第一章汽轮机级的工作原理-精品文档
- 格式:ppt
- 大小:1.34 MB
- 文档页数:69
汽轮机级的工作原理近代大功率汽轮机都是由若干个级构成的多级汽轮机。
由于级的工作过程在一定程度上反映了整个汽轮机的工作过程,所以对汽轮机工作原理的讨论一般总是从汽轮机"级"开始的,这特有助于理解和掌握全机的内在规律性。
"级"是汽轮机中最基本的工作单元。
在结构上它是由静叶栅(喷嘴栅)和对应的动叶栅所组成。
从能量观点上看,它是将工质(蒸汽)的能量转变为汽轮机机械能的一个能量转换过程。
工质的热能在喷嘴栅中(也可以有部分在动叶栅中)首先转变为工质的动能,然后在动叶栅中再使这部分动能转变为机械能。
工质的热能之所以能转变为汽轮机的机械能,是由工质在汽轮机喷嘴栅和动叶栅中的热力过程所形成,因此,研究级的热力过程,也就是研究工质在喷嘴栅和动叶栅中的流动特点和做功原理,以及产生某些损失的原因,并从数量上引出它们相互之间的转换关系,这是本章的主要内容。
第一节蒸汽在级内的流动一、基本假设和基本方程式(一)基本假设为了讨论问题的方便,除把蒸汽当作理想气体处理外,还假设:(1)蒸汽在级内的流动是稳定流动,即蒸汽的所有参数在流动过程中与时间尤关。
实际上,绝对的稳定流动是没有的,蒸汽流过一个级时,由于有动叶在喷嘴栅后转过,蒸汽参数总有一些波动。
当汽轮机稳定工作时,由于蒸汽参数波动不大,可以相对地认为是稳定流动。
(2)蒸汽在级内的流动是一元流动,即级内蒸汽的任一参数只是沿一个坐标(流程)方向变化,而在垂直截面上没有任何变化。
显然,这和实际情况也是不相符的,但当级内通道弯曲变化不激烈,即曲率牛径较大时,可以认为是一元流动。
(3)蒸汽在级内的流动是绝热流动,即蒸汽流动的过程中与外界无热交换。
由于蒸汽流经一个级的时间很短暂,可近似认为正确。
考虑到即使用更复杂的理论来研究蒸汽在级内的流动,其结论与汽轮机真实的工作情况也不完全相符,而且推算也甚为麻烦,因此,上述的假设在用一些实验系数加以修正后,在工程实践中也证明是可行的。
第一章汽轮机级的工作原理第一节概述汽轮机是将蒸汽工质的热能转变成动能,再将动能转变成机械能的一种热机。
多级汽轮机由若干个级构成,而每个级就是汽轮机做功的基本单元,级是由喷管叶栅和与之相配合的动叶栅所组成。
喷管叶栅将蒸汽的热能转变成动能,动叶栅将蒸汽的动能转变成机械能。
一、蒸汽的冲动原理和反动原理高速汽流通过动叶栅时,发生动量变化对动叶栅产生冲力,使动叶栅转动做功而获得机械能。
由动量定理可知,机械能的大小决定于工作蒸汽的质量流量和速度变化量,质量流量越大,速度变化越大,作用力也越大。
图1—1所示为无膨胀的动叶通道,汽流在动叶汽道内不膨胀加速,而只随汽道形状改变其流动方向,汽流改变流动方向对汽道所产生的离心力,叫做冲动力,这时蒸汽所做的机械功等于它在动叶栅中动能的变化量,这种级叫做冲动级。
蒸汽在动叶汽道内随汽道改变流动方向的同时仍继续膨胀、加速,加速的汽流流出汽道时,对动叶栅将施加一个与汽流流出方向相反的反作用力,此力类似于火箭发射时,高速气体从火箭尾部流出,给火箭一个与流动方向相反的反作用力,这个作用力叫做反动力。
依靠反动力做功的级叫做反动级,如图1—2所示。
现代汽轮机级中,冲动力和反动力通常是同时作用的,在这两个力的台力作用下,使动叶栅旋转而产生机械功。
这两个力的作用效果是不同的,冲动力的做功能力较大,而反动力的流动效率较高,这一点会在以后的讨论中说明。
二、级的反动度为了说明汽轮机级中反动力所占的比例,即蒸汽在动叶中膨胀程度的大小,常用级的反动度Ω表示,它等于蒸汽在动叶栅中膨胀时的理想比焙降厶Ab和整个级的滞止理想比焰降△ht。
之比,即第5页截面上喷管和动叶中的理想比焙降所确定。
平均直径是动叶项部和根部处叶轮直径的平均值。
图1—3是级中蒸汽膨胀在焓熵图上的热力过程线。
o点是级前的蒸汽状态点,o*点是蒸汽等熵滞止到初速等于零的状态点,Pl、F2分别为喷管出口压力和动叶出口压力。
蒸汽从滞止状态o·点在级内等熵膨胀到P,时的比焙降厶AI。
