用列举法求概率
- 格式:doc
- 大小:66.00 KB
- 文档页数:9
计算概率的常用方法掌握概率的求法是这一章节的重点,那么求概率有哪些方法呢?下面以中考题为例说明求概率的常用方法。
1、列举法(2009年广州)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别。
现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球。
(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能的情况。
(2)求红球恰好被放入②号盒子的概率。
解析:(1)3个小球分别放入编号为①、②、③的三个盒子的所有可能情况有:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红,共6种。
(3)由(1)可知,红球恰好放入②号盒子的情况有白红蓝、蓝红白,共2种,所以红球恰好放入②号盒子的概率P=2/6=1/3。
评注:在一次实验中,如果可能出现的结果只是有限个,且各种结果出现的可能性大小相等,我们可以通过列举实验结果的方法,分析出随机事件发生的概率。
2、列表法(2009年成都)有一个均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为x;另有3张背面完全相同,正面上分别写有数字-2、-1、1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值。
(1)用树状图或表格表示出的所有可能的情况。
(2)分别求出当S=0和S<2的概率。
解析:(1)列表法分析如下:(2)由表格可知,所有可能出现的情况共有12种,其中S=0的有2种,S<2的有5种。
P(S=0)=2/12=1/6;P(S<2)=5/12。
评注:当一次实验涉及两个因素(例如投掷两个骰子),并且出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法分析随机事件发生的概率。
3、树状图法(2009年安徽芜湖)“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立地从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区中随机选择一个为参观者服务。
计算概率的常用方法掌握概率的求法是这一章节的重点,那么求概率有哪些方法呢?下面以中考题为例说明求概率的常用方法。
1、列举法(2009年广州)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别。
现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球。
(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能的情况。
(2)求红球恰好被放入②号盒子的概率。
解析:(1)3个小球分别放入编号为①、②、③的三个盒子的所有可能情况有:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红,共6种。
(3)由(1)可知,红球恰好放入②号盒子的情况有白红蓝、蓝红白,共2种,所以红球恰好放入②号盒子的概率P=2/6=1/3。
评注:在一次实验中,如果可能出现的结果只是有限个,且各种结果出现的可能性大小相等,我们可以通过列举实验结果的方法,分析出随机事件发生的概率。
2、列表法(2009年成都)有一个均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为x;另有3张背面完全相同,正面上分别写有数字-2、-1、1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值。
(1)用树状图或表格表示出的所有可能的情况。
(2)分别求出当S=0和S<2的概率。
解析:(1)列表法分析如下:(2)由表格可知,所有可能出现的情况共有12种,其中S=0的有2种,S<2的有5种。
P(S=0)=2/12=1/6;P(S<2)=5/12。
评注:当一次实验涉及两个因素(例如投掷两个骰子),并且出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法分析随机事件发生的概率。
3、树状图法(2009年安徽芜湖)“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立地从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区中随机选择一个为参观者服务。
用列举法求概率
列举法是一种基于所有可能性的方法,用于求解概率。
对于一个随机试验,可以通过列举出所有可能的结果,然后计算感兴趣事件发生的次数,再除以总的可能性数目来计算概率。
