《直线的倾斜角和斜率》课件2 (北师大版必修2)
- 格式:ppt
- 大小:908.00 KB
- 文档页数:17
§1直线与直线的方程1.1 直线的倾斜角和斜率问题导学1.求直线的倾斜角活动与探究1已知直线l1的倾斜角是30°,直线l2⊥l1,试求直线l2的倾斜角.迁移与应用1.如图,有三条直线l1,l2,l3,倾斜角分别是α1,α2,α3,则下列关系正确的是( ).A.α1>α2>α3 B.α1>α3>α2C.α2>α3>α1 D.α3>α2>α12.直线l过原点,且倾斜角为150°,若将直线l绕原点逆时针方向旋转30°,得到直线l1,那么l1的倾斜角为__________.求直线的倾斜角,主要是根据题意画出图形,根据倾斜角的定义,找出直线向上的方向与x轴正半轴所成的角,即为倾斜角,注意平面几何中相关知识的应用.2.求直线的斜率活动与探究2(1)已知两条直线的倾斜角α1=30°,α2=45°,求这两条直线的斜率;(2)如图,已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,AC的斜率;(3)求经过两点A(a,2),B(3,6)的直线的斜率.迁移与应用1.(1)若直线l 的倾斜角为60°,则该直线的斜率为__________;(2)经过两点A (3,2),B (4,7)的直线的斜率是__________.2.经过下列两点的直线的斜率是否存在?如果存在,求其斜率.①(1,1),(-1,-2);②(1,-1),(-2,4);③(2,2),(10,2);④(-2,-3),(-2,3).1.求直线的斜率通常有两种方法:一是已知直线的倾斜角α时,可根据斜率的定义,利用k =tan α求得;二是已知直线上经过的两点时,可利用两点连线的斜率公式计算求得.2.使用斜率公式k =y 2-y 1x 2-x 1时,要注意前提条件x 1≠x 2.若x 1=x 2,则斜率不存在.当两点的横坐标含有字母时,要先讨论横坐标是否相等再确定直线的斜率.3.直线的倾斜角和斜率的关系活动与探究3a 为何值时,过点A (2a,3),B (2,-1)的直线的倾斜角是锐角?钝角?直角?迁移与应用已知直线l经过点P(5,10),Q(m,12),若l的倾斜角θ≥90°,则实数m的取值范围是__________.根据斜率与倾斜角的关系(即当倾斜角0°≤α<90°时,斜率是非负的;当倾斜角90°<α<180°时,斜率是负的)来解答直线的倾斜角是锐角还是钝角问题.4.运用斜率公式解决三点共线问题活动与探究4已知三点A(a,2),B(3,7),C(-2,-9a)在同一条直线上,求实数a的值.迁移与应用已知三点A(1,-1),B(3,3),C(4,5),求证:三点在同一直线上.三点共线问题的证明(1)用斜率法证明三点共线问题.(2)三点共线问题也可利用线段长度之间的关系来证明,即若|AB |+|BC |=|AC |,则可判定A ,B ,C 三点共线.当堂检测1.对于下列命题:①若θ是直线l 的倾斜角,则0°≤θ<180°;②若k 是直线l 的斜率,则k ∈R ;③任一条直线都有倾斜角,但不一定都有斜率;④任一条直线都有斜率,但不一定有倾斜角.其中正确命题的个数是( ).A .1B .2C .3D .42.若直线l 的斜率k =-1,则其倾斜角等于( ).A .0° B.45° C.90° D.135°3.过点P (-2,m ),Q (m,4)的直线的斜率为1,则m 的值为( ).A .1B .4C .1或3D .1或44.已知A (3,0),B ⎝ ⎛⎭⎪⎫32,-3,C (a ,2a )三点共线,求实数a 的值. 5.已知直线l 的倾斜角为30°,且过点P (1,2)和Q (x,0),求该直线的斜率和x 的值.答案:课前预习导学预习导引1.一个点 方向2.(1)逆时针 倾斜角 0° 0°≤α<180°预习交流1 提示:任何一条直线都有唯一的倾斜角;倾斜角相同的直线不是唯一的,它们是一组平行线;不同的直线其倾斜角可能是相同的.