上为减函数,且)1()1(2-<-a f a f 求a 的取值范围。
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
第一章 集合与函数概念综合测试题一、选择题 1.函数y =)1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞2.已知集合A 到B 的映射f :x→y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A .2B .6C .5D .8 3.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤ 4.函数1)2(++=x k y 在实数集上是减函数,则k 的范围是( )A .2-≥kB .2-≤kC .2->kD .2-<k5.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则U (C )A B =( )A .∅B .{ 0,3,6}C . {2,1,5,8}D .{0,2,3,6} 6.下列各组函数中,表示同一函数的是( )A .,xy x y x ==B .1,112-=+⨯-=x y x x yC.,y x y ==D .2)(|,|x y x y ==7.下列函数是奇函数的是( )A .21x y = B .322+=x y C .x y = D .)1,1(,2-∈=x x y 8.若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值09.设集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )10.已知f (x )=20x π⎧⎪⎨⎪⎩000x x x >=<,则f [ f (-3)]等于 ( )A .0B .πC .π2D .9二.填空题11. 已知2(1)f x x-=,则()f x = .14. 已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f = .12. 函数26y x x =-的减区间是 .13.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π-的大小关系是三、解答题14.设{}{}(),1,05,U U R A x x B x x C A B ==≥=<<求和()U AC B .15.求下列函数的定义域 (1)21)(--=x x x f (2)221)(-++=x x x f16.{}(){}a B B A a x a x x B x x x A 求若集合==-+++==+= 0112,04222的取值范围。