以下是使用列举法求解概率的步骤:
1.确定随机试验的所有可能结果。
这些结果应该是互不相同
且穷尽的。
2.计算感兴趣事件发生的次数。
根据实际情况,确定符合感
兴趣条件的结果个数。
3.计算总的可能性数目。
确定随机试验的总结果数目。
4.使用公式 P(A) = n(A) / n(S) 计算概率。
其中,P(A)表示感兴
趣事件发生的概率,n(A)表示感兴趣事件发生的次数,n(S)表示总的可能性数目。
例如,考虑一枚标准硬币的抛掷,求得正面向上的概率。
1.所有可能的结果是正面向上和反面向上。
2.感兴趣事件是正面向上。
3.总的可能性数目是2。
4.使用公式 P(A) = n(A) / n(S) ,其中 n(A) = 1(因为正面向上
只有一种可能),n(S) = 2。
P(正面向上) = 1 / 2 = 0.5
因此,得到正面向上的概率为0.5或50%。
使用列举法求解概率可以简单直观地计算概率,尤其适用于样
本空间较小且结果可列举的情况。
然而,对于复杂的问题或较大的样本空间,列举法可能不切实际,此时可以选择其他概率计算方法,如频率法或概率模型。
用列举法求概率在概率论中,列举法是一种常用的求解事件概率的方法。
该方法的核心思想是通过列举事件的可能出现情况并计算这些情况的频率,来推断事件出现的概率。
下面将通过一个例子详细说明如何使用列举法来计算概率。
例子假设一家公司有5个员工,其中3个是男性,2个是女性。
现在从这5个员工中随机选择1个人,求该人是男性的概率。
首先,我们列举可能的情况,即从5个人中选择1个人,共有5种可能:1.选择第1个员工,是男性2.选择第2个员工,是男性3.选择第3个员工,是男性4.选择第4个员工,是女性5.选择第5个员工,是女性接下来,我们计算每种情况的概率。
1.选择第1个员工,是男性的概率为3/52.选择第2个员工,是男性的概率为3/53.选择第3个员工,是男性的概率为3/54.选择第4个员工,是女性的概率为2/55.选择第5个员工,是女性的概率为2/5最后,根据概率的定义,该人是男性的概率为选择男性的情况数除以所有情况数,即3/5,约为0.6。
通过以上例子,我们可以看出,列举法是一种非常简单有效的求解事件概率的方法。
对于一些简单的问题,我们可以通过列举可能的情况并计算概率来快速得出答案。
当然,在实际应用中,我们也需要注意一些问题,比如是否考虑了所有可能的情况、每种情况的概率是否正确等。
只有在全面准确考虑了所有问题,我们才能得出可靠的概率结果。
最后,需要注意的是,在更加复杂的情况下,列举法可能不能很好地处理问题,此时我们可以尝试其他方法,比如概率公式法、贝叶斯法等。
掌握各种求解概率的方法,可以让我们更加准确、高效地解决问题。
用列举法求概率
用列举法求概率指的是通过对事件包含的所有可能情况进行数量计算,从而得出该事件发生的概率。
它可以用来计算单个或多个独立事件的概率。
一般步骤如下:
(1)首先确定所要求的概率事件;
(2)然后将该事件分解成一个或多个独立事件;
(3)根据独立事件的可能性,将所有可能的结果列举出来;
(4)统计满足条件的可能性的数量;
(5)最后计算出概率值。
例如:在一副有52张牌的扑克牌中抽出一张,问抽到的是黑桃的概率。
(1)首先确定所要求的概率事件:抽到的是黑桃
(2)将该事件分解成一个独立事件:抽到的是黑色;抽到的是桃子
(3)根据独立事件的可能性,将所有可能的结果列举出来:抽到的是黑桃、黑红桃、黑方块、红桃、红红桃、红方块、梅花、梅红桃、梅方块;
(4)统计满足条件的可能性的数量:抽到的是黑桃的可能性有1种;
(5)最后计算出概率值:P(抽到的是黑桃)=1/9=0.11。
25.2 用列举法求概率教学目标1. 用列举法(列表法)求简单随机事件的概率,进一步培养随机概念.2. 用画树形图法计算概率,并通过比较概率大小作出合理的决策.3. 经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.4. 通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.教学重点运用列表法和画树形图法求事件的概率.教学难点运用画树形图法进行列举,解决较复杂事件概率的计算问题.课时安排2课时.第1课时教学内容25.2 用列举法求概率(1).教学目标1.用列举法(列表法)求简单随机事件的概率,进一步培养随机概念.2.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.3.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.教学重点运用列表法求事件的概率.教学难点如何使用列表法.教学过程一、导入新课填空:(1)掷一枚硬币,正面向上的概率是.(2)掷一枚骰子,向上一面的点数是3的概率是.过渡:在试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.12二、新课教学例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上.