-2013天津市初中数学竞赛赛试题
- 格式:doc
- 大小:293.00 KB
- 文档页数:3
中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分)1、对正整数n ,记!123......n n =⨯⨯⨯⨯,则1!2!3!......10!+++的末尾数为( )A 、0B 、1C 、3D 、52、已知关于x 的不等式组322553x t x x x +⎧-<⎪⎪⎨+⎪->-⎪⎩,恰好有5个整数解,则t 的取值范围( ) A 、1162t -<<-B 、1162t -≤<-C 、1162t -<≤-D 、1162t -≤≤- 3、已知关于x 的方程22222x x a x x x x x --+=--恰有一个实数根,则满足条件的a 值有( ) A 、1个 B 、2个 C 、3个 D 、4个4、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( )A 、3B 、4C 、6D 、85、在分别标有号码2,3,4,……,10的9个球中,随机取出两个球记下它们的标号,则较大号码被较小号码整除的概率是( )A 、14B 、29C 、518D 、736二、填空题(共5小题,每小题7分,共35分) 6、设a =b 是2a 的小数部分,则()32b +的值为 ;7、一个质地均匀的正方体六个面上分别标有1,2,3,4,5,6,掷这个正方体三次,则朝上面的数字之和为3的倍数的概率为 ;8、已知正整数a ,b ,c 满足2220a b c +--=,2380a b c -+=,则abc 的最大值为 ;9、实数,,,a b c d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 ;10、小明某天在文具店做志愿卖笔,铅笔每支售4元,圆珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔。
2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
2013年全国初中数学竞赛试题班级 姓名 成绩 供稿人:李锦扬一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--=(D )2222(2)0c x b ac x a ---=3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8(第3题)(第4题)5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967(B )1821967(C )5463967 (D )16389967二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 .7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.(第7题)三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.(第11题)13.设a ,b ,c 是素数,记x b c a y c a b z a b c =+-=+-=+-,,,当2,2z y ==时,a ,b ,c 能否构成三角形的三边长?证明你的结论.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.2013全国数学联赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ).(A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b acx x x x c+--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有(第3题)理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 .【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,(第4题答题)(第4题)解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B . 将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分 因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠. …………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形. 因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(第11题答题)(第11题)△ABC 为钝角三(ii )若角形.90A ∠>︒时,因为当()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合则 =A. B. C. D.2.函数的定义域是A. B. C. D.3.若则复数的模是A.2B.3C.4)D.54.已知,那么5.执行如图1所示的程序框图,若输入n的值为3,则输入s的值是6.某三棱锥的三视图如图2所示,则该三棱锥的体积是7.垂直于直线且于圆的直线方程是8.设为直线,是两个不同的平面.下列命题中正确的是9.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是10.设是已知的平面向量且 .关于向量的分解,有如下四个命题:①给定向量b,总存在向量c,使;②给定向量b和c,总存在实数和,使;③给定向量b和正数,总存在单位向量c,使 .④给定正数和,总存在单位向量b和单位向量c,使 .上述命题中的向量b,c和a在同一平面内且两两不共线,则真命题的个数是A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11~13题)11.设数列{ }是首项为1,公比为的等比数列,则 ________。
