数学符号及表达式英语发音
- 格式:pdf
- 大小:584.79 KB
- 文档页数:15
数学符号读法大全大写小写英文注音国际音标注音中文注音Αα alpha alfa 阿耳法Ββ beta beta 贝塔Γγ gamma gamma 伽马Δδ deta delta 德耳塔Εε epsilon epsilon 艾普西隆Ζζ zeta zeta 截塔Ηη eta eta 艾塔Θθ theta θita西塔Ιι iota iota 约塔Κκ kappa kappa 卡帕∧λ lambda lambda 兰姆达Μμ mu miu 缪Νν nu niu 纽Ξξ xi ksi 可塞Οο omicron omikron 奥密可戎∏π pi pai 派Ρρ rho rou 柔∑σ sigma sigma 西格马Ττ tau tau 套Υυ upsilon jupsilon 衣普西隆Φφ phi fai 斐Χχ chi khai 喜Ψψ psi psai 普西Ωω omega omiga 欧米伽符号表符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a?b a、b向量的点积(a?b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。
数学运算符号英文读法数学运算符号是数学中用于表示各种运算关系的符号。
它们在数学中有着广泛的应用,帮助我们简洁明了地表示复杂的数学表达式和计算过程。
以下是数学运算符号的英文读法:1. 加法符号“+”的英文读法是“plus”或“add”。
2. 减法符号“-”的英文读法是“minus”或“subtract”。
3. 乘法符号“×”的英文读法是“multiply”。
4. 除法符号“÷”的英文读法是“divide”。
5. 等于符号“=”的英文读法是“equal”或“equals”。
6. 不等于符号“≠”的英文读法是“not equal”或“does not equal”。
7. 大于符号“>”的英文读法是“greater than”或“greater than or equal to”。
8. 小于符号“<”的英文读法是“less than”或“less than or equal to”。
9. 大于等于符号“≥”的英文读法是“greater than or equal to”。
10. 小于等于符号“≤”的英文读法是“less than or equal to”。
11. 约等于符号“≈”的英文读法是“approximately equal to”或“almost equal to”。
12. 正无穷大符号“∞”的英文读法是“infinity”。
13. 负无穷大符号“−∞”的英文读法是“negative infinity”。
14. 平方根符号“√”的英文读法是“square root”。
15. 立方根符号“∛”的英文读法是“cubic root”。
16. 绝对值符号“|x|”的英文读法是“absolute value of x”。
17. 圆周率符号“π”的英文读法是“pi”。
18. 自然对数底数e的英文读法是“e”。
19. 无穷小符号“0”的英文读法是“zero”。
20. 正整数集符号N*或N+的英文读法是“the set of positive integers”。
那你就得了解各种数学名称了,比如“y分之x”是“x over y”,“x乘以y”是“x times y”,“除以”是“divided by”,加plus, 减minus;“x的y次方”是“x to the power of y”,“根”是“root”,几次跟就是几的英语序数形式,6次根=6th root。
1.(A的三次方+B的立方根-CXD的五次方)/E=F 读做:A cube plus the cube root ofB minusC multiplied by the 5th power of D, all divided by E equals F.2.(6+3+7/12-4.35X5)/(9*1/3) 读做: Six plus three and seven twelfths minus four decimal three five multiplied by fiv e, all divided by nine and a third.3. 基本术语:数学 mathematics 数字 number 双数 even number 单数 odd number 计算 calculate口算calculate mentally 笔算calculate using pen-and-paper 竖式vertical form 一位数1-digit number两位数2-digit number 文字题word problem 应用题story problem4、常用符号: + plus、 - minus、 = equal(s)、> is greater/more than、< is less than ( ) brackets5、加减法及各部分名称:加法 addition 加数 addend 和 sum 减法 subtraction被减数 minuend 减数 subtrahend 差 difference6、数位知识:数位表place value chart 个 Units/Ones 十 Tens 百 Hundreds7、图形名称:长方体 cuboid 正方体 cube 圆柱 cylinder球 sphere长方形 rectangle 正方形 square三角形 triangle 圆 circle边 side 角 angle 面 face专业英语中常用符号和数学表达式1.数的分类complex number 复数zero; naught;0 零real number 实数imaginary number 虚数relational number 有理数irrational number 无理数integer number 整数positive integer number 正整数natural number 自然数negative integer number 负整数fraction 分数decimal 小数odd number 奇数even number 偶数cardinal number 基数ordinal number 序数approximate number 近似数significant number 有效数2.整数addition 加法subtraction 减法addend 加数subtrahend 减数augend 被加数minuend 被减数plus sign 加号minus sign 减号sum 和difference(diffa)差plus; add; and; increase 加minus; decrease; subtract 减is; equal 等division 除法multiplication 乘法divide 除multiply; multiplied by; times 乘divisor 除数multiplier 乘数dividend 被除数multiplicand 被乘数quotient 商product 积remainder 余数positive 正negative 负3.小数和分数numerator 分子denominator 分母decimal point 小数点naught point four 零点四fraction stroke 分数线recurring decimal 循环小数4.百分数percent 百分比interest 利息average 平均数round off 舍入discount 折扣5.幂与指数power 幂; 乘方root-extracting 开方exponent 指数logarithms 对数X squared 某数的平方cube 三次方three cubed 三次方的four 乘四次方cube root 立方根square root 平方根to rise to the power of five 使乘五次方radical sign根号6.代数algebra 代数equation 等式; 方程式inequality 不等式unknown number 未知数absolute value绝对值simple equation 一次方程quadratic equation 二次方程cubic equation 三次方程monomial 单项式polynomial 多项式variable 变量coefficient 系数differential 微分integral 积分derivative 导数function 函数ratio 比proportion 比例sign of equality等号sign of inequality不等号interval 区间matrix 矩阵theorem 定理lemma 引理definition 定义7.常用数学表达式1/2a half; one halfl/3 a third; one third2/3 two thirds1/4 a quarter; one quarter; a fourth; one fourthl/100 a(one)hundredthl/1,000 a(one)thousandth113/324 one hundred and thirteen over three hundred and twenty-four four and two-thirdsforty-five and eighty-nine over twenty-three0.1 one tenth; point one0.01 one hundredth; point zero one0.001 one thousandth; point zero zero one; point two zero one 2050.0357 two thousand and fifty point zero three five seven0.25 zero point two fivepoint two five repetend fivezero point two five recurringzero point three seven twenty-five recurring对483579四舍五入到千位round off 483579 to nearest thousand 108 one followed by eighteen zeros-30.8 negative thirty point eight2-3i two minus three i; two minus three times i2%two per cent; two percent5‰ five per mill; five permill∞infinityx+y=zx plus y is z; add x to y is z; x and y is z(x+y) bracket x plus y bracket closedx-y x minus y; subtract y from x; y from x; x subtracts yx±y x plus or minus yx×y; xy xy; multiply x by y; x multiplied by y; x by y; x times y;x÷ydivide x by y; y into xx over yx : y the ration of x to yx∝y x varies as y; x is in direct proportion to yx=y x equals y; x is equal to y; x is yx≠y x is not equal to y; x is not yx≡y x is identical to y; x is equivalent to y; x is equivalent to y;x≈y x is approximately equal to y; x approximately equals yx>y x is greater than y; x is more than yx>>y x is much greater than y; x is far greater than yx≥y x is greater than or equal to yx<y x is less than yx<<y x is much less than yx≤y x is less than or equal to y0<x<1 zero is less than x is less than 1; x is greater than zero and less than 1 0≤x≤1 zero is less than or equal to x is less than or equal to 1x2 x square; x squared; the square of x;the second power of x; x to second powerx3 x cube; x cubed; the cube of x;the third power of x; x to the third powerxn the nth power of x; x to the nth power; x to the power nthe square root of x; x squaredthe cube root of xthe nth root of xx-n x to the (power) minus n(x+y)2x plus y all squaredx over y all squaredx i x i; x subscript i; x suffix i; x sub ilognxlog x to the base n; log of x to the base nlog10x log x to base 10; common logarithmlogex; lnx log x to the base e; log to the base e of y; natural log (of) yex; exp(x) exponential function of x, e to the power xthe summation of x sub i, where i goes from 1 to n;the sum from i equals one to n x i;the sum as i runs from one to n of the x ithe product of x sub i, where i goes from one to nthe product of all x i from i equals one to nthe product of all xi from i equals one to infinitythe absolute value of x; mod x; modulus xthe mean value of x; x barx hatx tildex* x asteriskx primex double primex double prime sub mf(x) f x; f of x; the function f of xa function f from S to Tf¢(x) f prime x; f dash x; the (1st) derivative of f with respect to xf²(x) f double–prime x; f double–dash x; the second derivative of f with respect to x f¢²(x) f triple–prime x; f triple–dash x; the third derivative of f with respect to x f4(x) four x; the fourth derivative of f with respect to xx! n factorial△finite difference or increment△x,δx the increment of xdx dee x; dee of x; differential xdel; nablanth del (nabla)the differential coefficient of y with respect to x;the first derivative of y with respect of xthe second derivative of y with respect of xthe nth derivative of y with respect of xthe partial (derivative) of y with respect to uthe second partial (derivative) of y with respect to xthe partial derivation of z with respect to x of the partial derivative of z with respect to y ∫integral of∫∫double Integral of∫…∫n-fold