教师引导学生思考、讨论,最后得出结论.解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,反正,反反.所有可能的结果共有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足两枚硬币全部正面向上(记为事件A )的结果只有1种,即“正正”,所以P (A )=41. (2)两枚硬币全部反面向上(记为事件B )的结果也只有1种,即“反反”,所以P (B )=41. (1)一枚硬币正面向上、一枚硬币反面向上(记为事件C )的结果共只有2种,即“反正”“正反”,所以P (C )=42=21. 总结:用列举法求概率的使用条件,即“结果只有有限种,且各种结果出现的可能性大小相等”.例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.教师引导学生思考例2的实验涉及到几个因素?能否直接列举出实验所有可能的结果?学生思考、分析后可以知道:涉及到两个因素(第1枚骰子、第2枚骰子),但是每个因素的取值比较多,直接列举会比较麻烦,可用列表法.当一次试验是掷两枚骰子时,为不重不漏地列出所有可能的结果,通常采用列表法.解:两枚骰子分别记为第1枚和第2枚,可以用下表列举出所有可能出现的结果.3由上表可以看出,同时掷两枚骰骸子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A)的结果有6种(表中的红色部分),即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P (A )=366=61. (2)两枚骰子的点数和是9(记为事件B)的结果有4种(表中的阴影部分),即(3, 6),(4,5),(5,4),(6,3),所以 P (B )=364=91. (3)至少有一枚骰子的点数为2(记为事件C)的结果有11种(表中蓝色方框部分),所以P (C )=3611. 思考:如果把例2中的“同时掷两枚质地均匀的骰子”改为“把一枚质地均匀的骰子掷两次”,得到的结果有变化吗?为什么?教师可引导学生思考、讨论,让学生知道:“同时掷两枚质地均匀的骰子”和“把一枚质地均匀的骰子掷两次”,得到的结果没有区别.总结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法;当实验涉及两个因素时,可以“分步”对问题进行分析.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P (A )=n m 中m 和n 的值;(3)利用公式P (A )=nm 计算事件的概率. 三、巩固练习教材第138页练习.四、课堂小结今天学习了什么?有什么收获?五、布置作业习题25.2 第1题.第2课时教学内容25.2 用列举法求概率(2).教学目标1.用画树形图法计算概率,并通过比较概率大小作出合理的决策.2.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.3.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.教学重点运用画树形图法求事件的概率.教学难点运用画树形图法进行列举,解决较复杂事件概率的计算问题.教学过程一、导入新课上节课我们学习了同时掷两枚质地均匀的骰子的问题.如果把例2中的“掷两个骰子”改为“掷三个骰子”,还可以使用列表法来做吗?通过问题,引发学生思考和兴趣,导入新课的教学.二、新课教学例3 甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?分析:当一次试验是从三个口袋中取球时,即涉及到3个因素.此时,列表法就不方便了,为不重不漏地列出所有可能的结果,通常采用画树状图法.本游戏可分三步进行,分步画图和分类排列相关的结论是解题的关键.解:根据题意,可以画出如下的树状图:由树状图可以看出,所有可能出现的结果共有12种,即这些结果出现的可能性相等.45(1)只有1个元音字母的结果(红色)有5种,即ACH 、ADH 、BCI 、BDI 、BEH ,所以P (1个元音)=125.有2个元音字母的结果(绿色)有4种,所以P (2个元音)=124=31.全部为元音字母的结果(蓝色)只有1种,所以P (3个元音)=121. (2)全是辅音字母的结果共有2种,所以P (3个辅音)=122=61. 教师引导学生归纳总结.通过解答,学生很容易知道:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”.运用树形图法求概率的步骤如下:(1)画树形图;(2)列出结果,确定公式P (A )=n m 中m 和n 的值;(3)利用公式P (A )=nm 计算事件概率. 思考:到现在为止,我们所学过的用列举法求概率分为哪几种情况?