12.若曲线在点(1,)处的切线平行于轴,则 =________。
13.已知变量,满足约束条件则的最大值是________。
(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C的极坐标方程,以极点为原点,极轴为轴的正半轴建立直角坐标系,则曲线的参数方程为________。
15.(几何证明选讲选做题)如图3,在矩形中,,,,垂足为,则 =________。
三、解答题:本大题共6小题,满分30分,解答题写出文字说明、证明过程和演算步骤。
16、(本小题满分12分)已知函数,(1)求的值;(2),,求。
17、(本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85 [80,90 [90,95 [95,100频数(个) 5 10 20 15(1)根据频数分布表计算苹果的重量在[90,95 的频率;(2)用分层抽样的方法从重量在[80,85 和[95,100 的苹果中共抽取4个,其中重量在[80,85 的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85 和[95,100 中各有1的概率。
2013天津市初中数学竞赛赛试题所属班级 姓名 一、选择题(每小题7分,满分35分):1、设实数,,a b c 满足2346c b a a +=-+,244c b a a -=-+,则,,a b c 的大小关系是( ).A 、a b c <≤B 、b a c <≤C 、b c a <≤D 、c a b <≤2、设O 为锐角⊿ABC 的外心,连结AO 、BO 、CO ,并分别延长,交对边于点D 、E 、F ,若⊿ABC 的外接圆半径为6,111AD BE CF ++的值是( ). A 、1 B 、12C 、13D 、163、已知20122011a x =+,20122012b x =+,20122013c x =+,那么222a b c ab bc ca ++---的值为( ).A 、3B 、2C 、1D 、04、如图,在平面直角坐标系xoy 中,直线PA 是一次函数y x n =+的图像,与x 轴、y 轴分别交于点A 、Q. 直线PB 是一次函数2y x m =-+的图像,与x 轴交于点B.若AB=2,四边形OBPQ 的面 积等于56,则m nm n+-的值为( ). A 、1 B 、 2 C 、 3 D 、 45、已知10个彼此不相等的正整数1210,,,a a a 满足条件215a a a =+,326a a a =+,437a a a =+,658a a a =+,769a a a =+,9810a a a =+,则4a 的最小值是( ). A 、19 B 、20 C 、21 D 、22二、填空题(每小题7分,满分35分):6、若1111110111219a =++++,则a 的整数部分为 .7、若关于x 的不等式()250a b x a b -+->的解集为107x <,则关于x 的不等式ax b >的解集为 .8、如图,一钢球从入口处自上而下沿通道自由落下,在每个岔口处向两侧滑落是等可能的,则钢球落入出口乙的概率为 .9.如图,在矩形ABCD 中,E 、F 分别是AD 、BC 的中点,AC 与EF 交于点O ,点M 在线段AO 上,ME 、CD 的延长线相交于点N.若∠MFB= 57︒,则∠FNC 的大小等于 . 10.在一张正方形纸片的内部给出了2013个点,连同正方形的4个顶点共有2017个点,按下列规则将这张纸片剪成一些三角形:①每个三角形的顶点都在给出的2017个点中;②每个三角形内部不再有这2017个点中的点.那么,最多可以剪出的三角形的个数是 .三、解答题(每小题20分,满分80分):11. 已知关于x 的函数()2122y k x kx k =--++的图像与x 轴有交点. ⑴求k 的取值范围;⑵若12,x x 是函数图像与x 轴两个不同交点的横坐标,且满足()212121224k x kx k x x -+++=. ①求k 的值;②请结合图像,确定当2k x k ≤≤+时,函数y 的最大值和最小值.出口丁出口丙出口乙出口甲入口MFO E N DCBA12.已知,,a b c 均为正整数,其中c 不是完全平方数,且24a b -== 求a b c ++的值.13. 如图,四边形ABCD内接于⊙O,E、F分别是BC、AD的中点,AC⊥BD,垂足为H.求证:四边形HFOE 是平行四边形.14. 如图,已知D 为锐角⊿ABC 内部的一个点,使得90ADB ACB ∠=∠+︒,且AC BD AD BC ⋅=⋅. ⑴求AB CDAC BD⋅⋅的值.⑵求证:⊿ACD 的外接圆和⊿BCD 的外接圆在C 点切线互相垂直.HO FE DCBADBAC。
2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a cx x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB,(第3题)垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C )DE (D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF . 因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967 (C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则(第3题答题)(第4题答题)(第4题)()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.设a =b 是2a 的小数部分,则3(2)b +的值为 .【答案】9【解答】由于2123a a <<<<,故222b a =-=-,因此33(2)9b +==.7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解;(第7题答题)(第7题)若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2013全国数学联赛初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ,,则222abbc ca abc的值为().