最新更新高二数学学业水平第一次模拟考试试题
- 格式:docx
- 大小:113.21 KB
- 文档页数:6
山西省2024年普通高中学业水平考试模拟试题数学(一)
作者:赵煜政王萍
来源:《山西教育·招考》2024年第04期
本试题分第玉卷和第域卷两部分,第玉卷为选择题,第域卷为非选择题。
满分100分,考试时间60分钟。
第玉卷选择题(共60分)
一、单项选择题:本题包含8小题,每小题6分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求。
二、多項选择题:本题包含2题,每小题6分,共12分。
在每小题给出的四个选项中,至少有两个选项符合题目要求。
全部选对得6分,选对但不全得3分,有选错的得0分。
(1)证明:平面PAD彝平面ABCD;
(2)若E为PC的中点,求直线EB与平面PAD所成角的余弦值援。
2023_2024学年河南省高二上册第一次联考数学模拟测试卷A .B .12547.在正三棱柱中,111ABC A B C -ABC A B C -A .2018~2022年河南省粮食产量的极差为282万吨B .在2019~2022年这4年中,2022年河南省粮食产量的增长速度最大C .2018~2022年河南省粮食产量的30%分位数为6695D .2018~2022年河南省粮食产量的60%分位数为674211.如图1,某同学在一张矩形卡片上绘制了函数(f xA .3AB =B .点D 到直线的距离为AB 33C .点D 到平面的距离为ABM 1414A .当时,过E ,12λμ==B .当时,过E ,12λμ==C .当时,的最小值为15A P =PC 5A P =(1)求a 的值;(2)求通话时间在区间内的通话次数;[)4,12(3)试估计小晟这100次通话的平均时间(同一组中的数据用该组区间的中点值作代表)19.如图,在中,,ABC 135BAC ∠=︒(1)求的值;sin ABC ∠(2)过点A 作,D 在边AD AB ⊥(1)证明:平面BCD .//AE (2)求平面ACE 与平面BDE 21.A ,B ,C ,D 四人参加双淘汰赛制比赛.在第一轮的两场比赛中,场比赛的胜者进入优胜组,负者进入奋斗组.第二轮的两场比赛分别为优胜组和奋斗组的组内比赛,奋斗组中的胜者与优胜组中的负者均进入超越组,奋斗组中的负者直接被淘汰,优设,由题意知1BB x =AD DB +则,,10,,13A ⎛⎫- ⎪⎝⎭21,,03B ⎛⎫ ⎪⎝⎭0,0,M ⎛ ⎝则,得,A ()1,1,1AB =-3AB =当时,12λμ==12AP AC = 连接,,,,,EG GF F HI H IJ JE当三点共线时,,,A P C PC CD 正确.故选:BCD 13.2则,,()0,0,0A ()3,1,0BC 由题意得G 为的中点,所以PC 设,,得CD CB λ= R λ∈CD =则()(0,2,0AD AC CD =+=+()则,,()003A ,,()0,0,0B (2,2,0C 故,()2,2,3AC =-(1,0,3CE =-u u r设平面ACE 的法向量为(11,,m x y =则,11111223030m AC x y z m CE x z ⎧⋅=+-=⎪⎨⋅=-+=⎪⎩。
高二上学期学业水平合格性模拟考试数学试题一、单选题1.设集合,,则( ){}1A x x =≥{}12B x x =-<<A B = A .B .C .D . {}1x x >-{}1x x ≥{}11x x -<<{}12x x ≤<【答案】D【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:.{}|12A B x x =≤< 故选:D.2.命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x 1 ≤C .对任意实数x, 都有x 1D .存在实数x ,使x 1 ≤≤【答案】C【详解】解:特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .3.已知i 是虚数单位,则= 31i i +-A .1-2iB .2-iC .2+iD .1+2i 【答案】D【详解】试题分析:根据题意,由于,故可知选D. 33124121112i i i i i i i i ++++=⨯==+--+【解析】复数的运算点评:主要是考查了复数的除法运算,属于基础题.4.等于( )()sin πα-A .-B .C .-D . sin αsin αcos αcos α【答案】B【分析】利用诱导公式即可求解.【详解】. ()sin sin παα-=故选:B5.函数f (x )=+lg(1+x )的定义域是( ) 11x-A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 【答案】C【解析】根据函数解析式建立不等关系即可求出函数定义域.【详解】因为f (x )=+lg(1+x ), 11x-所以需满足, 1010x x -≠⎧⎨+>⎩解得且,1x >-1x ≠所以函数的定义域为(-1,1)∪(1,+∞),故选:C【点睛】本题主要考查了函数的定义域,考查了对数函数的概念,属于容易题.6.不等式4-x 2≤0的解集为( )A .B .或 {}|22x x -≤≤{2x x ≤-}2x ≥C .D .或 {}|44x x -≤≤{4x x ≤-}4x ≥【答案】B【分析】根据一元二次不等式的求解方法直接求解即可.【详解】不等式即,解得或,240x -≤()()220x x -+≥2x ≤-2x ≥故不等式的解集为或.{2x x ≤-}2x ≥故选:B. 7.“”是“一元二次方程”有实数解的 14m <20x x m ++=A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件【答案】A 【详解】试题分析:方程有解,则.是的充分不必20x x m ++=11404m m ∆=-≥⇒≤14m <14m ≤要条件.故A 正确.【解析】充分必要条件8.已知 是空间三个不重合的平面,是空间两条不重合的直线,则下列命题为真命题的,,αβγ,m n 是( )A .若,,则B .若,,则 αβ⊥βγ⊥//αγαβ⊥//m βm α⊥C .若,,则D .若,,则 m α⊥n α⊥//m n //m α//n α//m n 【答案】C【分析】根据空间中线线、线面、面面的位置关系的性质定理与判定定理一一判断即可;【详解】解:由,,得或与相交,故A 错误;αβ⊥βγ⊥//αγαγ由,,得或或与相交,故B 错误;αβ⊥//m β//m αm α⊂m α由,,得,故C 正确;m α⊥n α⊥//m n 由,,得或与相交或与异面,故D 错误.//m α//n α//m n m n m n 故选:C .9.设函数,则( ) 331()f x x x =-()f x A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减 【答案】A【分析】根据函数的解析式可知函数的定义域为,利用定义可得出函数为奇函数, {}0x x ≠()f x 再根据函数的单调性法则,即可解出.【详解】因为函数定义域为,其关于原点对称,而, ()331f x x x =-{}0x x ≠()()f x f x -=-所以函数为奇函数.()f x 又因为函数在上单调递增,在上单调递增, 3y x =()0,+¥(),0-¥而在上单调递减,在上单调递减, 331y x x-==()0,+¥(),0-¥所以函数在上单调递增,在上单调递增. ()331f x x x=-()0,+¥(),0-¥故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.10.已知非零向量满足,且,则与的夹角为 a b ,2a b =ba b ⊥ (–)a b A . B . C . D . π6π32π35π6【答案】B【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即()a b b -⊥ ,a b 可计算出向量夹角.【详解】因为,所以=0,所以,所以=()a b b -⊥ 2()a b b a b b -⋅=⋅- 2a b b ⋅= cos θ22||122||a b b b a b ⋅==⋅ ,所以与的夹角为,故选B . a b 3π【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.[0,]π11.