integral ofthe integral between limits a and b; the integral from a to bthe indefinite integral of a times x with respect to xthe integral from a to b of function of xthe double integral of f of x,ythe limit as x approaches 0the limit as x approaches 0 from abovethe limit as x approaches 0 from belowthere existsfor all∵because∴thereforex⊥y x is perpendicular to yx∥y x is parallel to yx~y the difference between x and yx∝y x varies directly as yxÞy x implies y; if x, then yxÛy x if and only if y; x is equivalent to y; x and y are equivalent { };empty setxÎA x belongs to A; x is an element (or a member) of AxÏA x does not belong to A; x is not an element (or a member) of AAÌB A is contained in B; A is a subset of BAÉB A contains B;B is a subset of AAÇB A cap B; A meet B; A intersection BAÈB A cup B; A join B; A union BA\B A minus B; the difference between A and BA×B A cross B; the Cartesian product of A and B(A与B的笛卡尔积)||A||the norm (or modulus) of Avector FAB; the length of the segment ABAT A transpose; the transpose of AA-1 A inverse; the inverse of Ax→y x maps into y; x is sent (or mapped) to yx→∞x approaches infinity∠xangle xx is perpendicular to yx is parallel to ysin sinecos cosinetg, tan tangentctg, cot cotangentsc, sec secantcsc, cosec cosecantsin-1, arcsin arc sinecos-1, arcos arc cosinesinh the hyperbolic sinecosh the hyperbolic cosine( ) round brackets; parentheses ;the signs of grouping [ ] square(angular)brackets; bracket< > angle bracket{} braces8.常用希腊字母字母读音字母读音字母读音alphabeta ,gamaxi ,psideltaepsilonzeta ,phiomegalambdamnnuetarho,sigmataupi9.其他数学名词line 线angle 角intersecting line 相交线parallel line 平行线triangle 三角形quadrilateral 四边形rectangle 矩形lozenge 菱形square正方形polygon多边形circle圆arc弧perimeter周长area面积diameter直径volume体积10.具体读法实例y=f(x) y is a function of x6×5=30 six times (multiplied by) five equals (is equal to) thirty(x-y)(x+y) x minus y; x plus ythe fifth root of x squarey-10 y to the minus tenth (power)20 : 5=16 : 4 the ratio of 20 to 5 equals the ration of 16 to 4 (20 is to 5 as 16 is to 4) e=1.6×10-19 e equals one point multiplied by ten to minus nineteenth power10-n ten to the minus none over n squareone over one minus n times z reversef(x)=ax2+bx+c the function of x equals a times the square of x plus b times x plus c |a|=b the absolute value of a equals that of bmax f(x) the maximum value of f(x)min f(x) the minimum value of f(x)∞ a sub n approaches / tends to infinity◊anthe limit of Sn as n gets arbitrarily large is one thirdx to the fifth power plus A over (divided by) the quantity x squared plus B, to the two-thirds power (A+B)C the quantity A plus B times CA+B=C A plus B equals CA-B=C A minus B equals CA×B=C A multiplied by B equals CA/B=C A divided by B equals CA : B=C : D A is toB of A to B asC is to D11.数学问题求解的一般表示Solve the following system of equationsSolution: multiply equation (1) by (2) and getSubtract equation (2) from equation (4), and getSubtract equation (3) from equation (2), and getfrom equation (5) from equation (6),obtain x and y.。
常用数学符号及数学表达式的读法Item Read as1/2 A half / one half1/3 A third / one third2/3 Two thirds1/4 A quarter / one quarter / a fourth / one fourth1/10 A tenth / one tenth1/100 A [one] hundredth1/1000 A [one] thousandth1/1234 One over a thousand two hundred and thirty-four3/4 Three fourths / three quarters4/5 Four fifths / four over five113/300 One hundred and thirteen over three hundred2½Two and a half7Two and seven over eight / two and seven eighths281Three and one eighth381Four and a third43125 A [one] hundred twenty-five and three fourths [quarters] 340.1 [ .1] Zero point one / nought point one0.01 [.01] Zero point zero one / nought point nough one0.25 [.25] Nought point two five0.045 Decimal [point] nought four five2.35 Two point three fiveFour point nine recurring49.Three point nought three two six, two six recurring30326.45.67 Four five [forty-five] point six seven38.72 Three eight point seven two / thirty-eight decimal seven two+ Plus ; positive- Minus; negative±Plus or minus×[•] Multiplied by / times÷Divided by= Is equal to / equals≡Is identically equal to≈≒≌Is approximately equal to / approximately equals ∵Because ∴therefore →Maps into πpi ∑Sigma / summation of x n The n th power of x / x to the power nlog n x Log x to the base n10log x Log x to the base 10 / common logarithm log e x Log x to the base e / natural logarithm |x | The absolute value of xx The mean value of xb ’ b primeb ’’ b double primeb ’’’ b triple primeb 1 b sub oneb m b sub mx x dotx x two dots''m x b double prime sub m()y F x =y is a function of x dy dxThe first derivative of y with respect to x 22d y d xThe second derivative of y with respect to x n n d y d x The n th derivative of y with respect to xy x∂∂ The partial derivative of y with respect to x , where y is a function of x and another variables ()F'x The first derivative of function F of x with respect to x⎰integralba ⎰ Integral between limits a and bF Vector Fx +y x plus ya =b a is equal to b / a equals to b / a is b a ≠b a is not equal to b / a is not b a ±b a plus or minus ba ≈b a is approximately equal to b a >b a is greater than ba »b a is much greater than b a< b a is less than ba «b a is much less than b7+3 > 8 7 plus 3 is greater than 8 12 < 5+8 12 is less than 5 plus 8a ⊥b a is perpendicular to ba //b a is parallel to b∠A Angle As=vt s equals v times ts=v /t s equals v over t1 :2 The ratio of one to twox 2 x squarey 3y cube t V V a t -=a equals V sub t minus V over t。
网上找的,不过怎么读不太重要了。
序号大写小写英文注音国际音标注音中文注音1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Γ δ delta delt 德尔塔5 Δ ε epsilon ep`silon 伊普西龙6 Ε δ zeta zat 截塔7 Ζ ε eta eit 艾塔8 Θ ζ thet ζit 西塔9 Η η iot aiot 约塔10 Κ θ kappa kap 卡帕11 ∧ι lambda lambd 兰布达12 Μ κ mu mju 缪13 Ν λ nu nju 纽14 Ξ μ xi ksi 克西15 Ο ν omicron omik`ron 奥密克戎16 ∏ π pi pai 派17 Ρ ξ rho rou 肉18 ∑ ζ sigma `sigma 西格马19 Τ η tau tau 套20 Υ υ upsilon jup`silon 宇普西龙21 Φ θ phi fai 佛爱22 Χ χ chi phai 西23 Χψ psi psai 普西24 Ψ ω omega o`miga 欧米伽α( 阿而法)β( 贝塔)γ(伽马)δ(德尔塔)ε(艾普西龙)δ(截塔)ε(艾塔)ζ(西塔)η约塔)θ(卡帕)ι(兰姆达)κ(米尤)λ(纽)μ(可系)ν(奥密克戎)π (派)ξ (若)ζ (西格马)η (套)υ (英文或拉丁字母)θ(斐)χ(喜)ψ(普西))ω(欧米伽)1 Α α alpha a:lf 阿尔法角度;系数2 Β β beta bet 贝塔磁通系数;角度;系数3 Γ γ gamma ga:m 伽马电导系数(小写)4 Γ δ delta delt 德尔塔变动;密度;屈光度5 Δ ε epsilon ep`silon 伊普西龙对数之基数6 Ε δ zeta zat 截塔系数;方位角;阻抗;相对粘度;原子序数7 Ζ ε eta eit 艾塔磁滞系数;效率(小写)8 Θ ζ thet ζit 西塔温度;相位角9 Η η iot aiot 约塔微小,一点儿10 Κ θ kappa kap 卡帕介质常数11 ∧ι lamb da lambd 兰布达波长(小写);体积12 Μ κ mu mju 缪磁导系数;微(千分之一);放大因数(小写)13 Ν λ nu nju 纽磁阻系数14 Ξ μ xi ksi 克西15 Ο ν omicron omik`ron 奥密克戎16 ∏ π pi pai 派圆周率=圆周÷直径=3.141617 Ρ ξ rho rou 肉电阻系数(小写)18 ∑ ζ sigma `sigma 西格马总和(大写),表面密度;跨导(小写)19 Τ η tau tau 套时间常数20 Υ υ upsilon jup`silon 宇普西龙位移21 Φ θ phi fai 佛爱磁通;角22 Φ χ chi phai 西23 Χ ψ psi psai 普西角速;介质电通量(静电力线);角24 Ψ ω omega o`miga 欧米伽欧姆(大写);角速(小写);角希腊字母读法Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΓδ:德尔塔DelteΔε:艾普西龙Epsilonδ :捷塔ZetaΕε:依塔EtaΘζ:西塔ThetaΗη:艾欧塔IotaΚθ:喀帕Kappa∧ι:拉姆达LambdaΜκ:缪MuΝλ:拗NuΞμ:克西XiΟν:欧麦克轮OmicronΡξ:柔Rho∑ζ:西格玛SigmaΤη:套TauΥυ:宇普西龙UpsilonΦθ:fai PhiΦχ:器ChiΧψ:普赛PsiΨω:欧米伽Omega希腊字母怎么打打开Office文档之后,在你需要输入希腊字母的时候,先将输入法切换为英文状态,然后同时按下三个键Ctrl+Shift+Q ,工具栏上的“字体”就会发生变化此刻,你再对照下表输入a,b,c……即可得到您想要的希腊字母。