(A )12(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0abc a b c a b c ,故2()0ab c .于是2221()2abbccaabc ,所以22212ab bc ca abc.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x,221x为两个实根的是().(A )2222(2)0c x b ac x a (B )2222(2)0c xbac x a(C )2222(2)0c xbac xa(D )2222(2)0c xbac xa【答案】B 【解答】由于20axbx c 是关于x 的一元二次方程,则0a.因为12b x x a,12c x x a,且120x x ,所以0c ,且221212222221212()2112x x x x ba c xxx xc ,22221211a x x c,于是根据方程根与系数的关系,以211x,221x为两个实根的一元二次方程是222220bac axxcc,即2222(2)0c xbac x a.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为().(A )OD(B )OE(第3题)(C )DE (D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2ADBD是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2ODOE OC,·DC DO DEOC都是有理数,而AC =·AD AB 不一定是有理数.4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF ,DCFE 是平行四边形,则图中阴影部分的面积为().(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE//CF ,且EF//DC .连接CE ,因为DE//CF ,即DE//BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF//CD ,即EF//AC ,所以S △ACE = S △ACF .因为4BCCF ,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:32233333451160x y x yxyx yxy ,且x y zx yz ,则2013201232的值为().(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ,则20132012433m 32323339274593316460mm m m m m ,于是2013201232923223333923929245546310360967.(第3题答题)(第4题答题)(第4题)二、填空题6.设33a,b 是2a 的小数部分,则3(2)b 的值为.【答案】9【解答】由于2123aa,故32292b a,因此333(2)(9)9b .7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是.【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEFBFEBCF AFDAFDCDFS SSBF S S S FDS ,354AFDAFDCDFBCF AEFAEFBEFSSSCF S SSFES,解得10813AEFS ,9613AFDS.所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220a b c ,2380ab c,则abc 的最大值为.【答案】2013【解答】由已知2220a bc ,2380abc 消去c ,并整理得228666baa .由a 为正整数及26aa ≤66,可得1≤a ≤3.若1a ,则2859b,无正整数解;若2a ,则2840b ,无正整数解;若3a,则289b,于是可解得11b ,5b .(i )若11b ,则61c ,从而可得311612013abc ;(ii )若5b,则13c,从而可得3513195abc.综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20xcx d 的两根为a ,b ,一元二次方程20xax b 的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为.【答案】(1212),,,,(00),,,t t (t 为任意实数)【解答】由韦达定理得,,,.a b c ab d c d a cd b 由上式,可知b a cd .若0b d ,则1d a b,1b cd,进而2bdac.若0bd,则ca ,有()(00),,,,,,abcd t t (t 为任意实数).经检验,数组(1212),,,与(00),,,t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,x y x y 所以201371(5032)44yy xy ,于是14y是整数.又20134()343503x y y y ,所以204y ,故y 的最小值为207,此时141x.三、解答题11.如图,抛物线y23axbx,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113yx 与y 轴交于点D .求∠DBC ∠CBE .【解答】将0x分别代入y113x,23y axbx 知,D(0,1),C(0,3),所以B(3,0),A(1,0).直线y 113x 过点B .将点C(0,3)的坐标代入y(1)(3)a x x,得1a.…………5分抛物线223yxx的顶点为E (1,4).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE.…………10分因此tan CBE =CE CB=13.又tan ∠DBO=13OD OB,则∠DBO =CBE .…………15分所以,45DBCCBEDBCDBOOBC.…………20分(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC 所有可能的度数.【解答】分三种情况讨论.(i )若△ABC 为锐角三角形.因为1802BHC A BOC A ,,所以由BHCBOC ,可得1802AA ,于是60A.…………5分(ii )若△ABC 为钝角三角形.当90A时,因为1802180BHC A BOCA ,,所以由180BHCBOC,可得3180180A,于是120A。