下列函数中,既是偶函数又区间上单调递增的是 A .B .C .D . 3y x =1y x =+21y x =-+2x y -=【答案】B【详解】试题分析:因为A 项是奇函数,故错,C ,D 两项项是偶函数,但在上是减函数,(0,)+∞故错,只有B 项既满足是偶函数,又满足在区间上是增函数,故选B .(0,)+∞【解析】函数的奇偶性,单调性.12.已知函数在区间(-∞,1]是减函数,则实数a 的取值范围是( ) 2()2f x x ax b =-+A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]【答案】A【分析】由对称轴与1比大小,确定实数a 的取值范围.【详解】对称轴为,开口向上,要想在区间(-∞,1]是减函数,所以2()2f x x ax b =-+x a =. [)1,a ∈+∞故选:A13.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平()y f x =12移个单位长度,得到函数的图像,则( ) 3πsin 4y x π⎛⎫=- ⎪⎝⎭()f x =A . B . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭C . D . 7sin 212x π⎛⎫- ⎪⎝⎭sin 212x π⎛⎫+ ⎪⎝⎭【答案】B 【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到()y f x =,即得,再利用换元思想求得的解析表达式; 23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()y f x =解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换法则得到的sin 4y x π⎛⎫=- ⎪⎝⎭()y f x =解析表达式.【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到()y f x =12的图象,再把所得曲线向右平移个单位长度,应当得到的图象, (2)y f x =3π23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦根据已知得到了函数的图象,所以, sin 4y x π⎛⎫=- ⎪⎝⎭2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,则, 23t x π⎛⎫=- ⎪⎝⎭,234212t t x x πππ=+-=+所以,所以; ()sin 212t f t π⎛⎫=+ ⎪⎝⎭()sin 212x f x π⎛⎫=+ ⎪⎝⎭解法二:由已知的函数逆向变换, sin 4y x π⎛⎫=- ⎪⎝⎭第一步:向左平移个单位长度,得到的图象, 3πsin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象, sin 212x y π⎛⎫=+ ⎪⎝⎭即为的图象,所以. ()y f x =()sin 212x f x π⎛⎫=+ ⎪⎝⎭故选:B.14.函数的图象大致为( ) 241x y x =+A . B .C .D .【答案】A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标()()241x f x f x x --==-+()f x 原点对称,选项CD 错误;当时,,选项B 错误. 1x =42011y ==>+故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 15.若定义在的奇函数f (x )在单调递减,且f (2)=0,则满足的x 的取值范围是R (,0)-∞(10)xf x -≥( )A .B . [)1,1][3,-+∞ 3,1][,[01]--C .D .[1,0][1,)-⋃+∞[1,0][1,3]-⋃【答案】D【分析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积()f x 大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在上的奇函数在上单调递减,且,R ()f x (,0)-∞(2)0f =所以在上也是单调递减,且,,()f x (0,)+∞(2)0f -=(0)0f =所以当时,,当时,,(,2)(0,2)x ∈-∞-⋃()0f x >(2,0)(2,)x ∈-+∞ ()0f x <所以由可得: (10)xf x -≥或或 0210x x <⎧⎨-≤-≤⎩0012x x >⎧⎨≤-≤⎩0x =解得或,10x -≤≤13x ≤≤所以满足的的取值范围是,(10)xf x -≥x [1,0][1,3]-⋃故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.16.若,则的最小值为( ) 0,0,2a b a b >>+=41y a b =+A . B . C .5 D .4 7292【答案】B【分析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的y ()()241a b a b++y最小值.【详解】解:,2a b += ∴12a b +=(当且仅当时等号成立) ∴41415259()()222222a b b a y a b a b a b +=+=+=+++=…2b a =故选:B . 17.如图所示,在三棱锥A -BCD 中,AC =AB =BD =CD =2,且∠CDB =90°.取AB 中点E 以及CD 中点F ,连接EF ,则EF 与AB 所成角的正切值取值范围为( )A .B .C .D . 1[21[2【答案】C 【分析】由题意可得当平面平面时,张角最大,即EF 与AB 所成角最大,从而可得最ABC ⊥BCD 大值,当平面与平面重合时,张角最小,即EF 与AB 所成角最小,从而可得最小值,又ABC BCD 平面与平面不能重合,即可求得EF 与AB 所成角的正切值取值范围.ABC BCD 【详解】解:如图,作于H ,EH BC ⊥因为,当平面平面时,张角最大,即EF 与AB 所成角最大, 112BE AB ==ABC ⊥BCD 如图①,作与M ,HM CD ⊥BF==EF==因为,所以,BC==222AB AC BC+=90BAC∠=︒所以EF与AB的夹角为或其补角,BEF∠,所以cos∠sin BEF∠=tan∠故EF与AB,当平面与平面重合时,张角最小,即EF与AB所成角最小,ABC BCD如图②所示,即为EF与AB所成角的平面角,45FEA∠=︒,tan1FEA∠=又平面与平面不能重合,ABC BCD所以EF与AB所成角的正切值取值范围为.故选:C.18.在△ABC中,D是BC边上一点,且BD=2DC=4,,则AD的最大值为()60BAC∠=︒A.B.4 C D.221【答案】A【分析】由正弦定理可得,再在中由余弦定理化简得出AB C=ABD△,即可求出.2216AD C=+【详解】因为,所以,24BD DC==6BC=在中,由正弦定理可得,则,ABCA sin sinAB BCC BAC===∠AB C=在中,由余弦定理得ABD△2222cosAD AB BD AB BD B=+-⋅⋅248sin1624cosC C B =+-⨯⨯()248sin16cosC C A C=+++2148sin16cos2C C C C⎛⎫=++-⎪⎝⎭,cos16216C C C=+=+因为,所以,0120C︒<<︒02240C︒<<︒则当,即时,290C=︒45C=︒.AD2==+故选:A.二、填空题19.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示.(Ⅰ)直方图中的_________;=a(Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【详解】由频率分布直方图及频率和等于1可得,0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=解之得.于是消费金额在区间内频率为,所以消3a =[0.5,0.9]0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=费金额在区间内的购物者的人数为:,故应填3;6000.