列表法和画树形图法求概率有什么优越性?什么时候使用“列表法”方便,什么时候使用“树形图法”更好呢?通过对上述问题的思考,加深学生对新方法的理解,更好的认识到列表法和画树形图法求概率的优越性在于能够直观、快捷、准确地获取所需信息,有利于学生根据实际情况选择正确的方法.三、巩固练习教材第139页练习.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.教师让学生独立完成,然后小组内订正.四、归纳总结让学生谈一谈这节课的收获.要求每个学生在组内交流,派小组代表发言.通过这个环节,可以提高学生概括能力、表达能力,有助于学生全面地了解自己的学习过程,感受自己的成长与进步,增强自信,也为教师全面了解学生的学习状况、因材施教提供了重要依据.五、布置作业习题25.2 第3、5题.教学反思这节课的内容是数学九年级上册的用列举法求概率。
.求概率的方法在新课标实施以来,中考数学试题中加大了统计与概率局部的考察,表达了“学以致用〞这一理念. 计算简单事件发生的概率是重点,常用的方法有:列举法、列表法、画树状图法,这三种方法应该熟练掌握,先就有关问题加以分析. 一、列举法 例1:〔05济南〕如图1所示,打算了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;假设可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?假设不是,有利于谁? .分析:这个游戏不公平,因为抽取两张纸片,全部时机均等的结果为:半圆半圆,半圆正方形,正方形半圆,正方形正方形.所以取出的两张纸片都画有半圆形的概率为41. 取出的一张纸片画有半圆、一张画有正方形的概率为2142=,因为二者概率不等,所以游戏不公平. 说明: 此题采纳了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对不确定事件发生概率值的计算.此题用列举方法,也可以用画树状图,列表法. 二、画树状图法 例2:〔06临安市〕不透明的口袋里装有白、黄、蓝三种颜色的乒乓球〔除颜色外其余都相同〕,其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.〔1〕试求袋中蓝球的个数.〔2〕第一次任意摸一个球〔不放回〕,第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.解析:⑴设蓝球个数为x 个,则由题意得21122=++x , 1=x答:蓝球有1个. 〔2〕树状图如下:∴ 两次摸到都是白球的概率 =61122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是时机均等的,要对实践的分析得出概率通常用列表或画树状图来写出事件发生的结果,这样便于确定相关的概率. 此题是考查用树状图来求概率的方法,这种方法比拟直观,把全部可能的结果都一一排列出来,便于计算结果. 三、列表法 例3:〔06晋江市〕如图2,是由转盘和箭头组成的两个装置,装置A 、B 的转盘分别被平均分成三局部,装置A 上的数字是3、6、8;装置B 上的数字是4、5、7;这两个装置除了外表数字不同外,其他构造均相同,小东和小明分别同时转动A 、B 两个转盘〔一人转一个〕,如果我们规定箭头停留在较大数字的一方获胜〔如:假设A 、B 两个转盘的箭头分别停在6、4上,则小东获胜,假设箭头恰好停在分界图1 5 4 B768A 3图2.线上,则重新转一次〕,请用树状图或列表加以分析说明这个游戏公平吗? 解析:〔方法一〕画树状图: 由上图可知,全部等可能的结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.由上表可知,全部等可能结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.说明:用树状图法或列表法列举出的结果一目了然,当事件要经过屡次步骤〔三步以上)完成时,用这两种方法求事件的概率很有效.6开始。
用列举法求概率(3)----教学设计照川中学闫传江一、教材分析1、教材的地位与作用概率在日常生活中、科学预测中有着非常广泛的应用,它是整个初中数学的一个重点,也是数学研究的一个重要分支。
《用列举法求概率(3)》主要内容是用树形图法求概率。
在学习本节课之前,学生已经对事件的可能性有了初步的认识,并能用直接列举法和列表法求简单事件的概率,本节课再寻求一种更一般的列举方法求概率——画树形图求概率.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏。
在教学过程中要尽量鼓励和引导学生主动探究和构建知识结构,亲身经历画树形图法的形成过程,并在应用中逐渐加深理解。