1 Αα alpha a:lf 阿尔法角度;系数2 Ββ beta bet 贝塔磁通系数;角度;系数3 Γγ gamma ga:m 伽马电导系数(小写)4 Γδ delta delt 德尔塔变动;密度;屈光度5 Δε epsilon ep`silon 伊普西龙对数之基数6 Εδ zeta zat 截塔系数;方位角;阻抗;相对粘度;原子序数7 Ζε eta eit 艾塔磁滞系数;效率(小写)8 Θζ thet ζit 西塔温度;相位角9 Ηη iot aiot 约塔微小,一点儿10 Κθ kappa kap 卡帕介质常数11 ∧ ι lambda lambd 兰布达波长(小写);体积12 Μκ mu mju 缪磁导系数;微(千分之一);放大因数(小写)13 Νλ nu nju 纽磁阻系数14 Ξμ xi ksi 克西15 Ον omicron omik`ron 奥密克戎16 ∏ π pi pai 派圆周率=圆周÷直径=3.141617 Ρξ rho rou 肉电阻系数(小写)18 ∑ ζ sigma `sigma 西格马总和(大写),表面密度;跨导(小写)19 Τη tau tau 套时间常数20 Υυ upsilon jup`silon 宇普西龙位移21 Φθ phi fai 佛爱磁通;角1 Αα alpha a:lf 阿尔法2 Ββ beta bet 贝塔3 Γγ gamma ga:m 伽马4 Γδ delta delt 德尔塔5 Δε epsilon ep`silon 伊普西龙6 Εδ zeta zat 截塔7 Ζε eta eit 艾塔8 Θζ thet ζit 西塔9 Ηη iot aiot 约塔10 Κθ kappa kap 卡帕11 ∧ ι lambda lambd 兰布达12 Μκ mu mju 缪13 Νλ nu nju 纽14 Ξμ xi ksi 克西15 Ον omicron omik`ron 奥密克戎16 ∏ π pi pai 派17 Ρξ rho rou 肉18 ∑ ζ sigma ` sigma 西格马19 Τη tau tau 套20 Υυ upsilon jup`silon 宇普西龙21 Φθ phi fai 佛爱22 Φχ chi phai 西23 Χψ psi psai 普西24 Ψω omega o`miga 欧米伽。
数学符号和公式的英语读法如下:1.加号"+" 读作"plus"。
2.减号"-" 读作"minus"。
3.乘号"×" 读作"times"。
4.除号"÷" 读作"divided by"。
5.等号"=" 读作"equals"。
6.大于号">" 读作"greater than"。
7.小于号"<" 读作"less than"。
8.不等号"≠" 读作"not equal to"。
9.大于等于号"≥" 读作"greater than or equal to"。
10.小于等于号"≤" 读作"less than or equal to"。
11.约等于号"≈" 读作"approximately equals"。
12.百分号"%" 读作"percent"。
13.度数符号"°" 读作"degree"。
14.开方号"√" 读作"square root"。
15.正负号"±" 读作"plus or minus"。
16.正负平方根号"∛" 读作"cubed root"。
17.正负立方根号"∛" 读作"cubed root"。
英文中各种符号标点都怎么说英文中各种符号标点都怎么说2x(-4)=-8你能用英语把这个等式(equation)读出来吗?被难倒了吧!别着急!看完下面双语君给你整理的`各种数学符号和标点符号的英文表达,你马上就会说了!数学符号Mathematical symbols01+: plus 加号;正号“1+1”读作:one plus one02-: minus; negative 减号;负号“2-1”读作:two minus one“-3”读作:minus three或negative three“2-(-3)”读作:two minus negative three03±: plus-minus sign 正负号“±1” 读作:plus or minus one04×: multiplied by ; times 乘号“2×3” 读作:two multiplied by three 或 two times three05÷: divided by 除号“4÷2”读作:four divided by two06=: equals; is equal to 等于号“1+1=2”读作:One plus one equals two.或 One plus one is equal to two.07≠: is not equal to 不等于号“a≠b”读作:a is not equal to b08≌: congruent to 全等(两个图形形状相同、大小相等)“△ABC≌△DEF”读作:Triangle ABC is congruent to Triangle DEF.09≈: approximately equal to 约等于号“3×3≈10” 读作:Three multiplied by three is approximately equal to ten.10<: is less than 小于号“1<2”读作 One is less than two.11>: is greater than 大于号“2>1”读作:Two is greater than one.12≮: is not less than 不小于号“3≮2”读作:Three is not less than two.13≯: is not greater than 不大于号“2≯4” 读作:Two is not greater than four.14≤: is less than or equal to 小于或等于号“2≤3”读作:Two is less than or equal to three.15≥: is greater than or equal to 大于或等于号“5≥4”读作:Five is greater than or equal to four.16%: percent 百分之……“10%”读作:ten percent17‰ : per mill ; per thousand 千分之……“10‰”读作:ten per thousand18∞: infinity 无限大号“-∞” 读作:negative infinity19∝: varies as 与...成比例“X∝Y”读作:X varies as Y20√ ̄: square root 平方根“√ ̄16=4”读作:The square root of sixteen is four.213√ ̄: cube root 立方根“3√ ̄27=3”读作:The cube root of 27 is 3.22∵: since; because 因为“∵1+1=2”读作:because one plus one equals two23∴: hence; therefore 所以“∴1<2”读作:hence one is less than two24∠: angle 角“∠A”读作:angle A“∠A +∠B+∠C=180°”读作:The measure of angle A plus angle B plus angle C equals 180 degrees.25⌒: semicircle 半圆“⌒AB”读作:semicircle AB26⊙: circle 圆“⊙A”读作:circle A27○: circumference 圆周“○=π×d”读作:Pi multiplied by d equals circumference.28π: pi constant 圆周率“π×d”读作:pi multiplied by d29△: triangle 三角形。
数学符号及读法大全常用数学输入符号:≈≡≠=≤≥<>≮≯∷ ± +-× ÷ /∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ大写小写英文注音国际音标注音中文注音Ααalpha alfa阿耳法Ββbeta beta贝塔Γγgamma gamma伽马Δδdeta delta德耳塔Εεepsilon epsilon艾普西隆Ζζzeta zeta截塔Ηηeta eta艾塔Θθthetaθita西塔Ιιiota iota约塔Κκkappa kappa卡帕∧λlambda lambda兰姆达Μμmu miu缪Ννnu niu纽Ξξxi ksi可塞Οοomicron omikron奥密可戎∏πpi pai派Ρρrho rou柔∑σsigma sigma西格马Ττtau tau套Υυupsilon jupsilon衣普西隆Φφphi fai斐Χχchi khai喜Ψψpsi psai普西Ωωomega omiga欧米符号含义i-1的平方根f(x)函数f在自变量x处的值sin(x)在自变量x处的正弦函数值exp(x)在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax同a^xlogba以b为底a的对数;blogba = acos x在自变量x处余弦函数的值tan x其值等于sin x/cos xcot x余切函数的值或cos x/sin xsec x正割含数的值,其值等于1/cos xcsc x余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin yacos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan yacot x y,余切函数反函数在x处的值,即x = cot yasec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k分别表示x、y、z方向上的单位向量(a, b, c)以a、b、c为元素的向量(a, b)以a、b为元素的向量(a, b)a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v|向量v的模|x|数x的绝对值Σ表示求和,通常是某项指数。
x’ 读作x primex'’ 读作x double prime or x second prime x’’’ 读作x triple prime点:dot/: slash.\: backslashPunctuation marksapostrophe ( ' ) ( ’ )brackets ( ( ) ) ( [ ] ) ( { } ) ( 〈〉 )colon ( : )comma ( , )dashes ( ‒ ) ( – ) ( — ) ( — )ellipsis ( … ) ( ... )exclamation mark ( ! )full stop/period ( . )hyphen ( - ) ( ‐ )interrobang ( ‽ )question mark ( ? )quotation marks ( ‘ ’ ) ( “ ” )semicolon ( ; )slash/solidus ( / )space ( ) and interpunct ( • )Other typographer's marksampersand ( & )asterisk ( * ) and asterism ( ⁂ )at ( @ )backslash ( \ )bullet ( •, more )dagger ( † ‡ )degrees ( ° )number sign ( # )prime ( ′ )tilde ( ~ )underscore ( _ )vertical bar/pipe ( | )+plus加号;正号-minus减号;负号±plus or minus正负号×is multiplied by乘号÷is divided by除号=is equal to等于号≠is not equal to不等于号≡is equivalent to全等于号≌is equal to or approximately equal to等于或约等于号≈is approximately equal to约等于号<is less than小于号>is more than大于号≮is not less than不小于号≯is not more than不大于号≤is less than or equal to小于或等于号≥is more than or equal to大于或等于号%per cent百分之…‰per mill千分之…∞infinity无限大号∝varies as与…成比例√(square) root平方根∵since; because因为∴hence所以∷equals, as (proportion)等于,成比例∠angle角⌒semicircle半圆⊙circle圆○circumference圆周πpi 圆周率△triangle三角形⊥perpendicular to垂直于∪union of并,合集∩intersection of 交,通集∫the integral of …的积分∑(sigma) summation of总和°degree度′minute分″second秒℃Celsius system摄氏度{open brace, open curly左花括号close brace, close curly右花括号(open parenthesis, open paren左圆括号)close parenthesis, close paren右圆括号() brakets/ parentheses括号[open bracket 左方括号]close bracket 右方括号[] square brackets方括号.period, dot句号,点|vertical bar, vertical virgule竖线&ersand, and, reference, ref和,引用*asterisk, multiply, star, pointer星号,乘号,星,指针/slash, divide, oblique 斜线,斜杠,除号//slash-slash, comment 双斜线,注释符#pound井号\backslash, sometimes escape反斜线转义符,有时表示转义符或续行符~tilde波浪符.full stop句号,comma逗号:colon冒号;semicolon分号?question mark问号!exclamation mark (英式英语) exclamation point (美式英语)'apostrophe撇号-hyphen连字号—— dash 破折号……dots/ ellipsis省略号"single quotation marks 单引号""double quotation marks 双引号‖ parallel 双线号&ersand = and~swung dash 代字号§section; division 分节号→arrow 箭号;参见号符号的英文读法.period 句号≈ is approximately equal to 约等于号,comma 逗号<is less than 小于号:colon 冒号>is more than 大于号;semicolon 分号≮ is not less than 不小于号!exclamation 惊叹号≯ is not more than 不大于号?question mark 问号≤ is less than or equal to 小于或等于号 ̄hyphen 连字符≥ is more than or equal to 大于或等于号' apostrophe 省略号;所有格符号%per cent 百分之…- dash 破折号‰ per mill 千分之…' ' single quotation marks 单引号∞ infinity 无限大号double quotation marks 双引号∝ varies as 与…成比例( ) parentheses 圆括号√ (square) root 平方根[ ] square brackets 方括号∵ since; because 因为《》French quotes 法文引号;书名号∴ hence 所以... ellipsis 省略号∷ equals, as (proportion) 等于,成比例¨ tandem colon 双点号∠ angle 角ditto 双点号⌒ semicircle 半圆‖ parallel 双线号⊙ circle 圆/virgule 斜线号○ circumference 圆周&ampersand = andπ pi 圆周率~swung dash 代字号△ triangle 三角形§ section; division 分节号⊥ perpendicular to 垂直于→ arrow 箭号;参见号∪ union of 并,合集+plus 加号;正号∩ intersection of 交,通集-minus 减号;负号∫ the integral of …的积分± plus or minus 正负号( ∑ sigma) summation of 总和× is multiplied by 乘号° degree 度÷ is divided by 除号′ minute 分=is equal to 等于号″ second 秒≠ is not equal to 不等于号#number …号≡ is equivalent to 全等于号℃ Celsius system 摄氏度≌ is equal to or approximately equal to 等于或约等于号@at 单价R’ R primeR” R double prime, R second primeR1 R sub one100° C one hundred degrees Centigrade+ plus; positive- minus; negative´ multiplied by; times¸ divided by± plus or minus= is equal to; equalsº is identically equal