[0.5,0.9]0.6100006000⨯=【解析】本题考查频率分布直方图,属基础题.20.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】. 710【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.2510C =若选出的2名学生恰有1名女生,有种情况,11326C C =若选出的2名学生都是女生,有种情况,221C =所以所求的概率为. 6171010+=【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”. 21.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC那么P 到平面ABC 的距离为___________..【分析】本题考查学生空间想象能力,合理画图成为关键,准确找到在底面上的射影,使用线面P 垂直定理,得到垂直关系,勾股定理解决.【详解】作分别垂直于,平面,连,,PD PE ,AC BC PO ⊥ABC CO 知,,,CD PD CD PO ⊥⊥=PD OD P 平面,平面,CD \^PDO OD ⊂PDOCD OD ∴⊥,., PD PE ==∵2PC =sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,为平分线, PO CO ∴⊥CO ACB ∠,451,OCD OD CD OC ︒∴∠=∴===2PC =.PO ∴==【点睛】画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题即很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.22.若函数恰有两个零点,则实数的范围是________ 2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩a 【答案】 1[,1)[2,)2+∞ 【分析】分别设,分两种情况讨论,即可求出的范围.()2,()4()(2)x h x a g x x a x a =-=--a 【详解】解:设,()2,()4()(2)x h x a g x x a x a =-=--若在时,与轴有一个交点,1x <()2x h x a =-x 所以,并且当时, ,所以,0a >1x =(1)20h a =->02a <<而函数有一个交点,所以,且,()4()(2)g x x a x a =--21a ≥1a <所以, 112a ≤<若函数在时,与轴没有交点,()2x h x a =-1x <x 则函数有两个交点,()4()(2)g x x a x a =--当时,与轴无交点,无交点,所以不满足题意(舍去),0a ≤()h x x ()g x 当时,即时,的两个交点满足,都是满足题意的, (1)20h a =-≤2a ≥()g x 12,2x a x a ==综上所述的取值范围是,或. a 112a ≤<2a ≥故答案为:. 1[,1)[2,)2+∞ 【点睛】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题23.已知函数 ()21sin cos cos 2,2f x x x x x x R =+-∈(1)求函数的单调减区间;()f x (2)求当时函数的最大值和最小值. 0,2x π⎡⎤∈⎢⎥⎣⎦()f x 【答案】(1);(2). 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦()()min max 15,22f x f x =-=【分析】(1)将化为,然后解出不等式()f x ()12sin 262f x x π⎛⎫=-+ ⎪⎝⎭3222262k x k πππππ+≤-≤+即可;(2)当时,,然后可求出答案. 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦【详解】(1)()211cos 211sin cos cos 22cos 22cos 22222x f x x x x x x x x x -=+-=-=-+ 12sin 262x π⎛⎫=-+ ⎪⎝⎭令,可得 3222262k x k πππππ+≤-≤+5,36k x k k Z ππππ+≤≤+∈所以函数的单调减区间为 ()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)当时,, 0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤-∈-⎢⎥⎣⎦1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦所以 ()15,22f x ⎡⎤∈-⎢⎥⎣⎦即 ()()min max 15,22f x f x =-=24.如图,已知四边形ABCD 是菱形,,绕着BD 顺时针旋转得到60BAD ∠=︒ABD △120︒PBD △,E 是PC 的中点.(1)求证:平面BDE ;//PA (2)求直线AP 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;【分析】(1)连接交于,连接,利用中位线可得到,再利用直线与平面平行AC BD F EF //EF PA 的判定即可证明;(2)先根据(1)得到直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,然后过EF F 作,利用面面垂直的性质定理得到平面,进而得到为直线与平面FQ BE ⊥FQ ⊥PBC QEF ∠EF PBC 所成的角,最后求的正弦值即可.QEF ∠【详解】(1)连接交于,连接,因为四边形ABCD 是菱形,AC BD F EF 所以为的中点,又因为是的中点,所以,F AC E PC //EF PA 平面,平面,所以平面. EF ⊂BDE PA ⊄BDE //PA BDE(2)过作,垂足为,连接,F FQ BE ⊥Q FP由(1)知:,//EF PA 则直线AP 与平面PBC 所成的角为直线与平面PBC 所成的角,EF 易知,又是的中点,所以,同理,BP BC =E PC BE PC ⊥DE PC ⊥又,面,所以面,又面,BE DE E ⋂=,BE DE ⊂BDE PC ⊥BDE PC ⊂PBC 所以面面,面面,面,,PBC ⊥BDE PBC =BDE BE FQ ⊂BDE FQ BE ⊥所以面,所以为直线与平面PBC 所成的角,FQ ⊥PBC QEF ∠EF 由△绕着BD 顺时针旋转得到△,可得到,ABD 120︒PBD 120AFP ∠=︒假设,则,2AB a =,AF FP ===在中,由余弦定理可得:,AFP A 22222cos1209AP AF FP AF FP a =+-⋅︒=所以,3AP a =因为,所以,又为的中点,所以,PDC PCB ≅A A DE BE =F BD EF BD ⊥则在中,, Rt EFB △13,,22EF AP a FB a BE =====所以, sin FB FEB BE ∠==所以直线AP 与平面PBC 25.已知函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.(1)求实数a 的值;(2)若关于x 的方程f (log 2x )+1﹣2k log 2x =0在[2,4]上有解,求实数k 的取值范围; ⋅(3)若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,求实数m 的取值范围.(附:函数g (t )=t 在(0,1)单调递减,在(1,+∞)单调递增.) 1t+【答案】(1)﹣1;(2)0≤t ;(3)m ≤﹣3或m ≥3. 14≤【分析】(1)由二次函数的图像与性质即可求解.(2)采用换元把方程化为t 2﹣(2+2k )t +1=0在[1,2]上有解,然后再分离参数法,化为t 与2+2k 在[1,2]上有交点即可求解. ()g t =1t+y =(3)求出|f (x 1)﹣f (x 2)|max <1,把问题转化为1≤m 2﹣2mp ﹣2恒成立,研究关于p 的函数h (p )=﹣2mp +m 2﹣3,使其最小值大于零即可.【详解】(1)函数f (x )=x 2﹣2x +1+a 对称轴为x =1,所以在区间[1,2]上f (x )min =f (1)=a ,由根据题意函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.所以a =﹣1.(2)由(1)知f (x )=x 2﹣2x ,若关于x 的方程f (log 2x )+1﹣2k •log 2x =0在[2,4]上有解,令t =log 2x ,t ∈[1,2]则f (t )+1﹣2kt =0,即t 2﹣(2+2k )t +1=0在[1,2]上有解,t 2+2k 在[1,2]上有解, 1t+=令函数g (t )=t , 1t+在(0,1)单调递减,在(1,+∞)单调递增.所以g (1)≤2+2k ≤g (2),即2≤2+2t , 52≤解得0≤t . 14≤(3)若对任意的x 1,x 2∈(1,2],|f (x 1)﹣f (x 2)|max <1,若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,则1≤m 2﹣2mp ﹣2,即m 2﹣2mp ﹣3≥0,令h (p )=﹣2mp +m 2﹣3,所以h (﹣1)=2m +m 2﹣3≥0,且h (1)=﹣2m +m 2﹣3≥0,解得m ≤﹣3或m ≥3.【点睛】本题主要考查了二次函数的图像与性质、函数与方程以及不等式恒成立问题,综合性比较强,需有较强的逻辑推理能力,属于难题.。