2、教学目标:根据数学课程标准,结合九年级学生认知基础和实际水平,本节课我确定了如下教学目标:知识:(1)使学生在具体情境中了解概率的意义.(2)会画树形图计算简单事件的概率.能力:(1)通过画树形图求概率的过程培养学生思维的条理性,提高学生分析问题、解决问题的能力.(2)通过对不同列举方法的比较和探究,渗透数形结合,分类讨论,由特殊到一般的思想,进一步发展学生抽象概括的能力.情感:(1)鼓励和引导学生主动探究和建构知识结构,培养勇于探索的学习精神,在利用概率解决某些实际问题的过程中增强应用意识。
(2)通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.教学重、难点:教学重点:画树形图计算简单事件的概率.教学难点:通过学习画树形图计算概率,培养学生思维的条理性. 二、教法学法分析:(1)学情分析知识分析:学生对有限可能性事件概率的意义有了初步的认识,并能用直接列举法和列表法求简单事件的概率。
能力分析:九年级学生已经具有一定的活动经验和体验,具备一定的主动参与合作意识和初步的分析、抽象、归纳概括能力。
情感分析:九年级学生已经具有自主学习意识,希望老师能创设便于观察和思考的学习环境,也希望结合具有真实背景的素材,获得数学概念,掌握解决问题的技能与方法.(2)教法分析:根据本节教学内容和学生年龄等特点,本节课将采用启发引导和探究相结合的教学方法。
在教学过程中“以情境创设为前提,以问题驱动为导向,以学生活动为阵地,以培养能力为宗旨”,在整体设计中采用“创设问题情境----探究学习——交流展示——剖析例题——巩固新知”的模式安排教学;体现数学知识的形成过程。
通过真实、熟悉的情景,激发学生的学习动机,尽力唤起学生的求知欲望,促使他们动脑、动手、动口,积极参与学习活动全过程,在老师的指导下生动地、主动地、富有个性地开展学习活动.让学生在探究、交流、归纳、应用的实践活动自主参与知识的发生发展过程。
(3)学法分析:按照学生认识规律,遵循以学生为主体,教师为主导,教学活动为主线的思想,以自主探究为主,适时点拨为辅的方法进行学习,使学生轻松参与知识的形成过程和应用过程。
提高分析问题和解决问题的能力。
三、教学手段:计算机辅助教学.它为师生的交流和讨论提供了平台,既增强了教学的直观性和启发性,又增大教学容量,节省时间,提高教学效果。
四、教学基本流程:活动1:复习提问巩固旧知活动2:创设情境探究学习活动3:交流展示引出新知活动4:典例精析应用新知活动5:课堂练习巩固新知活动6:拓展练习深化认知活动7:归纳小结布置作业五、教学过程:(一)复习提问、巩固旧知问题1.列举一次试验的所有可能结果时,学过哪些方法?直接列举法.列表法.问题2.用列举法求概率的基本步骤是什么?(1)列举出一次试验的所有可能结果;(2)数出m,n(3)计算概率(设计意图:通过提问,对前一节课所学方法的步骤进行归纳,体现温故知新的教学原则,为本节课用画树形图法求概率做好铺垫)(二)创设情境、探究学习首先放一段关于东莞玉兰大剧院大型歌剧表演《猫(The cat)》的宣传录像,引出情境问题。
展示课件1:朋友送有两张歌剧表演的门票,一家三口人谁去呢?妈妈就让小明想一个办法。
小明决定用“手心手背”的游戏方式确定哪两个人去,并制定如下规则:三人同时伸出一只手,三只手中恰好有两只手心向上或者手背向上的两人去,若无此情况,再次游戏。
试求出一次游戏就确定出两人去的概率(设计意图:创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,激发学生积极主动的思维活动是我们每节课都应追求的目标。
以环青海湖国际公路自行车比赛为背景提出问题,使学生产生一种情感上的亲和力和感召力,而“手心手背”的游戏学生又非常熟悉,极大的激发学生的学习兴趣和参与意识.学生通过计算概率,既复习了上节课用直接列举法求简单事件的概率,又为下一环节探究用其它方法求概率做了铺垫。
)学生利用学过的知识,自主探究解决上述问题.学生在探究学习活动中会有不同的表现,针对可能出现的情况设计教学预案如下:教学预案1:直接列举法的指导(1)有的学生用“手心”、“手背”来直接列举;有的学生用字母、数字、符号来表示“手心”、“手背”进行列举.及时对学生不同的方法给予肯定,对进行简化的同学更要给予表扬,在简化过程中培养学生抽象思维能力.(2)列举中会出现两种情况,一是对于列举不完全或重复的同学,引导他们进行有序地列举,同时请学生思考如何做到不重不漏;二是对于列举完全的同学,启发能否更直观地展现列举过程.对列举出不同结果的学生要及时鼓励。
教学预案2:列表法的指导用列表法求概率时,学生对如何把一次试验的三个步骤同时反映在一个表格中,感到困难.此时引导学生思考:为什么这个问题用列表的方法不容易解决呢?还有没有其它更好的列举方法呢?激发学生积极探索。
教学预案3:画树形图的指导在前一节用列表法求概率的课上,出示一道变式题即不放回的问题,深化列表法,渗透树形图法,为本节课做了铺垫,因此少数学生也有可能想到树形图,表扬使用这种方法的学生,并请学生阐述这种方法的优越性,及如何实施这种方法.如果没有学生画出树形图,引导列举完全的学生画出树形图.(设计意图:探究活动前的教学预案使课堂的指导更有针对性. 对学生出现的问题和想不到的方法给予及时点拨和引导,体现教师的主导作用。