to» is approximately equal to( ) round brackets; parentheses[ ] square brackets{ } bracesa>>b a is much greater than ba³ b a is greater than or equal to baµ b a varies directly as blognX logX to the base nthe cubic root of xthe nth root of xx2 x square, x squared, the square of xX n X to n factors; the nth power of x; x to the power nx -8 x to the minus eighth powerï xï the absolute value of xthe mean value of Xthe sum of the terms indicated; summation ofD x or d x the increment of xdx differential xdy/dx the first derivative of y with respect to xò integral¥ infinity1/2 a half; one half2/3 two thirds5/123 five over a hundred and twenty-threeeight and three over fourths; eight and three quarters0.01 O point O one; zero point zero one; nought point nought one6 % 6 percent3‰ 3 per mille2 :3 the ratio of two to threer=xd r equals x multiplied by d5´ 2=10 five times two equals tenx3/8=y2 x raised to the third power divided by eight equals y squared(a+b-c´ d)/e=f a plus b minus c multiplied by d, all divided by e equals fy = (Wt-W)/x y equals W sub t minus W over x二、一些函数关系的读法A与B的乘积the ___ product of A and B(___中填乘积的性质,例如外积就填outer,内积就填inner)A乘以B A times B or A is multiplied by BA/B A over B B分之A的最普通读法f(x) f of x 函数f(x)exp(n) e to powers of n e的n次幂。
数学符号英文说法和发音大全!!各路出国党不妨看过来!Symbols+ plus /'pl?s/- minus /'ma?n?s/±plus or minus /'pl?s ?: 'ma?n?s/x multiplied by /'m?lt?pla?d ba?// over; divided by /'??v?/ /d?'va?d?d/÷divided /d?'va?d?d/= equals /'?:kw?lz/≈approximately, similar /?'pr?ks?m?tl?/ /'s?m?l? t?/≡equivalent to; identical /?k'w?v?l?nt t?/ /a?'dent?kl t?/≠ not equal to /'n?t 'i?kw?l t?/> greater than /'gre?t? e?n/< less than /'les e?n/≥ greater than or equal to /'gre?t? e?n ?r 'i?kw?l t?/≤ less than or equal to /'les e?n ?r' i?kw?l t?/?not greater than /'n?t 'gre?t? e?n/?not less than /'n?t 'les e?n/?much greater than /'m?? 'gre?t? e?n/?much less than /'m?? 'les e?n/⊥perpendicular to /p??p?n'd?kj?l? t?/∣∣parallel to /'p?r?lel t?/?not equivalent to, not identical to /'n?t ?k'w?v?l?nt t?/ /'n?t a?'dent?kl t? ??not similar to /'n?t 's?m?l? t?/2squared /'skwe?d/3cubed /'kju:bd/4 to the fourth; to the power four /t? e? 'f??θ/ /te e? 'pɑ?? f??/n to the n; to the nth; to the power n /t? e? en; t? d?enθ; t? e? pɑ??r en/√root; square root /ru:t/ /skwe? ru:t/?cube root /kju:b ru:t/?fourth root /f??θ ru?t/! factorial /f?k't??r??l/% percent /p?'sent/∞infinity /?n'f?n?t?/∝varies as; proportional to /'v??r?z/ /pr?'p????n?l/˙dot /d?t/¨double dot /d?bl d?t/: is to, ratio of /re?????/f(x) fx f; function /ef/ /'f??k??n/f'(x) f dash; derivative /d??/ /d?'r?v?t?v/f''x f double-dash; second derivative /'d?bl d??/ /'sek?nd d?'r?v?t?v/f'''(x) f triple-dash; f treble-dash; third derivative /'tr?pl d??/ / trebl d??/ /θ?:d d?'r?v?t?v'r?v?t?v/f(4) f four; fourth derivative /f??θ d??partial derivative, delta /pa???l d?'r?v?t?v/ /delt?/∫integral /'?nt?gr?l/∑sum /s?m/w.r.t. with respect to /w?e 'r?spekt/log log /l?g/log?x log to the base 2 of x /l?g t? e? be?s tu: ?v eks/∴therefore /'e??f??/∵because /b?'k?z/→gives, leads to, approaches /g?vz/ /li:dz t?/ /?pr????z// per /p?:/∈belongs to; a member of; an element of /b?'l??z/ /'memb?/ /'el?m?nt/?does not belong to; is not a member of; is not an element of /n?t b?'l??/ /n?t ? 'memb?/ /n?t ?n 'e ?contained in; a proper subset of /k?n'te?nd ?n/ /'pr?p? 's?bset/?contained in; subset /'s?bset/?intersection /'?nt?sek??n/?union /'ju?n??n/?for all /f? r?:l/cos x cos x; cosine x /k?z/sin x sine x /sa?n/tan x tangent x /tan/cosec x cosec x /'k??sek/sinh x shine x /'?a?n/cosh x cosh x /'k??/tanh x than x /θ?n/|x| mod x; modulus x /m?d/ /'m?dj?l?s/℃degrees Centigrade /d?'gri:z 'sent?gre?d/℉degrees Fahrenheit /d?'gri:z 'f?r?nha?t/°K degrees Kelvin /d?'gri:z 'kelv?n/C absolute zero /abs?lu:t zi:r??/0°K, –273.15 °mm millimetre /'m?l?mi?t?/cm centimetre /'sent?mi?t?/cc, cm3cubic centimetre, centimetre cubed /'kju?b?k 'sent?mi?t?/ /'sent?mi?t? 'kju: m metre /'mi?t?/km kilometre /k?'l?m?t?/mg milligram /'m?l?gr?m/g gram /gr?m/kg kilogram /'k?l?gr?m/AC A.C. /e? si:/DC D.C. /di: si:/Examplesx + 1 x plus onex -1 x minus onex ± 1 x plus or minus onexy x y; x times y; x multiplied by y(x — y)(x + y) x minus y, x plus yx/y x over y; x divided by y;x ÷ y x divided by yx = 5 x equals 5; x is equal to 5x ≈ y x is approximately equal to yx ≡ y x is equivalent to y; x is identical with yx ≠ y x is not equal to yx > y x is greater than yx < y x is less than yx ≥ y x is greater than or equal to yx ≤ y x is less than or equal to y0 < x < 1 zero is less than x is less than 1; x is greater than zero and less than 10 ≤ x ≤ 1zero is less than or equal to x is less than or equal to 1; x is greater than or equal to zero and less than or equal to 1x2x squaredx3x cubedx4 x to the fourth; x to the power fourxn x to the n; x to the nth; x to the power nx-n x to the minus n; x to the power of minus n√root x; square root x; the square root of x?the cube root of x?the fourth root of xthe nth root of x(x + y)2x plus y all squared(x/y)2x over y all squaredn! n factorial; factorial nx% x percent∞infinityx ∝y x varies as y; x is (directly) proportional to yx ∝1/y x varies as one over y; x is indirectly proportional to y?x dot?x double dotf(x) fx f of x; the function of xf'(x) f dash x; the (first) derivative of with respect to xf''x f double-dash x; the second derivative of f with respect to xf'''(x) f triple-dash x; f treble-dash x; the third derivative of f with respect to xf(4) f four x; the fourth derivative of f with respect to x?v the partial derivative of v?v?θdelta v by delta theta, the partial derivative of v with respect to θ?2v?θ2delta two v by delta theta squared; the second partial derivative of v with respect to dv the derivative of vdvdθ d v by d theta, the derivative of v with respect to thetad2vdθ2 d 2 v by d theta squared, the second derivative of v with respect to theta,∫integralintegral from zero to infinity∑sumthe sum from i equals 1 to nw.r.t. with respect tologey log to the base e of y; log y to the base e; natural log (of) y∴therefore∵because→gives, approachesΔx → 0delta x approaches zerolimΔx→0the limit as delta x approaches zero, the limit as delta x tends to zeroLtΔx→0the limit as delta x approaches zero, the limit as delta x tends to zerom/sec metres per secondx ∈ A x belongs to A; x is a member of A; x is an element of Ax? A x does not belong to A; x is not a member of A; x is not an element of AA? B A is contained in B; A is a proper subset of BA ?B A is contained in B; A is a subset of BA ?B A intersection BA ?B A union Bcos x cos x; cosine xsin x sine xtan x tangent x, tan xcosec x cosec xsinh x shine xcosh x cosh xtanh x than x|x| mod x; modulus x18 ℃eighteen degrees Centigrade70 ℉seventy degrees FahrenheitGreek alphabetΑαalpha /'?lf?/Ββbeta /'bi:t?/Γγgamma /'g?m?/Δδdelta /'delt?/Εεepsilon /'epsil?n/Ζζzeta /'zi?t?/Ηηeta /'i?t?//Θθtheta /'θi?t?Ιιiota /a?'??t?/Κκkappa /'k?p?/Λλlamda /'l?md?/Μμmu /'mju?/Ννnu /'nju?/Ξξxi /'ksa?/Οοomicron /'??m?kr?n/ Ππpi /'pa?/Ρρ?rho /'r??/Σσsigma /'s?gm?/Ττtau /'tɑ?/Υυupsilon /'j?ps?l?n/ Φφphi /'fa?/Χχchi /'ka?/Ψψ psi /'psa?/Ωω omega /'??m?g?/ ^Roman alphabetA a /'e?/B b /'bi?/C c /'si?/D d /'di?/E e /'i?/F f /'ef/G g /'?i?/H h /'e??/I i /'a?/J j /'?e?/K k /'ke?/L l /'el/M m /'em/N n /'en/O o /'??/P p /'pi?/Q q /'kju?/R r /'ɑ?/S s /'es/T t /'ti:/U u /'ju:/V v /'vi:/W w /'d?blju?/X x /'eks/Y y /'wa?/Z z /'zed/^Fractions? a half /? 'hɑ:f/? a quarter /? 'kw??t?/z/? three quarters /θri? 'kw??t?:d/? a third /?'