2013年天津市初中毕业生学业考试试卷数学第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共10题,共30分。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-3)+(-9)的结果等于(A)12 (B)-12 (C)6 (D)-6(2)tan60︒的值等于(A)1 (B)2(C)3(D)2(3)下列标志中,可以看作是中心对称图形的是(A)(B)(C)(D)(4)中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8 210 000m2.将8210 000用科学记数法表示应为(A)4⨯(D)70.82110⨯8.2110⨯(C)6⨯(B)58211082.110(5)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15.由此可知(A)(1)班比(2)班的成绩稳定(B)(2)班比(1)班的成绩稳定(C)两个班的成绩一样稳定(D)无法确定哪班的成绩更稳定(6)右图是一个由3个相同的正方体组成的立体图形,它的三视图是(A)(B)(C)(D)(7)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(A)矩形(B)菱形(C)正方形(D)梯形(8)正六边形的边心距与边长之比为(A3(B:2(C)1:2(D2(9)若222112648xx yx y x y=-=---,,则的值等于(A)117-(B)117(C)116(D)115(10)如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;第(6)题第(7)题FB②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速 向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升;③矩形ABCD 中,AB =4,BC =3,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y =S △ABP ;当点P 与点A 重合时,y =0.其中,符合图中所示函数关系的问题情境的个数为(A ) 0 (B ) 1 (C ) 2 (D )3第Ⅱ卷 注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。
C(第2题图)2013年全国初中数学竞赛九年级预赛模拟试题(本卷满分120分,考试时间120 分钟)一、选择题(本大题共6个小题,每小题5分,共30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分.1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )A .41B .31 C .21D .12.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( ) A .38 B .39 C .40 D . 41 3.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则y x的值等于( )A .95 B .59 C .52011- D .2011- 4.已知直角三角形的一直角边长是4为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴 影图形)的面积之和是10,那么以下四个整数中,最接近图 中两个弓形(带点的阴影图形)面积之和的是( ) A .6 B . 7 C .8 D .9 5.设a ,b ,c 是△ABC 的三边长,二次函数2)2(2a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形 6.计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取 出按照“先进后出”的原则,如图,堆栈(1)中的2个连续存储单元 已依次存入数据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3个 连续存储单元已依次存入数据e ,d ,c ,取出数据的顺序是c ,d , e ,现在要从这两个堆栈中取出5个数据(每次取出1个数据),则不 同顺序的取法的种数有( )(1) (2)(第5题图)A .5种B .6种C .10种D .12种 二、填空题(本大题共6个小题,每小题5分,共30分)7.若04122=---x x ,则满足该方程的所有根之和为 .8.(人教版考生做)如图A中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切,若AB =4,BE =5,则DE 的长为 . 8.(北师大版考生做)如图B ,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF= . 9.已知012=--a a ,且3222322324-=-++-axa a xa a ,则=x . 10.