新高二开学摸底考试卷数学•全解全析(考试时间:120分钟试卷满分:150分)范围:集合与常用逻辑用语、不等式,函数、导数,三角函数、解三角形,平面向量注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合{}3A x =≤,{}|31,B x x n n ==-∈N ,则A B ⋂=()A .∅B .{}3,6,9C .{}2,5,8D .{}1,2,5,8-A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.如图,在ABC 中,3,AC AN P =是BN 上的一点,若39AP m AB AC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为()A .19B .29C .23D .134.若曲线e x y a =+在x =的切线,则()A .2-B .1C .1-D .e【答案】A【分析】求出e x y a =+的导数,求得切线的斜率为的切点为00(,)x y ,求得函数而得到a 的值.【详解】由曲线e x y a =+在0x =处的切线斜率为1,当曲线e x y a =+在0x =处的曲线ln y x =,导数为1y x'=5.已知函数()1,12f x ax x ⎧-≥⎪=⎨-<⎪⎩是R 上的增函数,则实数a 的取值范围是()A .4(0,)5B .4(0,5C .(0,1)D .(0,1]【答案】B【分析】根据给定条件,利用分段函数单调性,结合一次、二次函数单调性求解即得.6.若πcos cos13αα⎛⎫-+=-⎪⎝⎭,则πcos6α⎛⎫-=⎪⎝⎭()A.B C D.3-7.已知函数()1,2f xx x a⎧≥⎪=⎨-<⎪⎩,若()f x存在最小值,则实数a的取值范围是()A.(],1-∞-B.[)1,0-C.1,2⎛⎤-∞-⎥⎝⎦D.1,02⎡⎫-⎪⎢⎣⎭8.已知函数e ,1ln ,1x x f x x x ⎧≥-=⎨-<-⎩()(),g x f x x a =-+()(),若g x ()存在3个零点,则a 的取值范围是()A .11,1e ⎡⎤+⎢⎥⎣⎦B .11,1e ⎛⎫+ ⎪⎝⎭C .11,1e ⎡⎤---⎢⎥⎣⎦D .11,1e ⎡⎫---⎪⎢⎣⎭令0g x f x x a =-+=()(),即则函数g x ()的零点个数即为函数做出函数f x ()与函数y x =-当直线y x a =-与曲线e x y =又当1x ≥-时,e x y =,则y '二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()πcos 03f x x ωω⎛⎫=+> ⎪⎝⎭,则()A .当2ω=时,π6f x ⎛⎫- ⎪⎝⎭的图象关于π2x =对称B .当2ω=时,()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值为2C .当π6x =为()f x 的一个零点时,ω的最小值为1D .当()f x 在ππ,36⎛⎫- ⎪⎝⎭上单调递减时,ω的最大值为1R ,对任意两个不相等的实数12,都有()()()()11221221x f x x f x x f x x f x +>+,则称()y f x =为“V 函数”,下列函数为“V 函数”的是()A .()21f x x =-B .()e e x xf x -=+C .()22f x x x-=-D .()()2ln 1f x x =+【答案】BD【分析】通过分析可得“V 函数”满足两个条件,即()f x 是定义域为R 的偶函数,且()f x 在()0,∞+上为增函数,然后再对各选项进行判断.【详解】根据题意,对任意两个不相等的实数()12,0,x x ∞∈+,都有()()()()11221221x f x x f x x f x x f x +>+,11.定义:是函数f x '的导数,若方程0f x =有实数解,则称点00为函数y f x =的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图象的对称中心.已知函数()()32103f x ax bx ab =-+≠的对称中心为()1,1--.则下列选项正确的有()A .1,13a b ==-B .()()121902101010f f f f f ⎛⎫⎛⎫⎛⎫+-+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是21-C .函数()f x 有一个零点D .过13,6⎛⎫- ⎪⎝⎭可以作三条直线与()y f x =图象相切12.已知平面向量()1,a m = ,()2,1b =- ,(),2c n = ,若a b ⊥ ,//b c,则m n +=.【答案】2-为A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60 方向,则此时灯塔C 位于游轮的方向(用方向角作答)由正弦定理得sin45sin60AD AB == 在ACD 中,由余弦定理得因为123,24AC AD ==,所以解得由正弦定理得sin30sin CD AC CDA ∠=,且的最小值是.【答案】4【分析】由题意可借助x 、y 表示出z ,从而消去z ,再计算化简后结合基本不等式计算即可得.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)15.已知平行四边形ABCD 中,4,2,120AB BC DAB ∠=== ,点E 是线段BC 的中点.(1)求AB AD ⋅的值;(2)若AF AE AD λ=+ ,且BD AF ⊥,求λ的值.16.已知函数(1)若2a =,求()f x 在区间[]1,1-上的最大值和最小值;(2)若()0f x ≥在(),∞∞-+上恒成立,求a 的取值范围.(1)求角C 的度数;(2)若2,,BC D E =是AB 上的动点,且DCE ∠始终等于30︒,记CED α∠=.当DE 取到最小值时,求α的值.所以α的值75︒.18.已知()()2sin f x x ωϕ=+,其中0ω>,π2ϕ<.(1)若π4ϕ=,函数()y f x =的最小正周期T 为4π,求函数()y f x =的单调减区间;(2)设函数()y f x =的部分图象如图所示,其中12AB AC ⋅= ,(0,D ,求函数的最小正周期T ,并求()y f x =的解析式.(2)由题,可得2T AB ⎛=- ⎝ 因此,2164T AB AC ⋅=-+ ,又由2π4T ==ω,得π2=ω.再将()0,3D -代入(y f x =由π2ϕ<,解得π3ϕ=-.因此()y f x =的解析式为f 19.已知函数21()ln(1)2f x x ax x =--+,其中实数0a ≥.(1)求()f x 在0x =处的切线方程;(2)若()f x 在[0,)+∞上的最大值是0,求a 的取值范围;(3)当0a =时,证明:()1e x f x x ->-.。