θ?:dz/? two thirds /tu: 'θ??a fifth /? 'f?fθ/?t wo fifths /tu: 'f?fθs/?t hree fifths /θri? 'f?fθs/?f our fifths /f?? 'f?fθs/?a sixth /? 's?ksθ/?f ive sixths /fa?v 's?ksθs/? an eighth /?n 'e?tθ/? three eighths /θri? 'e?tθs/? five eighths /fa?v 'e?tθs/? seven eighths /sev?n 'e?tθs/^Decimal Fractions0.1 nought point one /n?:t p??nt w?n/0.01 nought point oh one /n?:t p??nt ?? w?n/0.0001 nought point oh oh oh one /ten p??nt ?????? w?n/1.1 one point one /w?n p??nt w?n/1.2 one point two /w?n p??nt tu:/1.23 one point two three /w?n p??nt tu: θri:/1.0123 one point oh one two three /w?n p??nt ?? w?n tu: θri:/10.01 ten point oh one /ten p??nt ?? w?n/21.57 twenty-one point five seven /'twent? w?n p??nt fa?v 'sev?n/2.6666666666.... two point six recurring /tu: p??nt s?ks r?'k?:r??/'k?:r??/ 2.612361236123... two point six one two three recurring /tu: p??nt s?ks w?n tu: θri: r? 2.5 million two point five million /tu: p??nt fa?v 'm?lj?n/^SI Units: Prefixes10-24 yocto y /'j?kt??/10-21 zepto z /'zept??/10-18 atto a /'at??/10-15 femto f /'femt??/10-12 pico p /'pi:k??/10-9 nano n /'nan??/10-6 micro μ/'ma?kr??/10-3 milli m /'m?l?/10-2 centi c /'sent?/10-1 deci d /'des?/103 kilo k /'k?l??/106 mega M /'meg?/109 giga G /'g?g?/1012 tera T /'ter?/1015 peta P /'pet?/1018 exa E /'eks?/1021 zetta Z /'zet?/1024 yotta Y /'j?t?/1027 xona X /'z??n?/1030 weka W /'wek?/1033 vunda V /'v?nd?/^Cardinal Numbers1 one /w?n/2 two /tu:/3 three /θri:/4 four /f??/5 five /fa?v/6 six /s?ks/7 seven /'sev?n/8 eight /e?t/9 nine /na?n/10 ten /ten/11 eleven /?'lev?n/12 twelve /twelv/:'ti:n/13 thirteen /θ?14 fourteen /f??'ti:n/15 fifteen /f?f'ti:n/16 sixteen /s?kst'i:n/17 seventeen /seven'ti:n/18 eighteen /e?'ti:n/19 nineteen /na?n'ti:n/20 twenty /'twent?/21 twenty-one /twent?'w?n/22 twenty-two /twent?'tu:/23 twenty-three /twent?'θri:/24 twenty-four /twent?'f??/25 twenty-five /twent?'fa?v/26 twenty-six /twent?'s?ks/27 twenty-seven /twent?'sev?n/28 twenty-eight /twent?'e?t/29 twenty-nine /twent?'na?n/:t?/30 thirty /'θ?40 forty /'f??t?/50 fifty /'f?ft?/60 sixty /'s?kst?/70 seventy /'sev?nt?/80 eighty /'e?t?/90 ninety /'na?nt?/100 a hundred; one hundred /? 'h?ndr?d/ /w 101 a hundred and one /? 'h?ndr?d ?n 102 a hundred and two /? 'h?ndr?d ?n 110 a hundred and ten /? 'h?ndr?d ?n 120 a hundred and twenty /? 'h?ndr?d ?n 200 two hundred /tu: 'h?ndr?d/ 300 three hundred /θri: 'h?ndr?d 400 four hundred /f?? 'h?ndr?d/ 500 five hundred /fa?v 'h?ndr?d/ 600 six hundred /s?ks 'h?ndr?d/ 700 seven hundred /'sev?n 'h?ndr? 800 eight hundred /e?t 'h?ndr?d/ 900 nine hundred /na?n 'h?ndr?d/ 1 000 a thousand, one thousand /?θ'ɑ?z?nd 1 001 a thousand and one /?'θɑ?z?nd 1 010 a thousand and ten /?'θɑ?z?nd 1 020 a thousand and twenty /?'θɑ?z?nd 1 100 one thousand, one hunded /w?n 'θɑ?z 1 101 one thousand, one hundred and one /w?n 'θɑ?z 1 110 one thousand, one hundred and ten /w?n 'θɑ?z9 999 nine thousand, nine hundred and ninety-nine /na?n 'θɑ?10 000 ten thousand /ten 'θɑ?15 356 fifteen thousand, three hundred and fifty six /'f?fti:n 'θ100 000 a hundred thousand /? 'h?ndr?d 'θ1 000 000 a million /? 'm?lj?n/100 000 000 a hundred million /? 'h?ndr?d 'm?1 000 000 000 a billion /? 'b?lj?n/100 000 000 000 a hundred billion /? 'h?ndr?d 'b?l 1 000 000 000 000 a trillion /? 'tr?lj?n/1 000 000 000 000 000 a quadrillion /? kw?dr?lj?n/ 1 000 000 000 000 000 000 a quintillian /? kw?n't?lj?n/ 1 000 000 000 000 000 000 000 a sextillion /? seks't?lj?n/1 000 000 000 000 000 000 000 000 a septillion /? sep't?lj?n/1 000 000 000 000 000 000 000 000 000 an ocillion /?n ?kt't?lj?n/1 000 000 000 000 000 000 000 000 000 000 a nonillion /? n?n'?lj?n/1 000 000 000 000 000 000 000 000 000 000 000 a decillion /? de's?lj?n/^Ordinal Numbers1st first /f?:st/2nd second /'sek?nd/:d/3rd third /θ?4th fourth /f?:θ/5th fifth /f?fθ/6th sixth /s?ksθ/7th seventh /'sev?nθ/8th eighth /e?tθ/9th ninth /na?nθ/10th tenth /tenθ/11th eleventh /?'lev?nθ/12th twelfth /'twelfθ/:'ti:nθ/13th thirteenth /θ?14th fourtheenth /f??'ti:nθ/15th fidteenth /f?f'ti:nθ/16th sixteenth /s?ks'ti:nθ/17th seventeenth /seven'ti:nθ/18th eighteenth /e?'ti:nθ/19th nineteenth /na?n'ti:nθ/20th twentieth /'twent??θ/21st twenty-first /twent?'f?:st/22nd twenty-second /twent?'sek?nd/:d/23rd twenty-third /twent?'θ?24th twenty-fourth /twent?'f?:θ/25th twenty-fifth /twent?'f?fθ/26th twenty-sixth /twent?'s?ksθ/27th twenty-seventh /twent?'sev?nθ/28th twenty-eighth /twent?'e?tθ/29th twenty-ninth /twent?'na?nθ/30th thirtieth /'θ??t??θ/'f?:st/31st thirty-first /θ??t?40th fortieth /'f?:t??θ/50th fiftieth /'f?ft??θ/100th hundredth /'h?ndr?dθ/1 000th thousandth /'θɑ?z?ndθ/1 000 000th millionth /'m?lj?nθ/。
数学符号英文说法和发音大全!!各路出国党不妨看过来!Symbols+ plus /'plʌs/- minus /'maɪnəs/±plus or minus /'plʌs ɔ: 'maɪnəs/x multiplied by /'mʌltɪplaɪd baɪ// over; divided by /'əʊvə/ /dɪ'vaɪdəd/÷divided /dɪ'vaɪdəd/= equals /'ɪ:kwəlz/≈approximately, similar /ə'prɒksɪmətlɪ/ /'sɪmɪlə tʊ/≡equivalent to; identical /ɪk'wɪvələnt tʊ/ /aɪ'dentɪkl tʊ/≠ not equal to /'nɒt 'iːkwəl tʊ/> greater than /'greɪtə ðən/< less than /'les ðən/≥ greater than or equal to /'greɪtə ðən ər 'iːkwəl tʊ/≤ less than or equal to /'les ðən ər' iːkwəl tʊ/⊁not greater than /'nɒt 'greɪtə ðən/⊀not less than /'nɒt 'les ðən/≫much greater than /'mʌʧ 'greɪtə ðən/≪much less than /'mʌʧ 'les ðən/⊥perpendicular to /pɜːpən'dɪkjʊlə tʊ/∣∣parallel to /'pærəlel tʊ/≢not equivalent to, not identical to /'nɒt ɪk'wɪvələnt tʊ/ /'nɒt aɪ'dentɪkl tʊ≄≉not similar to /'nɒt 'sɪmɪlə tʊ/²squared /'skweəd/³cubed /'kju:bd/4 to the fourth; to the power four /tə ðə 'fɔːθ/ /te ðə 'pɑʊə fɔː/n to the n; to the nth; to the power n /tə ðɪ en; tə dɪenθ; tə ðə pɑʊər en/√root; square root /ru:t/ /skweə ru:t/∛cube root /kju:b ru:t/∜fourth root /fɔːθ ruːt/! factorial /fæk'tɔːrɪəl/% percent /pə'sent/∞infinity /ɪn'fɪnətɪ/∝varies as; proportional to /'vɛərɪz/ /prə'pɔːʃənəl/˙dot /dɒt/¨double dot /dʌbl dɒt/: is to, ratio of /reɪʃɪəʊ/f(x) fx f; function /ef/ /'fʌŋkʃən/f'(x) f dash; derivative /dæʃ/ /dɪ'rɪvətɪv/f''x f double-dash; second derivative /'dʌbl dæʃ/ /'sekənd dɪ'rɪvətɪv/f'''(x) f triple-dash; f treble-dash; third derivative /'trɪpl dæʃ/ / trebl dæʃ/ /θɜ:d dɪ'rɪvətɪv f(4) f four; fourth derivative /fɔːθ dɪ'rɪvətɪv/∂partial derivative, delta /paːʃəl dɪ'rɪvətɪv/ /deltə/∫integral /'ɪntɪgrəl/∑sum /sʌm/w.r.t. with respect to /wɪð 'rɪspekt/log log /lɒg/log₂x log to the base 2 of x /lɒg tə ðə beɪs tu: əv eks/∴therefore /'ðɛəfɔː/∵because /bɪ'kɒz/→gives, leads to, approaches /gɪvz/ /li:dz tʊ/ /əprəʊʧəz// per /pɜ:/∈belongs to; a member of; an element of /bɪ'lɒŋz/ /'membə/ /'elɪmənt/∉does not belong to; is not a member of; is not an element of /nɒt bɪ'lɒŋ/ /nɒt ə 'membə/ /nɒt ən 'e ⊂contained in; a proper subset of /kən'teɪnd ɪn/ /'prɒpə 'sʌbset/⊆contained in; subset /'sʌbset/⋂intersection /'ɪntəsekʃən/⋃union /'juːnɪən/∀for all /fə rɔ:l/cos x cos x; cosine x /kɒz/sin x sine x /saɪn/tan x tangent x /tan/cosec x cosec x /'kəʊsek/sinh x shine x /'ʃaɪn/cosh x cosh x /'kɒʃ/tanh x than x /θæn/|x| mod x; modulus x /mɒd/ /'mɒdjʊləs/℃degrees Centigrade /dɪ'gri:z 'sentɪgreɪd/℉degrees Fahrenheit /dɪ'gri:z 'færənhaɪt/°K degrees Kelvin /dɪ'gri:z 'kelvɪn/0°K, –273.15 °C absolute zero /absəlu:t zi:rəʊ/mm millimetre /'mɪlɪmiːtə/cm centimetre /'sentɪmiːtə/cc, cm³cubic centimetre, centimetre cubed /'kjuːbɪk 'sentɪmiːtə/ /'sentɪmiːtə 'kju: m metre /'miːtə/km kilometre /kɪ'lɒmɪtə/mg milligram /'mɪlɪgræm/g gram /græm/kg kilogram /'kɪləgræm/AC A.C. /eɪ si:/DC D.C. /di: si:/Examplesx + 1 x plus onex -1 x minus onex ± 1 x plus or minus