汽轮机原理-第一章第一章汽轮机级的工作原理近代大功率汽轮机都是由若干个级构成的多级汽轮机。
由于级的工作过程在一定程度上反映了整个汽轮机的工作过程,所以对汽轮机工作原理的讨论一般总是从汽轮机"级"开始的,这特有助于理解和掌握全机的内在规律性。
"级"是汽轮机中最基本的工作单元。
在结构上它是由静叶栅(喷嘴栅)和对应的动叶栅所组成。
从能量观点上看,它是将工质(蒸汽)的能量转变为汽轮机机械能的一个能量转换过程。
工质的热能在喷嘴栅中(也可以有部分在动叶栅中)首先转变为工质的动能,然后在动叶栅中再使这部分动能转变为机械能。
工质的热能之所以能转变为汽轮机的机械能,是由工质在汽轮机喷嘴栅和动叶栅中的热力过程所形成,因此,研究级的热力过程,也就是研究工质在喷嘴栅和动叶栅中的流动特点和做功原理,以及产生某些损失的原因,并从数量上引出它们相互之间的转换关系,这是本章的主要内容。
第一节蒸汽在级内的流动一、基本假设和基本方程式(一)基本假设为了讨论问题的方便,除把蒸汽当作理想气体处理外,还假设:(1)蒸汽在级内的流动是稳定流动,即蒸汽的所有参数在流动过程中与时间尤关。
实际上,绝对的稳定流动是没有的,蒸汽流过一个级时,由于有动叶在喷嘴栅后转过,蒸汽参数总有一些波动。
当汽轮机稳定工作时,由于蒸汽参数波动不大,可以相对地认为是稳定流动。
(2)蒸汽在级内的流动是一元流动,即级内蒸汽的任一参数只是沿一个坐标(流程)方向变化,而在垂直截面上没有任何变化。
显然,这和实际情况也是不相符的,但当级内通道弯曲变化不激烈,即曲率牛径较大时,可以认为是一元流动。
(3)蒸汽在级内的流动是绝热流动,即蒸汽流动的过程中与外界无热交换。
由于蒸汽流经一个级的时间很短暂,可近似认为正确。
考虑到即使用更复杂的理论来研究蒸汽在级内的流动,其结论与汽轮机真实的工作情况也不完全相符,而且推算也甚为麻烦,因此,上述的假设在用一些实验系数加以修正后,在工程实践中也证明是可行的。
第一章汽轮机级的工作原理第一章汽轮机级的工作原理第一节概述一、蒸汽的冲动作用原理和反动作用原理在汽轮机中,级是最基本的工作单元,在结构上它是由喷嘴和其后的动叶栅所组成。
蒸汽的热能转变成机械能的能量转变过程就是在级内进行的。
汽轮机从结构上可分为单级汽轮机和多级汽轮机。
只有一个级的汽轮机称单级汽轮机。
有多个级的汽轮机称多级汽轮机。
图1-1是最简单的单级汽轮机主要部分结构图。
动叶按一定的距离和一定的角度安装在叶轮上形成动叶栅,并构成许多相同的蒸汽通道。
动叶栅装在叶轮上,与叶轮以及转轴组成汽轮机的转动部分,称为转子。
静叶按一定的距离和一定的角度排列形成静叶栅,静叶栅固定不动,构成的蒸汽通道称为喷嘴。
具有一定压力和温度的蒸汽先在喷嘴中膨胀,蒸汽压力、温度降低,速度增加,使其热能转换成动能,从喷嘴出来的高速汽流,以一定的方向进入动叶通道,在动叶通道中汽流速度改变,对动叶产生一个作用力,推动转子转动,完成动能到机械能的转换。
图1-1 单级汽轮机结构简图(a)立体图(b)剖面图1-主轴2—叶轮3—动叶4—喷嘴5—汽缸6—排汽口在汽轮机的级中能量的转变是通过冲动作用原理和反动作用原理两种方式实现的。
(一)冲动作用原理由力学可知,当一运动的物体碰到另一个静止的或速度不同的物体时,就会受到阻碍而改变其速度的大小和方向,同时给阻碍它运动的物体一个作用力,这个力称为冲动力。
冲动力的大小取决于运动物体的质量和速度变化,质量越大,冲动力越大;速度变化越大,冲动力越大。
若在冲动力的作用下,阻碍运动的物体速度改变,则运动物体就做出了机械功。
根据能量守恒定律,运动物体动能的变化值就等于其做出的机械功。
利用冲动力做功的原理就是冲动作用原理。
在汽轮机中,从喷嘴中流出的高速汽流冲击在汽轮机的动叶上,受到动叶的阻碍,而改变了其速度的大小和方向,同时汽流给动叶施加了一个冲动力。
图1-2所示为无膨胀的动叶通道,蒸汽以速度w r1进入通道,由于受到动叶的阻碍不断地改变运动方向,最后以速度w r2流出动叶,则蒸汽对动叶施加了一个轮周方向的冲动力i F ,该力对动叶做功使动叶带动转子转动。