)(三)交流展示、引出新知请用直接列举法的同学板书探究结果,并进行简单说明.方法1:手心—A 手背—BAAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB.方法2:通过学生自主探究,并准确的表述出自己的方法,培养学生分析问题、解决问题以及归纳问题的能力。
引导大家对两种方法进行比较,感受思维的条理性和实施的有序性.(设计意图:通过探究学习活动,使学生在探索的过程中学会交流与合作,有利于展示学生对问题解决的不同策略,真正体会问题解决的过程,培养学生的发散性思维及创新能力以及克服困难的勇气.)(四)典例精析、应用新知例题1:甲、乙、丙三个盒中分别装有大小、形状相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出一个小球.求(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?(2)取出的3个小球上全是辅音字母的概率是多少?展示课件2:通过图片展示,使例题背景更简单,有利于学生把更多的精力放在树形图的画法和概率的计算上,通过示范画树形图法,让绝大多数学生在解决这个问题中,掌握用画树形图解决求概率的技能,加深学生对画树形图法的理解,增强学习的自信心.分析:第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?一次试验中有三个步骤,但抽取顺序是不确定的.不妨设抽取顺序为从甲盒取一张、从乙盒取一张、从丙盒取一张.第二、画出树形图:第三、计算概率:明确随机事件,正确数出的值,计算概率.师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中的值.学生讨论后归纳出正确数出的方法:方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,从中找出的值.方法2:直接看树形图的最后一步,就可以求出的值;再由最后一步向上逐个找出符合要求的可能结果,求出的值。
方法3:由上至下,根据每一层分成几种结果,利用乘法原理求出的值,再找出符合要求的可能结果,求出的值。
(设计意图:准确画出树形图后,往往因为分枝太多,找的值容易出现错误,因此,在明确随机事件的情况下,总结不同的数的方法供不同层次的学生选择使用很有必要.)由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.(1)只有一个元音字母的结果有5个,所以有两个元音字母的结果有4个,所以全部为元音字母的结果有1个,所以(2)全是辅音字母的结果有2个,所以第四、思考:前面我们按甲、乙、丙的顺序画出树形图,如果改为其它的顺序,求出的概率还是一样的吗?(设计意图:通过动手实践,使学生体会一次试验步骤的不同顺序,不影响随机事件发生的概率.)第五、归纳小结:画树形图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树形图列举一次试验的所有可能结果;(3)数出m,n(4)计算随机事件的概率(设计意图:通过归纳,可以加深学生对新方法的理解,更好的认识到列表法和画树形图求概率的优越性在于能够直观快捷准确地获取所需信息,有利于学生根据实际情况选择正确的方法.)(五)课堂练习、巩固新知练习1.小亮上学要经过三个十字路口,每个十字路口遇到红绿灯的机会都相同,小亮希望上学时经过每个路口都是绿灯,这样的机会有多大呢?实物投影展示学生的答案,师生共同进行点评。
(设计意图:为了检验学生对画数形图法掌握的情况,加深对列表法、树形图法各自优势的认识,以便面对问题时能灵活选择合适的方法,提高应用所学知识解决问题的能力,设置练习1,除了巩固涉及三个步骤实验适合用画数形图的方法外,还兼为练习2做铺垫.)练习2.经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车右转,一辆车左转;(3)至少有两辆车左转。
实物投影展示学生的答案,师生共同进行点评。
(设计意图:练习2是三步实验的事件,是让学生体会画树形图法的优势。
巩固画树形图求概率的知识,感受概率与生活的密切联系.虽然有27种可能的结果,比较复杂,但有练习1搭建的攀援之梯,大部分学生不会感到困难,在学生独立解答的基础上,有针对性的指导困难学生,保证全体学生共同进步.)拓展练习:袋中有4张上海世博会吉祥物“海宝”的图片(图片的形状大小一样),依次取出(不放回)两张图片,求取出的两张图片中恰好有一张是图片A的概率是多少?解:两张图片中恰好有一枚张是A记为事件M.解法1:直接列举求得;解法2:列表法求得;解法3:画树形图求得.(设计意图:拓展练习是两步不放回地抽取,使学生认识到树形图在列举不同类情况时表现出来的优越性,弥补了列表法的不足,成为分类列举确保不重不漏而不可或缺的重要工具。