(2)正切 tan α预习交流2 提示:并非每一条直线都有斜率,当直线与x 轴垂直时,即倾斜角为90°时,该直线的斜率不存在;当倾斜角0°≤α<90°时,斜率k ≥0;当90°<α<180°时,斜率k <0,故可知斜率k 的取值范围为(-∞,0)∪[0,+∞),即k ∈R .预习交流3 提示:斜率和倾斜角之间的关系是“数与形”的关系,斜率是个实数,倾斜角则是一个角;每条直线都有唯一的倾斜角与之对应,但并不是每条直线都有斜率,当倾斜角0°≤α<90°时,斜率是非负的,倾斜角越大,直线的斜率就越大;当倾斜角90°<α<180°时,斜率是负的,倾斜角越大,直线的斜率也越大.3.y 2-y 1x 2-x 1(x 2≠x 1) 预习交流4 提示:不能.斜率公式的适用条件是x 1≠x 2,当两点的横坐标相同时,不能用斜率公式,因为此时直线与x 轴垂直,其倾斜角为90°,斜率不存在.预习交流5 提示:无关,即k =y 2-y 1x 2-x 1=y 1-y 2x 1-x 2. 课堂合作探究问题导学活动与探究1 思路分析:由l 1⊥l 2知两直线与x 轴可构成直角三角形,因此可利用三角形内角和定理以及倾斜角的定义求出l 2的倾斜角.解:如图所示,由于l 2⊥l 1,所以△MAB 是直角三角形,而l 1的倾斜角等于30°,即∠MAB =30°,于是∠MBA =60°,从而∠MBx =180°-60°=120°,即直线l 2的倾斜角等于120°.迁移与应用 1.D2.0° 解析:将l 绕原点旋转30°后,直线与x 轴重合,其倾斜角为0°.活动与探究2 思路分析:利用斜率公式k =tan α和k =y 2-y 1x 2-x 1(x 1≠x 2)来解决. 解:(1)k 1=tan 30°=33,k 2=tan 45°=1. (2)直线AB 的斜率k AB =1-2-4-3=17; 直线BC 的斜率k BC =-1-10-(-4)=-24=-12; 直线AC 的斜率k AC =2-(-1)3-0=33=1. (3)当a =3时,斜率不存在.当a ≠3时,直线的斜率k =43-a . 迁移与应用 1.(1) 3 (2)52.解:①k =-2-1-1-1=32;②k =4-(-1)-2-1=-53;③k =2-210-2=0;④∵x 1=x 2=-2,∴斜率不存在.活动与探究3 思路分析:根据倾斜角与斜率的关系解决本题.若直线的倾斜角是锐角,则k >0,若为钝角,则k <0,若为直角,则斜率不存在.解:当过点A ,B 的直线的倾斜角是锐角时,k AB >0,根据斜率公式得k AB =3+12a -2=2a -1>0, ∴a >1;同理,当倾斜角为钝角时,k AB <0,即2a -1<0, ∴a <1.当倾斜角为直角时,A ,B 两点的横坐标相等.即2a =2,∴a =1.迁移与应用 m ≤5 解析:当θ=90°时,直线l 的斜率不存在,故m =5;当θ>90°时,倾斜角为钝角,l 的斜率k <0,即2m -5<0,解得m <5.综上m 的取值范围是m ≤5. 活动与探究4 思路分析:先用k AB =k BC 建立关于a 的方程,然后解方程求实数a 的值. 解:∵A ,B ,C 三点共线,且3≠-2,∴BC ,AB 的斜率都存在,且k AB =k BC .又∵k AB =7-23-a =53-a ,k BC =-9a -7-2-3=9a +75, ∴9a +75=53-a ,解得a =2或a =29. 迁移与应用 证明:∵k AB =3+13-1=2,k BC =5-34-3=2, ∴k AB =k BC .又直线AB 和BC 有公共点B ,∴A ,B ,C 三点共线.当堂检测1.C 2.D 3.A4.解:∵A ,B ,C 三点共线,3≠32, ∴AB ,AC 的斜率都存在,且k AB =k AC .∴-3-032-3=2a -0a -3,解得a =2. 5.解:由斜率的计算公式得,该直线的斜率k =tan 30°=33. 又l 过点P (1,2)和Q (x,0),则k =2-01-x =33,解得x =1-2 3.。