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有 件.11.如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成o 45,∠A =o 60,CD =4m ,BC =)2264(-m ,则电线杆AB 的长为 m .12.实数x 与y ,使得y x +,y x -,xy ,yx四个数中的三个有相同的数值,则所有具有这样性质的数对),(y x 为 .三、解答题(本大题共3个小题,每小题20分,共60分) 13.(本题满分20分)已知:))(())(())((a x c x c x b x b x a x ++++++++是完全平方式. 求证: c b a ==.(第11题图)ABCD(第8题图A )GFECBA(第8题图B )D14.(本题满分20分)如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M ,N 以每秒1个单位的速度分别从点A ,C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP . (1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ; (2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值?(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的31?若存在,求出点T(第14题图)15.(本题满分20分)对于给定的抛物线b ax x y ++=2,使实数p ,q 适合于)(2q b ap +=. (1)证明:抛物线q px x y ++=2通过定点;(2)证明:下列两个二次方程,02=++b ax x 与02=++q px x 中至少有一个方程有实数根.参考答案一、选择题(每小题5分,共30分)1—6 C D B A D C 二、填空题(每小题5分,共30分): 7. 62-; 8. A :516;B :12 ; 9. 4; 10. 12; 11. 26; 12.)1,21(-)1,21(--.三、解答题:(每题20分,共60分)13. 证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a +b +c )x +ab +ac +bc ∵它是完全平方式, ∴△=0.即4(a +b +c )2-12(ab +ac +bc )=0. ∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca =0,(a -b )2+(b -c )2+(c -a )2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得c b a ==. 14. 解:(1)(6,4);(2,3t t ).(其中写对B 点得1分) ···· ………………………………3分 (2)∵S △OMP =12×OM ×23t ,∴S =12×(6 -t )×23t =213t -+2t =21(3)33t --+(0 < t <6).∴当3t =时,S 有最大值.…………………………………………8分(3)存在.由(2)得:当S 有最大值时,点M 、N 的坐标分别为:M (3,0),N (3,4), 则直线ON 的函数关系式为:43y x =.设点T 的坐标为(0,b ),则直线MT 的函数关系式为:3b y x b =-+,解方程组433y x b y x b⎧=⎪⎪⎨⎪=-+⎪⎩得3444b x b b y b ⎧=⎪⎪+⎨⎪=⎪+⎩ ∴直线ON 与MT 的交点R 的坐标为34(,)44b bb b++. ∵S △OCN =12×4×3=6,∴S △ORT =13S △OCN =2. ························ …………………10分 一、当点T 在点O 、C 之间时,分割出的三角形是△OR 1T 1,二、如图,作R 1D 1⊥y 轴,D 1为垂足,则S △OR 1T 1=12•RD 1•OT =12•34b b+•b =2.∴234160b b --=, b.∴b 1 b 2 舍去)此时点T 1的坐标为(0). ··········· ……………………………………………15分② 当点T 在OC 的延长线上时,分割出的三角形是△R 2NE ,如图,设MT 交CN 于点E , ∵点E 的纵坐标为4,∴由①得点E 的横坐标为312b b-, 作R 2D 2⊥CN 交CN 于点D 2,则 S △R 2NE =12•EN •D 2 =12•312(3)b b --•4(4)4b b -+96(4)b b =+=2.∴24480b b +-=,b2=±.∴b 1=2,b 2=2-(不合题意,舍去).∴此时点T 2的坐标为(0,2). 综上所述,在y 轴上存在点T 1(0),T 2(0,2)符合条件.…20分 15. 证明:(1)∵)(2q b ap +=∴b ap q -=2代入抛物线q px x y ++=2中,得0)2(2=++-+-ax p b x y得⎪⎩⎪⎨⎧=+=-+-0202a x b x y 解得:⎪⎪⎩⎪⎪⎨⎧-=-=4422ba y a x , 故抛物线q px x y ++=2通过定点)44,2(2b a a --……………………10分 (2)∵b ap q 22-=,∴)2(2224222b ap p q p q p --=⋅-=-=b ap p 422+-=b a a ap p 42222+-+- =)4()(22b a a p ---∴0)()4()4(222≥-=-+-a p b a q p ∴q p 42-与b a 42-中至少有一个非负.∴02=++b ax x 与02=++q px x 中至少有一个方程有实数根.…………20分(备用图)。