onexy x y; x times y; x multiplied by y(x — y)(x + y) x minus y, x plus yx/y x over y; x divided by y;x ÷ y x divided by yx = 5 x equals 5; x is equal to 5x ≈ y x is approximately equal to yx ≡ y x is equivalent to y; x is identical with yx ≠ y x is not equal to yx > y x is greater than yx < y x is less than yx ≥ y x is greater than or equal to yx ≤ y x is less than or equal to y0 < x < 1 zero is less than x is less than 1; x is greater than zero and less than 10 ≤ x ≤ 1zero is less than or equal to x is less than or equal to 1; x is greater than or equal to zero and less than or equal to 1x²x squaredx³x cubedx4 x to the fourth; x to the power fourxn x to the n; x to the nth; x to the power nx-n x to the minus n; x to the power of minus n√root x; square root x; the square root of x∛the cube root of x∜the fourth root of xthe nth root of x(x + y)²x plus y all squared(x/y)²x over y all squaredn! n factorial; factorial nx% x percent∞infinityx ∝y x varies as y; x is (directly) proportional to yx ∝1/y x varies as one over y; x is indirectly proportional to yẋx dotẍx double dotf(x) fx f of x; the function of xf'(x) f dash x; the (first) derivative of with respect to xf''x f double-dash x; the second derivative of f with respect to xf'''(x) f triple-dash x; f treble-dash x; the third derivative of f with respect to x f(4) f four x; the fourth derivative of f with respect to x∂v the partial derivative of v∂v∂θdelta v by delta theta, the partial derivative of v with respect to θ∂²v∂θ²delta two v by delta theta squared; the second partial derivative of v with respect to θdv the derivative of vdv dθ d v by d theta, the derivative of v with respect to thetad²v dθ² d 2 v by d theta squared, the second derivative of v with respect to theta,∫integralintegral from zero to infinity∑sumthe sum from i equals 1 to nw.r.t. with respect tologey log to the base e of y; log y to the base e; natural log (of) y∴therefore∵because→gives, approachesΔx → 0delta x approaches zerolimΔx→0the limit as delta x approaches zero, the limit as delta x tends to zeroLtΔx→0the limit as delta x approaches zero, the limit as delta x tends to zerom/sec metres per secondx ∈A x belongs to A; x is a member of A; x is an element of Ax∉ A x does not belong to A; x is not a member of A; x is not an element of AA⊂ B A is contained in B; A is a proper subset of BA ⊆B A is contained in B; A is a subset of BA ⋂B A intersection BA ⋃B A union Bcos x cos x; cosine xsin x sine xtan x tangent x, tan xcosec x cosec xsinh x shine xcosh x cosh xtanh x than x|x| mod x; modulus x18 ℃eighteen degrees Centigrade70 ℉seventy degrees FahrenheitGreek alphabetΑαalpha /'ælfə/Ββbeta /'bi:tə/Γγgamma /'gæmə/Δδdelta /'deltə/Εεepsilon /'epsilən/Ζζzeta /'ziːtə/Ηηeta /'iːtə/Θθtheta /'θiːtə/Ιιiota /aɪ'əʊtə/Κκkappa /'kæpə/Λλlamda /'læmdə/ Μμmu /'mjuː/Ννnu /'njuː/Ξξxi /'ksaɪ/Οοomicron /'əʊmɪkrən/ Ππpi /'paɪ/Ρρςrho /'rəʊ/Σσsigma /'sɪgmə/Ττtau /'tɑʊ/Υυupsilon /'jʊpsɪlən/ Φφphi /'faɪ/Χχchi /'kaɪ/Ψψ psi /'psaɪ/Ωω omega /'əʊmɪgə/ ^Roman alphabetA a /'eɪ/B b /'biː/C c /'siː/D d /'diː/E e /'iː/F f /'ef/G g /'ʤiː/H h /'eɪʧ/I i /'aɪ/J j /'ʤeɪ/K k /'keɪ/L l /'el/M m /'em/N n /'en/O o /'əʊ/P p /'piː/Q q /'kjuː/R r /'ɑː/S s /'es/T t /'ti:/U u /'ju:/V v /'vi:/W w /'dʌbljuː/X x /'eks/Y y /'waɪ/Z z /'zed/^Fractions½ a half /ə 'hɑ:f/¼ a quarter /ə 'kwɔːtə/¾ three quarters /θriː 'kwɔːtəz/⅓ a third /ə'θɜ:d/⅔ two thirds /tu: 'θɜ:dz/⅕a fifth /ə 'fɪfθ/⅖t wo fifths /tu: 'fɪfθs/⅗t hree fifths /θriː 'fɪfθs/⅘f our fifths /fɔː 'fɪfθs/⅙a sixth /ə 'sɪksθ/⅚f ive sixths /faɪv 'sɪksθs/⅛ an eighth /ən 'eɪtθ/⅜ three eighths /θriː 'eɪtθs/⅝ five eighths /faɪv 'eɪtθs/⅞ seven eighths /sevən 'eɪtθs/^Decimal Fractions0.1 nought point one /nɔ:t pɔɪnt wʌn/0.01 nought point oh one /nɔ:t pɔɪnt əʊ wʌn/0.0001 nought point oh oh oh one /ten pɔɪnt əʊəʊəʊ wʌn/1.1 one point one /wʌn pɔɪnt wʌn/1.2 one point two /wʌn pɔɪnt tu:/1.23 one point two three /wʌn pɔɪnt tu: θri:/1.0123 one point oh one two three /wʌn pɔɪnt əʊ wʌn tu: θri:/10.01 ten point oh one /ten pɔɪnt əʊ wʌn/21.57 twenty-one point five seven /'twentɪ wʌn pɔɪnt faɪv 'sevən/ 2.6666666666.... two point six recurring /tu: pɔɪnt sɪks rɪ'kɜ:rɪŋ/2.612361236123... two point six one two three recurring /tu: pɔɪnt sɪks wʌn tu: θri: rɪ'kɜ:rɪŋ/ 2.5 million two point five million /tu: pɔɪnt faɪv 'mɪljən/^SI Units: Prefixes10-24 yocto y /'jɒktəʊ/10-21 zepto z /'zeptəʊ/10-18 atto a /'atəʊ/10-15 femto f /'femtəʊ/10-12 pico p /'pi:kəʊ/10-9 nano n /'nanəʊ/10-6 micro µ/'maɪkrəʊ/10-3 milli m /'mɪlɪ/10-2 centi c /'sentɪ/10-1 deci d /'desɪ/103 kilo k /'kɪləʊ/106 mega M /'megə/109 giga G /'gɪgə/1012 tera T /'terə/1015 peta P /'petə/1018 exa E /'eksə/1021 zetta Z /'zetə/1024 yotta Y /'jɒtə/1027 xona X /'zəʊnə/1030 weka W /'wekə/1033 vunda V /'vʊndə/^Cardinal Numbers1 one /wʌn/2 two /tu:/3 three /θri:/4 four /fɔː/5 five /faɪv/6 six /sɪks/7 seven /'sevən/8 eight /eɪt/9 nine /naɪn/10 ten /ten/11 eleven /ɪ'levən/12 twelve /twelv/13 thirteen /θɜ:'ti:n/14 fourteen /fɔː'ti:n/15 fifteen /fɪf'ti:n/16 sixteen /sɪkst'i:n/17 seventeen /seven'ti:n/18 eighteen /eɪ'ti:n/19 nineteen /naɪn'ti:n/20 twenty /'twentɪ/21 twenty-one /twentɪ'wʌn/22 twenty-two /twentɪ'tu:/23 twenty-three /twentɪ'θri:/24 twenty-four /twentɪ'fɔː/25 twenty-five /twentɪ'faɪv/26 twenty-six /twentɪ'sɪks/27 twenty-seven /twentɪ'sevən/28 twenty-eight /twentɪ'eɪt/29 twenty-nine /twentɪ'naɪn/30 thirty /'θɜ:tɪ/40 forty /'fɔːtɪ/50 fifty /'fɪftɪ/60 sixty /'sɪkstɪ/70 seventy /'sevəntɪ/80 eighty /'eɪtɪ/90 ninety /'naɪntɪ/100 a hundred; one hundred /ə 'hʌndrəd/ /w 101 a hundred and one /ə 'hʌndrəd ən w 102 a hundred and two /ə 'hʌndrəd ən t 110 a hundred and ten /ə 'hʌndrəd ən t 120 a hundred and twenty /ə 'hʌndrəd ən ' 200 two hundred /tu: 'hʌndrəd/ 300 three hundred /θri: 'hʌndrəd 400 four hundred /fɔː 'hʌndrəd/ 500 five hundred /faɪv 'hʌndrəd/ 600 six hundred /sɪks 'hʌndrəd/ 700 seven hundred /'sevən 'hʌndrə800 eight hundred /eɪt 'hʌndrəd/ 900 nine hundred /naɪn 'hʌndrəd/ 1 000 a thousand, one thousand /əθ'ɑʊzənd/ /w 1 001 a thousand and one /ə'θɑʊzənd ən 1 010 a thousand and ten /ə'θɑʊzənd ən 1 020 a thousand and twenty /ə'θɑʊzənd ən 1 100 one thousand, one hunded /wʌn 'θɑʊzənd 1 101 one thousand, one hundred and one /wʌn 'θɑʊzənd 1 110 one thousand, one hundred and ten /wʌn 'θɑʊzənd9 999 nine thousand, nine hundred and ninety-nine /naɪn 'θɑʊzənd10 000 ten thousand /ten 'θɑʊzənd/ 15 356 fifteen thousand, three hundred and fifty six /'fɪfti:n 'θɑʊzən 100 000 a hundred thousand /ə 'hʌndrəd 'θɑʊ1 000 000 a million /ə 'mɪljən/100 000 000 a hundred million /ə 'hʌndrəd 'mɪ1 000 000 000 a billion /ə 'bɪljən/100 000 000 000 a hundred billion /ə 'hʌndrəd 'bɪl 1 000 000 000 000 a trillion /ə 'trɪljən/1 000 000 000 000 000 a quadrillion /ə kwɒdrɪljən/ 1 000 000 000 000 000 000 a quintillian /ə kwɪn'tɪljən/ 1 000 000 000 000 000 000 000 a sextillion /ə seks'tɪljən/1 000 000 000 000 000 000 000 000 a septillion /ə sep'tɪljən/1 000 000 000 000 000 000 000 000 000 an ocillion /ən ɒkt'tɪljən/ 1 000 000 000 000 000 000 000 000 000 000 a nonillion /ə nɒn'ɪljən/1 000 000 000 000 000 000 000 000 000 000 000 a decillion /ə de'sɪljən/^Ordinal Numbers1st first /fɜ:st/2nd second /'sekənd/3rd third /θɜ:d/4th fourth /fɔ:θ/5th fifth /fɪfθ/6th sixth /sɪksθ/7th seventh /'sevənθ/8th eighth /eɪtθ/9th ninth /naɪnθ/10th tenth /tenθ/11th eleventh /ɪ'levənθ/12th twelfth /'twelfθ/13th thirteenth /θɜ:'ti:nθ/14th fourtheenth /fɔː'ti:nθ/15th fidteenth /fɪf'ti:nθ/16th sixteenth /sɪks'ti:nθ/17th seventeenth /seven'ti:nθ/ 18th eighteenth /eɪ'ti:nθ/19th nineteenth /naɪn'ti:nθ/20th twentieth /'twentɪəθ/21st twenty-first /twentɪ'fɜ:st/ 22nd twenty-second /twentɪ'sekənd/ 23rd twenty-third /twentɪ'θɜ:d/ 24th twenty-fourth /twentɪ'fɔ:θ/25th twenty-fifth /twentɪ'fɪfθ/26th twenty-sixth /twentɪ'sɪksθ/ 27th twenty-seventh /twentɪ'sevənθ/ 28th twenty-eighth /twentɪ'eɪtθ/29th twenty-ninth /twentɪ'naɪnθ/ 30th thirtieth /'θɜːtɪəθ/31st thirty-first /θɜːtɪ'fɜ:st/40th fortieth /'fɔ:tɪəθ/50th fiftieth /'fɪftɪəθ/100th hundredth /'hʌndrədθ/1 000th thousandth /'θɑʊzəndθ/1 000 000th millionth /'mɪljənθ/。