1 高中学业水平考试《数学》模拟试卷(一)一、选择题(本大题共25小题,第1~15题每小题2分,第16~25题每小题3分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1. 已知集合P ={0,1},Q ={0,1,2},则P ∩Q =( )A. {0}B. {1}C. {0,1}D. {0,1,2}2. 直线x =1的倾斜角为( )A. 0°B. 45°C. 90°D. 不存在3. 下列几何体各自的三视图中,有且仅有两个视图相同的几何体是( )(第3题)A. 圆锥B. 正方体C. 正三棱柱D. 球4. 下列函数中,为奇函数的是( )A. y =x +1B. y =1xC. y =log 3xD. y =(12)x 5. 下列函数中,在区间(0,+∞)内单调递减的是( )A. y =1xB. y =x 2C. y =2xD. y =x 3 6. 若直线l 的方程为2x +y +2=0,则直线l 在x 轴与y 轴上的截距分别为( )A. -1,2B. 1,-2C. -1,-2D. 1,27. 已知平面向量a =(1,2),b =(-3,x ).若a ∥b ,则x 等于( )A. 2B. -3C. 6D. -68. 已知实数a ,b ,满足ab >0,且a >b ,则( )A. ac 2>bc 2B. a 2>b 2C. a 2<b 2D. 1a <1b9. 求值:sin 45°cos 15°+cos 45°sin 15°=( )A. -32 B. -12 C. 12 D. 3210. 设M =2a (a -2)+7,N =()a -2()a -3,则有( )A. M >NB. M ≥NC. M <ND. M ≤N 11. 已知sin α=35,且角的终边在第二象限,则cos α=( ) A. -45 B. -34 C. 45 D. 3412. 已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则a 5+a 7=( )A. 16B. 18C. 22D. 2813. 下列有关命题的说法正确的个数是( )①命题“同位角相等,两直线平行”的逆否命题为“两直线不平行,同位角不相等”;②“若实数x ,y 满足x +y =3,则x =1且y =2”的否命题为真命题;③若p ∧q 为假命题,则p ,q 均为假命题;④对于命题p :∃x 0∈R ,x 02+2x 0+2≤0, 则p :∀x ∈R ,x 2+2x +2>0 .A. 1个B. 2个C. 3个D. 4个14. 已知()3,2在椭圆x 2a 2+y 2b 2=1上,则( )A. 点()-3,-2不在椭圆上B. 点()3,-2不在椭圆上C. 点()-3,2在椭圆上D. 无法判断点()-3,-2,()3,-2,()-3,2是否在椭圆上15. 设a ∈R ,则“a =1”是“直线l 1:ax +2y =0与直线l 2:x +(a +1)y +4=0平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件16. 下列各式:①(log 23)2=2log 23; ②log 232=2log 23;③log 26+log 23=log 218; ④log 26-log 23=log 23.其中正确的有( )A. 1个B. 2个C. 3个D. 4个17. 下列函数中只有一个零点的是( )A. y =x -1B. y =x 2-1C. y =2xD. y =lg x18. 下列各式中,值为32的是( )A. sin 215°+cos 215°B. 2sin15°cos15°C. cos 215°-sin 215°D. 2sin 215°-119. 在△ABC 中,已知AB →·AC →=23,且∠BAC =30°,则△ABC 的面积为( )A. 1B. 2C. 3D. 420. 已知实数a 1,a 2,a 3,a 4,a 5构成等比数列,其中a 1=2,a 5=8,则a 3的值为( )A. 5B. 4C. -4D. ±421. 已知θ∈⎣⎢⎡⎦⎥⎤0,π2,则直线y =x sin θ+1的倾斜角的取值范围是( )A. [0,π2]B. [0,π6]C. [0,π3]D. [0,π4](第22题)22. 如图,在正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 为CC 1的中点,那么异面直线OE 与AD 1所成角的余弦值等于() A. 62 B. 63 C. 33 D. 2223. 若直线ax +by -3=0与圆x 2+y 2+4x -1=0切于点P (-1,2),则ab 积的值为( )A. 3B. 2C. -3D. -224. 已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确( )A. a ∥bB. a ⊥bC. |a |=|b |D. a +b =a -b25. 已知平面α内有两定点A ,B ,||AB =3,M ,N 在α的同侧且MA ⊥α,NB ⊥α,||MA =1,||NB =2.在α上的动点P 满足PM ,PN 与平面α所成的角相等,则点P 的轨迹所包围的图形的面积等于( )A. 9πB. 8πC. 4πD. π二、填空题(本大题共5小题,每小题2分,共10分)26. 若菱形ABCD 的边长为2,则|AB →-CD →+CD →|=________.27. 函数y =x +1x(x >0)的值域是________. 28. 若直线2()a +3x +ay -2=0与直线ax +2y +2=0平行,则a =________.29. 若双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为________.30. 已知数列{a n }是非零等差数列,且a 1,a 3,a 9组成一个等比数列的前三项,则a 1+a 3+a 9a 2+a 4+a 10的值是________. 三、解答题(本大题共4小题,第31,32题每题7分,第33,34题每题8分,共30分)31. (本题7分)已知cos α=35,3π2<α<2π,,求cos 2α,sin 2α的值.32. (本题7分,有A 、B 两题,任选其中一题完成,两题都做,以A 题计分)[第32题(A)](A)如图所示 ,四棱锥P -ABCD 的底面为一直角梯形,BA ⊥AD, CD ⊥AD ,CD =2AB ,PA ⊥ 底面ABCD ,E 为PC 的中点.(1)求证:EB ∥平面PAD ;(2)若PA =AD ,证明:BE ⊥平面PDC .(B)如图,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .[第32题(B)](1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E -DF -C 的余弦值.33. (本题8分)已知抛物线y 2=4x 截直线y =2x +m 所得弦长AB =3 5.(1)求m 的值;(2)设P 是x 轴上的一点,且△ABP 的面积为9,求点P 的坐标.34. (本题8分)定义在D 上的函数f (x ),如果满足:对任意的x ∈D ,存在常数M >0,都有||f (x )≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x. (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围.1 2014高中学业水平考试《数学》模拟试卷(一)1. C2. C3. A4. B5. A6. C7. D8. D 9. D 10. A 11. A 12. C 13. C 14. C15. A 16. B 17. D 18. C 19. A 20. B21. D 22. B 23. B 24. B25. C [提示:由题意知△AMP ∽△BNP ,所以|PB |=2|PA |,不妨以AB 所在直线为x 轴,中点为原点建立直角坐标系,设P (x ,y ),则(x -32)2+y 2=4[(x +32)2+y 2]⇒(x +52)2+y 2=4,所以P 的轨迹是半径为2的圆,因此面积为4π.] 26. 2 27. [2,+∞) 28. 629. -14 [提示:因为是双曲线,所以m <0,-1m =4,得m =-14.] 30. 1或1316 [提示:设公差为d ,则a 1·(a 1+8d )=(a 1+2d )2⇒a 1d =d 2,∴若d =0,a 1+a 3+a 9a 2+a 4+a 10=1;若d ≠0,则a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=1316.] 31. 解:cos 2α=2cos 2α-1=-725,∵3π2<α<2π,∴sin α=-45,∴sin 2α=2sin αcos α=-1225. 