2013年全国初中数学联赛(初二组)初赛试卷一、选择题(本题满分42分,每小题7分) 1、()︒---+1|3|4π的值是( )A 、4B 、5C 、8D 、9 2、若()()222-+=+-bx x a x x ,则=+b a ( )A 、1-B 、0C 、1D 、23、如图,已知在ABC ∆中,BO 平分ABC ∠,CO 平分ACB ∠,且AB OM //,AC ON //,若6=CB ,则OMN ∆的周长是( )A 、3B 、6C 、9D 、12 4、不等式组⎪⎩⎪⎨⎧++≥+23131221x x x x 的解是( ) A 、16≤-x B 、16 x - C 、16 x ≤- D 、16≤≤-x5、非负整数x ,y 满足1622=-y x ,则y 的全部可取值之和是( ) A 、9 B 、5 C 、4 D 、36、如图,已知正方形ABCD 的边长为4,M 点为CD 边上的中点,若M 点是A 点关于线段EF 的对称点,则EDAE等于( ) A 、35 B 、53 C 、2 D 、21二、填空题(本题满分28分,每小题7分)1、已知0|3|22=++-+-y x x ,则_________22=+y x .2、已知31=+x x ,则_____________132=++x x x. 3、设⎩⎨⎧=++=++36542332z y x z y x ,则___________23=+-z y x .4、如图,在ABC ∆中,BC AC =,且︒=∠90ACB ,点D 是AC 上一点,BD AE ⊥,交BD 的延长线于点E ,且BD AE 21=,则_________=∠ABD . 三、(本大题满分20分)先化简后,再求值:244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中12-=a .MNO ACBFE M GDA CB2013年全国初中数学联赛(初二组)初赛试卷参考答案及评分标准一、选择题(本大题满分42分,每小题7分) 1、A 2、B 3、B 4、C 5、D 6、A 二、填空题(本大题满分28分,每小题7分) 1、13 2、1013、104、︒5.22 三、(本大题满分20分)解原式()()2421222+-÷⎥⎦⎤⎢⎣⎡+--+-=a a a a a a a (5分) ()4224222-+⋅+--=a a a a a a ()21+=a a (10分)()()1212121=+--=(5分)四、(本大题满分25分) 解:∵822=-=OC OB CB∴B 点坐标(8,6) (5分) 又∵A (10,0)∴AB 的中点坐标为(9,3)∴OD 的表达式为:x y 31= (10分)∵A (10,0),C (0,6)∴AC 的表达式为:653+-=x y (15分)由⎪⎪⎩⎪⎪⎨⎧+-==65331x y x y ,解得:⎪⎪⎩⎪⎪⎨⎧==715745y x (20分) 故点D 的坐标为(745,715) (25分) 五、(本大题满分25分)证明:连结AC ,取AC 的中点K ,连结EK ,FK (5分) ∵ED AE =,KC AK = ∴DC EK //,DC EK 21=(10分)同理AB FK //,AB FK 21= (15分) ∴EK DC AB FK ===2121 ∴EFK FEK ∠=∠ (20分) ∵DC EK // ∴FEK CMF ∠=∠ ∵AB FK // ∴EFK BNF ∠=∠∴CMF BNF ∠=∠ (25分) 四、(本大题满分25分)如图,已知直角梯形OABC 的A 点在x 轴上,C 点在y 轴上,6=OC ,10==OB OA ,AB PQ //交AC 于D 点,且︒=∠90ODQ ,求D 点的坐标。
2013天津市初中数学竞赛赛试题所属班级 姓名 一、选择题(每小题7分,满分35分):1、设实数,,a b c 满足2346c b a a +=-+,244c b a a -=-+,则,,a b c 的大小关系是( ). A 、a b c <≤ B 、b a c <≤ C 、b c a <≤ D 、c a b <≤2、设O 为锐角⊿ABC 的外心,连结AO 、BO 、CO ,并分别延长,交对边于点D 、E 、F ,若⊿ABC 的外接圆半径为6,111AD BE CF++的值是( ). A 、1 B 、12 C 、13 D 、163、已知20122011a x =+,20122012b x =+,20122013c x =+,那么222a b c ab bc ca ++---的值为( ). A 、3 B 、2 C 、1 D 、04、如图,在平面直角坐标系xoy 中,直线PA 是一次函数y x n =+的图像,与x 轴、y 轴分别交于点A 、Q. 直线PB 是一次函数2y x m =-+的图像,与x 轴交于点B.若AB=2,四边形OBPQ 的面积等于56,则m nm n+-的值为( ).A 、1B 、 2C 、 3D 、 45、已知10个彼此不相等的正整数1210,,,a a a 满足条件215a a a =+,326a a a =+,437a a a =+,658a a a =+,769a a a =+,9810a a a =+,则4a 的最小值是( ). A 、19 B 、20 C 、21 D 、22二、填空题(每小题7分,满分35分):6、若110111219a =++++ ,则a 的整数部分为 .7、若关于x 的不等式()250a b x a b -+->的解集为107x <,则关于x 的不等式ax b >的解集为 .8、如图,一钢球从入口处自上而下沿通道自由落下,在每个岔口处向两侧滑落是等可能的,则钢球落入出口乙的概率为 .9.如图,在矩形ABCD 中,E 、F 分别是AD 、BC 的中点,AC 与EF 交于点O ,点M 在线段AO 上,ME 、CD 的延长线相交于点N.若∠MFB= 57︒,则∠FNC 的大小等于 .10.在一张正方形纸片的内部给出了2013个点,连同正方形的4个顶点共有2017个点,按下列规则将这张纸片剪成一些三角形:①每个三角形的顶点都在给出的2017个点中;②每个三角形内部不再有这2017个点中的点.那么,最多可以剪出的三角形的个数是 .三、解答题(每小题20分,满分80分):11. 已知关于x 的函数()2122y k x kx k =--++的图像与x 轴有交点. ⑴求k 的取值范围;⑵若12,x x 是函数图像与x 轴两个不同交点的横坐标,且满足()212121224k x kx k x x -+++=. ①求k 的值;②请结合图像,确定当2k x k ≤≤+时,函数y 的最大值和最小值.出口丁出口丙出口乙出口甲入口M F OEND C BA12.已知,,a b c 均为正整数,其中c 不是完全平方数,且24a b -== 求a b c ++的值.13. 如图,四边形ABCD内接于⊙O,E、F分别是BC、AD的中点,AC⊥BD,垂足为H.求证:四边形HFOE是平行四边形.14. 如图,已知D为锐角⊿ABC内部的一个点,使得90ADB ACB∠=∠+︒,且AC BD AD BC⋅=⋅.⑴求AB CDAC BD⋅⋅的值.⑵求证:⊿ACD的外接圆和⊿BCD的外接圆在C点切线互相垂直.H OFEDC BADAC。