高等数学常用数学符号读法大全以及主要数学符号含义-转载大写小写英文注音国际音标注音中文注音Α α alpha alfa阿耳法Β β beta beta贝塔Γ γ gamma gamma伽马Γ δ deta delta德耳塔Δ ε epsilon epsilon艾普西隆Ε δ zeta zeta截塔Ζ ε eta eta艾塔Θ ζ theta ζita西塔Η η iota iota约塔Κ θ kappa kappa卡帕∧ι lambda lambda兰姆达Μ κmu miu缪Ν λ nu niu纽Ξ μ xi ksi可塞Ο ν omicro n omikron奥密可戎∏ π pi pai派Ρ ξ rho rou柔∑ ζ sigma sigma西格马Τ η tau tau套Υ υ upsilon jupsilon衣普西隆Φ θ phi fai斐Φ χ chi khai喜Χ ψ psi psai普西Ψ ω omega omiga欧米伽数学符号:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。
17.2.1999/H.V¨a liahoPronunciation of mathematical expressionsThe pronunciations of the most common mathematical expressions are given in the list below.In general,the shortest versions are preferred(unless greater precision is necessary).1.Logic∃there exists∀for allp⇒q p implies q/if p,then qp⇔q p if and only if q/p is equivalent to q/p and q are equivalent2.Setsx∈A x belongs to A/x is an element(or a member)of Ax/∈A x does not belong to A/x is not an element(or a member)of AA⊂B A is contained in B/A is a subset of BA⊃B A contains B/B is a subset of AA∩B A cap B/A meet B/A intersection BA∪B A cup B/A join B/A union BA\B A minus B/the difference between A and BA×B A cross B/the cartesian product of A and B3.Real numbersx+1x plus onex−1x minus onex±1x plus or minus onexy xy/x multiplied by y(x−y)(x+y)x minus y,x plus yxx over yy=the equals signx=5x equals5/x is equal to5x=5x(is)not equal to5x ≡y x is equivalent to (or identical with)y x ≡y x is not equivalent to (or identical with)y x >y x is greater than yx ≥y x is greater than or equal to y x <y x is less than yx ≤y x is less than or equal to y 0<x <1zero is less than x is less than 10≤x ≤1zero is less than or equal to x is less than or equal to 1|x |mod x /modulus xx 2x squared /x (raised)to the power 2x 3x cubedx 4x to the fourth /x to the power four x n x to the n th /x to the power n x −n x to the (power)minus n√x (square)root x /the square root of x 3√x cube root (of)x 4√x fourth root (of)x n√x n th root (of)x (x +y )2x plus y all squared x y 2x over y all squared n !n factorial ˆx x hat ¯x x bar ˜x x tildex ixi /x subscript i /x suffix i /x sub in i =1a ithe sum from i equals one to n a i /the sum as i runs from 1to n of the a i4.Linear algebra x the norm (or modulus)of x −−→OA OA /vector OAOA OA /the length of the segment OA A T A transpose /the transpose of A A −1A inverse /the inverse of A5.Functions f (x )fx /f of x /the function f of x f :S →T a function f from S to Tx →y x maps to y /x is sent (or mapped)to yf (x )f prime x /f dash x /the (first)derivative of f with respect to x f (x )f double–prime x /f double–dash x /the second derivative of f with respect to xf (x )f triple–prime x /f triple–dash x /the third derivative of f with respect to xf (4)(x )f four x /the fourth derivative of f with respect to x ∂f ∂x 1the partial (derivative)of f with respect to x 1∂2f ∂x 21the second partial (derivative)of f with respect to x 1 ∞0the integral from zero to infinitylim x →0the limit as x approaches zerolimx →+0the limit as x approaches zero from above limx →−0the limit as x approaches zero from belowlog e y log y to the base e /log to the base e of y /natural log (of)y ln ylog y to the base e /log to the base e of y /natural log (of)yIndividual mathematicians often have their own way of pronouncing mathematical expres-sions and in many cases there is no generally accepted “correct”pronunciation.Distinctions made in writing are often not made explicit in speech;thus the sounds fx maybe interpreted as any of:fx ,f (x ),f x ,F X ,F X ,−−→F X .The difference is usually made clear by the context;it is only when confusion may occur,or where he/she wishes to emphasise the point,that the mathematician will use the longer forms:f multiplied by x ,the function f of x ,f subscript x ,line F X ,the length of the segment F X ,vector F X .Similarly,a mathematician is unlikely to make any distinction in speech (except sometimes a difference in intonation or length of pauses)between pairs such as the following:x +(y +z )and (x +y )+z√ax +b and √ax +ba n −1and a n −1The primary reference has been David Hall with Tim Bowyer,Nucleus,English for Scienceand Technology,Mathematics,Longman 1980.Glen Anderson and Matti Vuorinen have given good comments and supplements.Pronunciation of Mathematical Symbols Symbols+ plus /'plʌs/- minus /'maɪnəs/± plus or minus /'plʌs ɔ: 'maɪnəs/x multipliedby /'mʌltɪplaɪd baɪ// over; divided by /'əʊvə/ /dɪ'vaɪdəd/÷ divided /dɪ'vaɪdəd/=equals /'ɪ:kwəlz/≈ approximately,similar /ə'prɒksɪmətlɪ/ /'sɪmɪlə tʊ/≡equivalent to; identical /ɪk'wɪvələnt tʊ/ /aɪ'dentɪkl tʊ/≠not equal to /'nɒt 'iːkwəl tʊ/> greater than /'greɪtə ðən/< less than /'les ðən/≥greater than or equal to /'greɪtə ðən ər 'iːkwəl tʊ/≤less than or equal to /'les ðən ər' iːkwəl tʊ/⊁ notgreaterthan /'nɒt 'greɪtə ðən/⊀not less than /'nɒt 'les ðən/≫much greater than /'mʌʧ 'greɪtə ðən/≪much less than /'mʌʧ 'les ðən/⊥ perpendicularto /pɜːpən'dɪkjʊlə tʊ/∣∣ parallelto /'pærəlel tʊ/≢not equivalent to, not identicalto/'nɒt ɪk'wɪvələnt tʊ/ /'nɒt aɪ'dentɪkltʊ/≄≉not similar to /'nɒt 'sɪmɪlə tʊ/² squared /'skweəd/³ cubed /'kju:bd/4to the fourth; to the powerfour/tə ðə 'fɔːθ/ /te ðə 'pɑʊə fɔː/nto the n; to the nth; to thepower n/tə ðɪ en; tə dɪ enθ; tə ðə pɑʊər en/ √root; square root /ru:t/ /skweə ru:t/∛ cuberoot /kju:bru:t/∜ fourthroot /fɔːθ ruːt/! factorial /fæk'tɔːrɪəl/% percent /pə'sent/∞ infinity /ɪn'fɪnətɪ/∝varies as; proportional to /'vɛərɪz/ /prə'pɔːʃənəl/˙ dot /dɒt/¨ doubledot /dʌbl dɒt/: is to, ratio of /reɪʃɪəʊ/f(x) fx f; function /ef/ /'fʌŋkʃən/f'(x) f dash; derivative /dæʃ/ /dɪ'rɪvətɪv/f''x f double-dash; secondderivative/'dʌbl dæʃ/ /'sekənd dɪ'rɪvətɪv/f'''(x) f triple-dash; ftreble-dash; third derivative/'trɪpl dæʃ/ / trebl dæʃ/ /θɜ:ddɪ'rɪvətɪv/f(4) f four; fourth derivative /fɔːθ dɪ'rɪvətɪv/∂partial derivative, delta /paːʃəl dɪ'rɪvətɪv/ /deltə/∫ integral /'ɪntɪgrəl/∑ sum /sʌm/w.r.t. with respect to /wɪð 'rɪspekt/log log /lɒg/log₂x log to the base 2 of x /lɒg tə ðə beɪs tu: əv eks/∴ therefore /'ðɛəfɔː/∵ because /bɪ'kɒz/→gives, leads to, approaches /gɪvz/ /li:dz tʊ/ /əprəʊʧəz// per /pɜ:/∈belongs to; a member of; an /bɪ'lɒŋz/ /'membə/ /'elɪmənt/element of∉does not belong to; is not amember of; is not an elementof/nɒt bɪ'lɒŋ/ /nɒt ə 'membə/ /nɒt ən'elɪmənt/⊂contained in; a proper subsetof/kən'teɪnd ɪn/ /'prɒpə 'sʌbset/⊆contained in; subset /'sʌbset/⋂ intersection /'ɪntəsekʃən/⋃ union /'juːnɪən/∀ forall /fə rɔ:l/cos x cos x; cosine x /kɒz/sin x sine x /saɪn/tan x tangent x /tan/cosec x cosec x /'kəʊsek/sinh x shine x /'ʃaɪn/cosh x cosh x /'kɒʃ/tanh x than x /θæn/|x| mod x; modulus x /mɒd/ /'mɒdjʊləs/℃ degreesCentigrade /dɪ'gri:z 'sentɪgreɪd/ ℉ degreesFahrenheit /dɪ'gri:z 'færənhaɪt/ °K degreesKelvin /dɪ'gri:z 'kelvɪn/0°K,–273.15°Cabsolute zero /absəlu:t zi:rəʊ/ mm millimetre /'mɪlɪmiːtə/cm centimetre /'sentɪmiːtə/cc, cm³ cubic centimetre, centimetrecubed/'kjuːbɪk'sentɪmiːtə/ /'sentɪmiːtə 'kju:bd/m