32. (A)证明:(1)取PD 的中点Q ,连接EQ ,AQ ,则QE ∥CD ,CD ∥AB ,∴QE ∥AB .又∵QE =12CD =AB ,∴四边形ABEQ 是平行四边形,∴BE ∥AQ .又∵AQ ⊂平面PAD ,∴BE ∥平面PAD .(2)PA ⊥底面ABCD ,∴CD ⊥PA .又∵CD ⊥AD ,∴CD ⊥平面PAD ,∴AQ ⊥CD .若PA =AD ,∴Q 为PD 中点,∴AQ ⊥PD ∴AQ ⊥平面PCD .∵BE ∥AQ ,∴BE ⊥平面PCD .(第32题)(B)(1)如图:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF //AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB //平面DEF . (2)以点D 为坐标原点,直线DB ,DC 为x 轴,y 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,2 3,0),E (0,3,1),F (1,3,0).平面CDF 的法向量为DA →=(0,0,2),设平面EDF 的法向量为n =(x ,y ,z ),⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →||n |=217,所以二面角E -DF -C 的余弦值为217. 33. 解:(1)由⎩⎪⎨⎪⎧y 2=4x ,y =2x +m ,得4x 2+4(m -1)x +m 2=0,由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,|AB |=1+k 2(x 1+x 2)2-4x 1x 2,=1+22(1-m )2-4·m 24=5(1-2m ).由|AB |=35,即5(1-2m )=35⇒m =-4.(第33题)(2)设P (a ,0),P 到直线AB 的距离为d ,则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP |AB |,2|a -2|5=2×935⇒|a -2|=3⇒a =5或a =-1,故点P 的坐标为(5,0)和(-1,0). 34. 解:(1)当a =1时,f (x )=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x,因为f (x )在(-∞,0)上递减,所以f (x )>f (0)=3,即f (x )在(-∞,0)的值域为(3,+∞),故不存在常数M >0,使得|f (x )|≤M 成立.所以函数f (x )在(-∞,0)上不是有界函数. (2)由题意知,|f (x )|≤3在[1,+∞)上恒成立,即-3≤f (x )≤3,-4-⎝ ⎛⎭⎪⎫14x ≤a ·⎝ ⎛⎭⎪⎫12x ≤2-⎝ ⎛⎭⎪⎫14x ,所以-4·2x -⎝ ⎛⎭⎪⎫12x ≤a ≤2·2x -⎝ ⎛⎭⎪⎫12x在[0,+∞)上恒成立.⎣⎢⎡⎦⎥⎤-4·2x -⎝ ⎛⎭⎪⎫12x max ≤a ≤⎣⎢⎡⎦⎥⎤2·2x -⎝ ⎛⎭⎪⎫12x min ,设2x =t ,g (t )=-4t -1t ,h (t )=2t -1t ,由x ∈[0,+∞)得t ≥1,所以g (t )在[1,+∞)上递减,h (t )在[1,+∞)上递增,g (t )max =g (1)=-5,h (t )min =h (1)=1,所以 a ∈[-5,1].。
一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,,则中元素个数为( )A. 2 B. 3C. 4D. 52.已知命题,则为( )A. B. 2023年黑龙江省普通高中学业水平合格性考试数学模拟试卷一C.D. 3.已知复数z 满足,则( )A. 2 B. C. 5 D. 104.若,则( )A.B.C.D. 5.已知a ,b ,且,则下列不等式正确的是( )A.B. C.D. 6.某学校高一、高二、高三年级的学生人数分别为300,200,400,为了了解学生的课业负担情况,该校采用分层抽样的方法,从这三个年级中抽取18名学生进行座谈,则高一、高二、高三年级抽取人数分别是( )A. 6,4,8 B. 6,6,6C. 5,6,7D. 4,6,87.已知,,,则( )A.B. C.D.8.在“冬奥会”闭幕后,某中学社团对本校3000名学生收看比赛情况用随机抽样方式进行调查,样本容量为50,将所有数据分组整理后,绘图如下,以下结论中正确的是( )A. 图中m的数值为26B. 估计该校观看比赛不低于3场的学生约为1380人C. 估计该校学生观看比赛场数的中位数小于平均数D. 样本数据的第90百分位数为59.函数的图象大致为( )A. B.C. D.10.甲、乙二人的投篮命中率分别为、,若他们二人每人投篮一次,则至少一人命中的概率为( )A. B. C. D.11.设l、m是不同的直线,、是不同的平面,下列命题中的真命题为( )A. 若,,,则B. 若,,,则C. 若,,,则D. 若,,,则12.已知,,则( )A. 1B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
13.若,则的取值范围是__________.14.设的内角A,B,C所对的边分别为a,b,c,若,,则__________.15.已知函数若,则__________.16.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x名且,调整后研发人员的年人均投入增加,要使这名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多为__________人.三、解答题:本题共4小题,共40分。
一、单选题二、多选题1. 已知,,那么是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 已知函数为奇函数,当时,,且,则( )A.B.C.D.3. 设函数,则使得成立的的取值范围为( )A.B.C.D.4.已知函数,,,的最小值为,且,则下列说法正确的是( )A .的最小正周期为B.的对称中心为,C .的单调增区间为,D .当时,的值域为5. 已知抛物线的焦点为F ,过F 的直线交抛物线于A 、B两点,设直线的倾斜角为,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.的展开式中的系数是,则实数的值为( )A.B.C.D.7. 已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.8. 已知,则等于( )A.B.C.D.9. 如图,棱长为2的正方体中,点分别是棱的中点,则()A .直线为异面直线2023年重庆市普通高中学业水平合格性考试模拟(一)数学试题2023年重庆市普通高中学业水平合格性考试模拟(一)数学试题三、填空题四、解答题B.平面C.过点的平面截正方体的截面面积为D.点是侧面内一点(含边界),平面,则的取值范围是10. 在中,角,,所对的边分别为,,,且,将分别绕边,,所在的直线旋转一周,形成的几何体的体积分别记为,,,侧面积分别记为,,,则( )A.B.C.D.11. 设函数,则( )A .是偶函数B .在上单调递减C.的最大值为2D.的图象关于直线对称12. 已知,设,其中则( )A.B.C .若,则D.13. 函数是定义在上的奇函数,且满足.当时,,则__________.14.在数列中,,,若对于任意的,恒成立,则实数的最小值为______.15.的展开式中二项式系数和为32,则展开式中项的系数为___________.16.已知,分别为椭圆的左、右顶点,为其右焦点,.且点在椭圆上.(1)求椭圆的标准方程.(2)若过的直线与椭圆交于,两点,且与以为直径的圆交于,两点,试问是否存在常数,使为常数?若存在,求的值;若不存在,说明理由.17. 已知分别为三个内角的对边,.(1)求角A ; (2)若,的面积为,求的周长.18. 已知的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,若.(1)求角A 的值;(2)若,求面积S 的最大值.19. 如图,在四棱锥中,(1)证明.(2)若平面平面,经过的平面将四棱锥分成的左、右两部分的体积之比为,求平面截四棱锥的截面面积20. 已知函数,.(1)求函数的单调区间;(2)若,是函数的两个极值点,且,求证:.21. 已知函数的部分图象如图所示.(1)求函数的解析式;(2)将函数图象上所有的点向右平移个单位长度,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象.当时,方程恰有三个不相等的实数根,,求实数a的取值范围以及的值.。