天津市 2013 年中考数学试卷一、选择题(共 10 小题,每小题 3 分,满分 30 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.( 3 分)(2013?天津)计算(﹣ 3) +(﹣ 9)的结果等于()A . 12B . ﹣ 12C . 6D . ﹣ 62.( 3 分)(2013?天津) tan60 °的值等于()A . 1B .C .D . 23.(3 分)(2013?天津)下列标志中,可以看作是中心对称图形的是()A .B .C .D .4.( 3 分)(2013?天津) 中国园林网 4 月 22 日消息: 为建设生态滨海, 2013 年天津滨海新区将完成城市绿化面积共8210 2)000m ,将 8210 000 用科学记数法表示应为(A . 821×10 25C . 67B . × 10 × 10 D . × 105.( 3 分)(2013?天津)七年级( 1)班与( 2)班各选出 20 名学生进行英文打字比赛,通过对参赛学生每分钟输入的单 词个数进行统计,两班成绩的平均数相同, ( 1)班成绩的方差为, ( 2)班成绩的方差为 15,由此可知()A . ( 1)班比( 2)班的成绩稳定B . ( 2)班比( 1)班的成绩稳定C . 两个班的成绩一样稳定D . 无法确定哪班的成绩更稳定6.(3 分)(2013?天津)如图是由 3 个相同的正方体组成的一个立体图形,它的三视图是()A .B .C .D .7.(3 分)(2013?天津)如图,在△ ABC 中, AC=BC ,点 D 、E 分别是边 AB 、 AC 的中点,将△ ADE 绕点 E 旋转 180°得 △CFE ,则四边形 ADCF 一定是( )A . 矩形B . 菱形C . 正方形D . 梯形考点 : 旋转的性质;矩形的判定.分析: 根据旋转的性质可得 AE=CE , DE=EF ,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF 是平行四边形,然后利用等腰三角形三线合一的性质求出∠ ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答: 解:∵△ ADE 绕点 E 旋转 180°得△ CFE ,∴ A E=CE , DE=EF ,∴四边形 ADCF 是平行四边形, ∵AC=BC ,点 D 是边 AB 的中点, ∴∠ ADC=90°,∴四边形 ADCF 矩形. 故选 A .8.( 3 分)(2013?天津)正六边形的边心距与边长之比为( )A . : 3B . : 2C . 1: 2D . : 29.( 3 分)(2013?天津)若 x=﹣ 1,y=2,则﹣的值等于()A .B .C .D .10.(3 分)(2013?天津)如图,是一对变量满足的函数关系的图象,有下列3 个不同的问题情境:①小明骑车以 400 米 / 分的速度匀速骑了 5 分,在原地休息了 4 分,然后以500 米 / 分的速度匀速骑回出发地,设时间为x 分,离出发地的距离为y 千米;②有一个容积为 6 升的开口空桶,小亮以升 / 分的速度匀速向这个空桶注水,注5 分后停止,等 4 分后,再以2 升 / 分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升;③矩形 ABCD 中, AB=4, BC=3,动点 P 从点 A 出发,依次沿对角线 AC 、边 CD 、边 DA 运动至点 A 停止,设点 P 的运动路 程为 x ,当点 P 与点 A 不重合时, y=S △ABP ;当点 P 与点 A 重合时, y=0.其中,符合图中所示函数关系的问题情境的个数为( )A . 0B . 1C . 2D . 3考点 : 函数的图象.分析:①小明骑车以 400 米 / 分的速度匀速骑了 5 分,所走路程为 2000 米,与图象不符合;②小亮以升 / 分的速度匀速向这个空桶注水,注 5 分后停止,注水量为× 5=6升,等 4 分钟,这段时间水量不变;再以 2 升 / 分的速度匀速倒空桶中的水,则3分钟后水量为 0,符合函数图象;③当点 P 在 AC上运动时, S△ABP的面积一直增加,当点P 运动到点 C 时, S△ABP=6,这段时间为 5,;当点 P 在 CD 上运动时, S△ABP不变,这段时间为 4,;当点 P 在 DA上运动时, S△ABP减小,这段时间为 3,符合函数图象;解答:解:①小明骑车以 400米/ 分的速度匀速骑了 5 分,所走路程为 2000 米,与图象不符合;②小亮以升 / 分的速度匀速向这个空桶注水,注 5 分后停止,注水量为× 5=6升,等 4 分钟,这段时间水量不变;再以 2 升 / 分的速度匀速倒空桶中的水,则3分钟后水量为 0,符合函数图象;③如图所示:当点 P 在 AC上运动时, S△ABP的面积一直增加,当点P 运动到点 C 时, S△ABP=6,这段时间为 5,;当点 P 在 CD上运动时, S△ABP不变,这段时间为4,;当点 P在 DA上运动时, S△ABP减小,这段时间为 3,符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选 C.二、填空题(共8 小题,每小题 3 分,满分 24分)11.(3 分)(2013?天津)计算a?a6的结果等于a7.12.(3 分)(2013?天津)一元二次方程x(x﹣ 6) =0 的两个实数根中较大的根是 6 .13.( 3 分)(2013?