metre /'miːtə/km kilometre /kɪ'lɒmɪtə/ mg milligram '/mɪlɪgræm/g gram /græm/ kg kilogram /'kɪləgræm/AC A.C. /eɪ si:/DC D.C. /di:si:/ Examplesx + 1 x plus onex -1 x minus onex ± 1 x plus or minus onexy x y; x times y; x multiplied by y(x — y)(x+ y)x minus y, x plus yx/y x over y; x divided by y;x ÷ y x divided by yx = 5 x equals 5; x is equal to 5x ≈ y x is approximately equal to yx ≡ y x is equivalent to y; x is identical with yx ≠ y x is not equal to yx > y x is greater than yx < y x is less than yx ≥ y x is greater than or equal to yx ≤ y x is less than or equal to y0 < x < 1 zero is less than x is less than 1; x is greater than zero and less than 10 ≤ x ≤ 1 zero is less than or equal to x is less than or equal to 1; x is greater than or equal to zero and less than or equal to 1x² xsquaredx³ xcubedx4x to the fourth; x to the power fourx n x to the n; x to the nth; x to the power nx-n x to the minus n; x to the power of minus n √root x; square root x; the square root of x∛the cube root of x∜the fourth root of xthe nth root of x(x + y)² x plus y all squared(x/y)² x over y all squaredn! n factorial; factorial nx% xpercent∞ infinityx ∝y x varies as y; x is (directly) proportional to yx ∝1/y x varies as one over y; x is indirectly proportional to yẋx dotẍx double dotf(x) fx f of x; the function of xf'(x) f dash x; the (first) derivative of with respect to xf''x f double-dash x; the second derivative of f with respect to xf'''(x) f triple-dash x; f treble-dash x; the third derivative of f with respect to xf(4) f four x; the fourth derivative of f with respect to x∂v the partial derivative of v∂v∂θdelta v by delta theta, the partial derivative of v with respect to θ∂²v ∂θ²delta two v by delta theta squared; the second partial derivative of v with respect to θdv the derivative of vdvdθd v by d theta, the derivative of v with respect to thetad²v dθ²d 2 v by d theta squared, the second derivative of v with respect to theta,∫ integralintegral from zero to infinity∑ sumthe sum from i equals 1 to nw.r.t. with respect tolog e y log to the base e of y; log y to the base e; natural log (of) y ∴ therefore∵ because→ gives,approaches Δx → 0 delta x approaches zerolim Δx→0the limit as delta x approaches zero, the limit as delta x tends to zeroLt Δx→0the limit as delta x approaches zero, the limit as delta x tends to zerom/sec metrespersecondx ∈A x belongs to A; x is a member of A; x is an element of Ax∉ A x does not belong to A; x is not a member of A; x is not an element of AA⊂B A is contained in B; A is a proper subset of B A ⊆B A is contained in B; A is a subset of BA ⋂B A intersection BA ⋃B A union Bcos x cos x; cosine xsin x sine xtan x tangent x, tan xcosec x cosec xsinh x shine xcosh x cosh xtanh x than x|x| mod x; modulus x18 ℃eighteen degrees Centigrade70 ℉seventy degrees FahrenheitGreek alphabetΑαalpha /'ælfə/Ββbeta /'bi:tə/Γγ gamma /'gæmə/Δδdelta /'deltə/Εε epsilon /'epsilən/Ζζ zeta /'ziːtə/Ηηeta /'iːtə/Θθtheta /'θiːtə/Ιιiota /aɪ'əʊtə/Κκ kappa /'kæpə/Λλ lamda /'læmdə/Μμmu /'mjuː/Νν nu /'njuː/Ξξ xi /'ksaɪ/Οοomicron /'əʊmɪkrənΠπpi /'paɪ/Ρρς rho /'rəʊ/Σσsigma /'sɪgmə/Ττ tau /'tɑʊ/Υυupsilon /'jʊpsɪlən/Φφphi /'faɪ/Χχ chi /'kaɪ/Ψψpsi /'psaɪ/Ωω omega /'əʊmɪgəFractions½ a half /ə 'hɑ:f/¼ a quarter /ə 'kwɔːtə/¾ three quarters/θriː 'kwɔːtəz/⅓ a third /ə 'θɜ:d/⅔ two thirds /tu: 'θɜ:dz/⅕ a fifth /ə 'fɪfθ/⅖two fifths /tu: 'fɪfθs/⅗ three fifths /θriː 'fɪfθs/⅘ four fifths /fɔː 'fɪfθs/⅙ a sixth /ə 'sɪksθ/⅚ five sixths /faɪv 'sɪksθs/⅛ an eighth /ən 'eɪtθ/⅜ three eighths /θriː 'eɪtθs/⅝ five eighths /faɪv 'eɪtθs/⅞ seven eighths/sevən 'eɪtθs/Decimal Fractions0.1 nought point one /nɔ:t pɔɪnt wʌn/0.01 nought point oh one /nɔ:t pɔɪnt əʊ wʌn/0.0001 nought point oh oh oh one/ten pɔɪnt əʊəʊəʊ wʌn/1.1 one point one /wʌn pɔɪnt wʌn/1.2 one point two /wʌn pɔɪnt tu:/1.23 one point two three /wʌn pɔɪnt tu: θri:/1.0123 one point oh one two three/wʌn pɔɪnt əʊ wʌn tu: θri:/ 10.01 ten point oh one /ten pɔɪnt əʊ wʌn/21.57 twenty-one point fiveseven/'twentɪ wʌn pɔɪnt faɪv'sevən/2.6666666666.... two point six recurring /tu: pɔɪnt sɪks rɪ'kɜ:rɪŋ/2.612361236123... two point six one two threerecurring/tu: pɔɪnt sɪks wʌn tu: θri:rɪ'kɜ:rɪŋ/2.5 million two point five million /tu: pɔɪnt faɪv 'mɪljən/ SI Units: Prefixes10-24yocto y /j'ɔktəʊ/10-21zepto z /'zeptəʊ/10-18atto a /'atəʊ/10-15femto f /'femtəʊ/10-12pico p /'pi:kəʊ/10-9nano n /'nanəʊ/10-6micro µ /'maɪkrəʊ/10-3milli m /'mɪlɪ/10-2centi c /'sentɪ/10-1deci d /'desɪ/103kilo k /'kɪləʊ/106mega M /'megə/109giga G /'gi:gə/1012tera T /'terə/1015peta P /'petə/1018exa E /'eksə/1021zeta Z /'zetə/1024yota Y /'jɒtə/Cardinal Numbers1 one /wʌn/2 two /tu:/3 three /θri:/4 four /fɔː/5 five /faɪv/6 six /sɪks/7 seven /'sevən/8 eight /eɪt/9 nine /naɪn/10 ten /ten/11 eleven /ɪ'levən/12 twelve /twelv/13 thirteen /θɜ:'ti:n/14 fourteen /fɔː'ti:n/15 fifteen /fɪf'ti:n/16 sixteen /sɪkst'i:n/17 seventeen /seven'ti:n/18 eighteen /eɪ'ti:n/19 nineteen /naɪn'ti:n/20 twenty /'twentɪ/21 twenty-one /twentɪ'wʌn/22 twenty-two /twentɪ'tu:/23 twenty-three /twentɪ'θri:/24 twenty-four /twentɪ'fɔː/25 twenty-five /twentɪ'faɪv/26 twenty-six /twentɪ'sɪks/27 twenty-seven /twentɪ'sevən/28 twenty-eight /twentɪ'eɪt/29 twenty-nine /twentɪ'naɪn/30 thirty /'θɜ:tɪ/40 forty /'fɔːtɪ/50 fifty /'fɪftɪ/60 sixty /'sɪkstɪ/70 seventy /'seventɪ/80 eighty /'eɪtɪ/90 ninety /'naɪntɪ/100 a hundred; one hundred /ə 'hʌndrəd/ /wʌn 'hʌndrəd/ 101 a hundred and one /ə 'hʌndrəd ən wʌn/102 a hundred and two /ə 'hʌndrəd ən tu:/110 a hundred and ten /ə 'hʌndrəd ən ten/120 a hundred and twenty /ə 'hʌndrəd ən 'twentɪ/200 two hundred /tu: 'hʌndrəd/300 threehundred /θri: 'hʌndrəd/hundred /fɔː 'hʌndrəd/400 fourhundred /faɪv 'hʌndrəd/500 fivehundred /sɪks 'hʌndrəd/600 sixhundred /'sevən 'hʌndrəd/700 sevenhundred /eɪt 'hʌndrəd/800 eighthundred /naɪn 'hʌndrəd/900 nine1 000 a thousand, one thousand /əθ'ɑʊzənd/ /wʌn 'θɑʊzənd/1 001 a thousand and one /ə 'θɑʊzənd ən wʌn/1 010 a thousand and ten /ə 'θɑʊzənd ən ten/1 020 a thousand and twenty /ə 'θɑʊzənd ən 'twentɪ/1 100 one thousand, one hunded /wʌn 'θɑʊzənd wʌn 'hʌndrəd/1 101 one thousand, one hundredand one/wʌn 'θɑʊzənd wʌn 'hʌndrəd ənwʌn/1 110 one thousand, one hundredand ten/wʌn 'θɑʊzənd wʌn 'hʌndrəd ənten/9 999 nine thousand, nine hundredand ninety-nine/naɪn 'θɑʊzənd naɪn 'hʌndrədən 'naɪntɪ 'naɪn/10 000 ten thousand /ten 'θɑʊzənd/15 356 fifteen thousand, threehundred and fifty six/'fɪfti:n 'θɑʊzənd θri: 'hʌndrəd ən'fɪftɪ sɪks/100 000 a hundred thousand /ə 'hʌndrəd 'θɑʊzənd/ 1 000 000 a million /ə 'mɪljən/100 000000a hundred million /ə 'hʌndrəd 'mɪljən/1 000 000000a billion /ə 'bɪljən/100 000000 000a hundred billion /ə 'hʌndrəd 'bɪljən/1 000 000000a trillion /ə 'trɪljən/Ordinal Numbers1st first /fɜ:st/2nd second /'sekənd/3rd third /θɜ:d/4th fourth /fɔ:θ/5th fifth /fɪfθ/6th sixth /sɪksθ/7th seventh /'sevənθ/8th eighth /eɪtθ/9th ninth /naɪnθ/10th tenth /tenθ/11th eleventh /ɪ'levənθ/12th twelfth /'twelfθ/13th thirteenth /θɜ:'ti:nθ/14th fourtheenth /fɔː'ti:nθ/15th fidteenth /fɪf'ti:nθ/16th sixteenth /sɪks'ti:nθ/17th seventeenth /seven'ti:nθ/ 18th eighteenth /eɪ'ti:nθ/19th nineteenth /naɪn'ti:nθ/20th twentieth /'twentɪəθ/21st twenty-first /twentɪ'fɜ:st/ 22nd twenty-second /twentɪ'sekənd/ 23rd twenty-third /twentɪ'θɜ:d/ 24th twenty-fourth /twentɪ'fɔ:θ/ 25th twenty-fifth /twentɪ'fɪfθ/ 26th twenty-sixth /twentɪ'sɪksθ/ 27th twenty-seventh /twentɪ'sevənθ/ 28th twenty-eighth /twentɪ'eɪtθ/ 29th twenty-ninth /twentɪ'naɪnθ/30th thirtieth /'θɜːtɪəθ/31st thirty-first /θɜːtɪ'fɜ:st/。