一、单选题二、多选题1.已知等差数列的前项和为,若,,则( )A.B .4C.D.2. 双曲线的右顶点为,以为圆心,为半径的圆恰好与双曲线的两条渐近线相切,则双曲线的离心率为( )A.B.C .2D.3. 已知M 为抛物线准线上一点,过M作圆:的切线,则切线长最短为( )A.B.C.D.4. 在等比数列()中,若,,则该数列的前10项和为( )A.B.C.D.5. 已知函数在上单调递减,则实数的取值范围为( )A.B.C.D.6. 已知方程有4个不同的根,则实数的取值范围是A.B.C.D.7. 设,分别为双曲线C :的左、右焦点,点P 为双曲线右支上一点,M是的中点,且,,则双曲线的离心率为()A .5B.C.D .48. 坡度是地表单元陡缓的程度,通常把坡面的垂直高度和水平方向的距离的比叫做坡度,就是坡面与水平面成角的正切值.如图所示,已知斜面的坡度是1,某种越野车的最大爬坡度数是30°,若这种越野车从D 点开始爬坡,则行驶方向与直线的最大夹角的度数为()A .30°B .45°C .60°D .75°9.已知复数,,下列说法正确的是( )A .若纯虚数,则B.若为实数,则,2023年上海市高中数学学业水平合格性考试【考前模拟卷01】数学试题2023年上海市高中数学学业水平合格性考试【考前模拟卷01】数学试题三、填空题四、解答题C .若,则或D .若,则m的取值范围是10.如图,圆柱的轴截面是边长为2的正方形,为圆柱底面圆弧的两个三等分点,为圆柱的母线,点分别为线段上的动点,经过点的平面与线段交于点,以下结论正确的是()A.B .若点与点重合,则直线过定点C .若平面与平面所成角为,则的最大值为D .若分别为线段的中点,则平面与圆柱侧面的公共点到平面距离的最小值为11. 下列命题中,正确的命题有( )A .已知随机变量服从二项分布,若,,则B .将一组数据中的每个数据都加上同一个常数后,方差恒不变C .设随机变量服从正态分布,若,则D.若某次考试的标准分服从正态分布,则甲、乙、丙三人恰有2人的标准分超过90分的概率为12. 已知圆,直线,则( )A .直线恒过定点B .直线能表示平面直角坐标系内每一条直线C .对任意实数,直线都与圆相交D .直线被圆截得的弦长的最小值为13. 为了解本书居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为,,,则它们的大小关系为______.(用“<”连接)14. 平面向量,,满足,,,,则的最小值为_______.15. 已知,那么的值等于___________.16.已知数列的前项和,在各项均不相等的等差数列中,,且,,成等比数列,(1)求数列、的通项公式;(2)设,求数列的前项和.17. 如图,已知矩形所在的平面垂直于直角梯形所在的平面,且,,,,,,分别是,的中点.(1)求证:平面平面;(2)求二面角的余弦值.18. 已知中,角,,的对边分别为,,,若,且,.(Ⅰ)求的长;(Ⅱ)求的值;(Ⅲ)求的值.19. 如图所示的五面体中,四边形是正方形,平面平面,,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.20.已知集合,(1)求集合;(2)若:,:,且是的充分不必要条件,求实数的取值范围.21. 如图,在四边形中,已知.(1)若,求的值;(2)若,四边形的面积为4,求的值.。
....【答案】C【分析】由偶函数的性质即可得【详解】根据偶函数的图象性质可知,关于轴对称的函数是偶函数.故选:C.A .2B .1【答案】D【分析】直接利用棱锥的体积公式计算【详解】因为1DD ⊥面ADP所以1113D ADP ADP V DD S -=⨯⨯=A .1AD B .1AA C .1BD D .EO【答案】C【分析】根据线面平行的判定定理即可得出答案.【详解】解:对于A ,因为直线1AD 与平面AEC 交于点A ,故不平行;对于B ,因为直线1AA 与平面AEC 交于点A ,故不平行;对于C ,在正方体1111ABCD A B C D -中,因为E 为1DD 的中点,O 为BD 的中点,所以1EO BD ∕∕,又EO ⊂平面AEC ,1BD ⊄平面AEC ,所以1BD ∕∕平面AEC ;对于D ,因为EO ⊂平面AEC ,故不平行.故选:C.13.已知函数()221,2,2x x f x x ax x ⎧+<=⎨-+≥⎩,若[(1)]6f f =-,则实数a 的值为()A .3-B .3C .1-D .1【答案】D【分析】先求出(1)3f =,则可得[(1)](3)6f f f ==-,解方程可得a 的值.【详解】因为1(1)213f =+=,所以2[(1)](3)33936f f f a a ==-+=-+=-,解得1a =.故选:D14.从某班所有同学中随机抽取10人,获得他们某学年参加社区服务次数的数据如下:4,4,4,7,7,8,8,9,9,10,根据这组数据,下列说法正确的是()A .众数是7B .平均数是7C .第75百分位数是8.5D .中位数是8【答案】B【分析】根据众数,平均数,中位数,百分位数的定义逐一判断即可.A .ABC 是钝角三角形B .ABC 的面积是A B C '' C .ABC 是等腰直角三角形D .ABC 的周长是44+所以ABC 的周长是442+,面积是在A B C ''' 中,4''=A C ,过B '作x 轴垂线,垂足为D ¢,所以2222B D O B ''''==,四、解答题(本大题共3小题,共27分.解答应写出文字说明,证明过程或演算步骤.)24.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得某年100位居民每人的月均用水量(单位:吨),将数据按照[)0,0.5,[)0.5,1,…,[]4,4.5分成9组,制成了如图所示的频率直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.【答案】(1)0.30(2)36000,理由见解析【分析】(1)根据频率之和为1得到方程,求出答案;(2)计算出月均用水量不低于3吨的频率,进而求出答案.【详解】(1)由频率直方图可知,月均用水量在[)0,0.5的频率为0.080.50.04⨯=.同理在[)0.5,1,[)1.5,2,[)2,2.5,[)3,3.5,[]4,4.5的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由()10.040.080.210.250.060.040.020.52a -++++++=⨯,解得0.30a =.(2)由(1)知,该市100位居民月均用水量不低于3吨的频率为0.060.040.020.12++=.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为3000000.1236000⨯=.25.如图,三棱柱111ABC A B C -内接于一个圆柱,且底面是正三角形,圆柱的体积是2π,底面直径与母线长相等.(1)求圆柱的底面半径;(2)求三棱柱11ABC A B -【答案】(1)1(2)332【分析】(1)根据圆柱体积公式直接计算;(1)作出函数在[]3,3x ∈-的图像;(2)求52f f ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(3)求方程()0f x =的解集,并说明当整数)553312222f f ⎫⎫⎛⎫⎛⎫=-+=-=-+⎪ ⎪ ⎪⎪⎭⎝⎭⎝⎭⎭时,由10x +=,得=1x -;时,由310x -=,得13x =;10x -=,得1x =;解集为11,,13⎧⎫-⎨⎬⎩⎭;。
高二数学学业水平第一次模拟考试试题
数 学
本试卷包括选择题、填空题和解答题三部分。
时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={0,1,2},N ={x },若M∪N={0,1,2,3},则x 的值为( ) A .3 B .2
C .1
D .0
2.如图是一个几何体的三视图,则该几何体为 A.圆柱 B.圆锥 C.圆台
D.球
3.在区间内任取一个实数,则此数大于3的概率为 A.
51 B.
5
2 C.5
3 D.
5
4 4.某程序框图如图所示,若输入x 的值为1,则输出y 的值是 A.2 B.3 C.4
D.5
5.已知向量a =(1,2),b =(x ,4),若a ∥b ,则实数x 的值为( ) A .8
B .2
C .-2
D .-8
6.某学校高一、高二、高三年级的学生人数分别为600,400,800,为了了解教师的教学情况,该校采用分层抽样的方法,从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为( ) A .15,5,25 B .15,15,15
C .10,5,30
D .15,10,20
7.如图,在正方体ABCD-A1B1C1D1中,直线
BD与A1C1的位置关系是
A.平行
B.相交
C.异面但不垂直
D. 异面且垂直
8.不等式(x+1)(x-2)≤0的解集为
A.{x|-1≤x≤2}
B. {x|-1<x<2}
C. {x|x≥2或x≤-1}
D. {x|x>2或x<-1}
9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是( )
A.(x+2)2+(y+1)2=5 B.(x-2)2+(y-1)2=10
C.(x-2)2+(y-1)2=5 D.(x+2)2+(y+1)2=10
10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120,则A、
B两点间的距离为( )
A.3km B.2km
C.1.5km D.2km
二、填空题:本大题共5小题,每小题4分,满分
20分.
11.计算:log21+log24=____________。
12.已知1,x,9成等比数列,则实数x=______。
13.已知点(x,y)在如图所示的平面区域(阴影部分)
内运动,则z=x+y的最大值是____.
14.已知a是函数f(x)=2-log2x的零点,则实数a的值为_____。
15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角A-EF-C(如图2),则在图2中直线AF与平面EBCF所成的角的大小
为___________。
三、解答题:本大题共5小题,满分40分。
解答应写出文字说明、证明过程或演算步骤。
16. (本小题满分6分)已知
4
sin,
52
π
θθπ
=<<
(1)求tanθ
1km
120°
C
(第10题图)
(2)222sin 2sin cos 3sin cos θθθθθ
++的值
17.(本小题满分8分)某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如下图所示的频率分布直方图,图中标注a 的数字模糊不清。
(1) 试根据频率分布直方图求a 的值,并估计该公司职员早餐日平均费用的众数; (2) 已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?
18.(本小题满分8分)
已知等比数列{a n }的公比q =2,且a 2,a 3+1,a 4成等差数列。
(1)求a 1及a n ;
(2)设b n =a n +n ,求数列{b n }的前5项和S 5。
19.已知二次函数2
()f x x ax b =++满足(0)6,(1)5f f == (1)求函数()f x 解析式
(2)求函数()f x 在[2,2]x ∈-的最大值和最小值 20.(本小题满分10分) 已知圆C :x 2
+y 2
+2x -3=0。
(1)求圆的圆心C 的坐标和半径长;
(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A(x 1,y 1)、B(x 2,y 2)两点,求证:2
11
1x x +为定值;
(3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大。
频率
组距
a
(第17题图)
数学试卷参考答案
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案
A
C
B
B
B
D D
A
C
A
二、填空题 11、2; 12、3;13、5;14、4;15、45︒(或
4
π
) 三、解答题 16. 解:(1)4sin ,52πθθπ=
<<∴34cos ,tan 53
θθ=-=- (2)22222sin 2sin cos tan 2tan 8
3sin cos 3tan 157
θθθθθθθθ++==-++
17、解:(1)高一有20012001202000⨯=(人),高二有20012080-=(人);
(2)频率为0.015100.03100.025100.005100.75⨯+⨯+⨯+⨯=, ∴人数为0.7520001500⨯=(人)。
18.解:(1)由已知得a 2=2a 1,a 3+1=4a 1+1,a 4=8a 1,又2(a 3+1)=a 2+a 4, 所以2(4a 1+1)=2a 1+8a 1,解得a 1=1(2分),故a n =a 1q n-1
=2n-1
(4分);
(2)因为b n =2n-1
+n ,所以S 5=b 1+b 2+b 3+b 4+b 5=2
5
51121215⋅++
--⋅)()(=46(8分) 19. (1)2(0)6
2
()26(1)156
f b a f x x x f a b b ===-⎧⎧⇒⇒=-+⎨
⎨=++==⎩⎩;
(2)
22()26(1)5,[2,2]f x x x x x =-+=-+∈-,
∴x =1时,f(x)的最小值为5,x =-2时,f(x)的最大值为14。
20. 解:(1)配方得(x +1)2
+y 2
=4,则圆心C 的坐标为(-1,0)(2分), 圆的半径长为2(4分);
(2)设直线l 的方程为y =kx ,联立方程组⎩⎨⎧==-++kx
y x y x 03222
消去y 得(1+k 2
)x 2
+2x -3=0(5分),则有:2
2122113
12k
x x k x x +-=+-=+,(6分) 所以
3
21
1212121=+=+x x x x x x 为定值(7分)。
(3)解法一 设直线m 的方程为y =kx +b ,则圆心C 到直线m 的距离2
1||-=b d ,
所以222422d d R DE -=-=||(8分),
d d d DE S CDE
⋅-=⋅=2
42
1||∆≤
22422=+-d d )(, 当且仅当24d d -=,即2=d 时,△CDE 的面积最大(9分)
从而
22
1=-||b ,解之得b =3或b =-1,
故所求直线方程为x -y +3=0或x -y -1=0(10分) 解法二 由(1)知|CD|=|CE|=R =2, 所以DCE DCE CE CD S CDE ∠=∠⋅⋅=
sin sin ||||22
1
∆≤2, 当且仅当CD ⊥CE 时,△CDE 的面积最大,此时22=||DE (8分) 设直线m 的方程为y =x +b ,则圆心C 到直线m 的距离2
1||-=b d (9分)
由22422222=-=-=d d R DE ||,得2=d , 由
22
1=-||b ,得b =3或b =-1,
故所求直线方程为x -y +3=0或x -y -1=0(10分)。