天津)若一次函数 y=kx+1( k 为常数, k≠0)的图象经过第一、二、三象限,则的取值范围是k> 0 .14.(3 分)(2013?天津)如图,已知∠ C=∠D,∠ ABC=∠BAD,AC与 BD相交于点 O,请写出图中一组相等的线段AC=BD (答案不唯一).考点:全等三角形的判定与性质.专题:开放型.分析:利用“角角边”证明△ ABC 和△ BAD全等,再根据全等三角形对应边相等解答即可.解答:解:∵在△ ABC 和△ BAD中,,∴△ ABC≌△ BAD( AAS),∴AC=BD, AD=BC.故答案为: AC=BD(答案不唯一).A、 B,若∠ P=70°,则∠C的大小为55(度).15.(3 分)(2013?天津)如图, PA、 PB分别切⊙O 于点16.( 3 分)(2013?天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、 3、 4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于 4 的概率是.17.(3 分)(2013?天津)如图,在边长为9 的正三角形ABC中, BD=3,∠ ADE=60°,则AE 的长为7.考点:相似三角形的判定与性质;等边三角形的性质.分析:先根据边长为9,BD=3,求出 CD的长度,然后根据∠ ADE=60°和等边三角形的性质,证明△ABD∽△ DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.解答:解:∵△ ABC 是等边三角形,∴∠ B=∠C=60°, AB=BC;∴CD=BC﹣ BD=9﹣ 3=6;∴∠ BAD+∠ADB=120°∵∠ ADE=60°,∴∠ ADB+∠EDC=120°,∴∠ DAB=∠EDC,又∵∠ B=∠C=60°,∴△ ABD∽△ DCE,则=,即=,解得: CE=2,故 AE=AC﹣ CE=9﹣ 2=7.故答案为: 7.18.(3 分)(2013?天津)如图,将△ ABC 放在每个小正方形的边长为 1 的网格中,点 A、 B、 C 均落在格点上.(Ⅰ)△ ABC 的面积等于 6 ;(Ⅱ)若四边形 DEFG是△ ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点 P,连接 PC,过点 A 画 PC的平行线,与BC交于点 Q,连接 PQ与 AC 相交得点 D,过点 D 画 CB的平行线,与AB 相交得点 E,分别过点 D、E 画 PC的平行线,与CB相交得点 G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ ABC 以 AB 为底,高为 3 个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接 PC,过点 A 画 PC的平行线,与 BC交于点Q,连接 PQ与 AC相交得点 D,过点 D 画 CB的平行线,与AB相交得点 E,分别过点 D、 E画 PC的平行线,与 CB 相交得点 G, F,则四边形 DEFG即为所求解答:解:(Ⅰ)△ ABC 的面积为:× 4×3=6;(Ⅱ)如图,取格点P,连接 PC,过点 A 画 PC的平行线,与 BC交于点 Q,连接 PQ与 AC相交得点 D,过点 D 画CB的平行线,与AB相交得点 E,分别过点 D、 E 画 PC的平行线,与 CB相交得点 G, F,则四边形 DEFG即为所求.故答案为:(Ⅰ) 6;(Ⅱ)取格点 P,连接 PC,过点 A 画 PC的平行线,与 BC交于点 Q,连接 PQ与 AC相交得点D,过点 D 画 CB的平行线,与 AB相交得点 E,分别过点 D、 E 画 PC的平行线,与 CB相交得点 G, F,则四边形DEFG 即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.三、解答题(共8 小题,满分66 分)19.(6 分)(2013?天津)解不等式组.20.(8 分)(2013?天津)已知反比例函数y= ( k 为常数, k≠0)的图象经过点A(2, 3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(﹣ 1, 6), C( 3, 2)是否在这个函数的图象上,并说明理由;(Ⅲ)当﹣ 3< x<﹣ 1 时,求 y 的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征.分析:( 1)把点 A 的坐标代入已知函数解析式,通过方程即可求得k 的值.6 时,即该点在函数图象上;(Ⅱ)只要把点B、 C 的坐标分别代入函数解析式,横纵坐标坐标之积等于(Ⅲ)根据反比例函数图象的增减性解答问题.解答:解:(Ⅰ)∵反比例函数y=( k 为常数, k≠0)的图象经过点A( 2, 3),∴把点 A 的坐标代入解析式,得3=,解得, k=6,∴这个函数的解析式为:y=;(Ⅱ)∵反比例函数解析式y= ,∴6=xy.分别把点B、 C的坐标代入,得(﹣ 1)× 6=﹣6≠6,则点 B 不在该函数图象上.3×2=6,则点C中该函数图象上;(Ⅲ)∵当x=﹣ 3 时, y=﹣ 2,当 x=﹣ 1 时, y=﹣ 6,又∵ k> 0,∴当 x< 0 时, y 随 x 的增大而减小,∴当﹣ 3< x<﹣ 1 时,﹣ 6< y<﹣ 2.21.(8 分)(2013?天津)四川雅安发生地震后,某校学生会向全校1900 名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10 元的学生人数.解答:解:( 1)根据条形图4+16+12+10+8=50(人),m=100﹣ 20﹣ 24﹣ 16﹣ 8=32;(2)∵ =(5×4+10×16+15×12+20×10+30×8) =16,∴这组数据的平均数为: 16,∵在这组样本数据中,10 出现次数最多为16 次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 15,∴这组数据的中位数为:( 15=15) =15;( 3)∵在 50 名学生中,捐款金额为10 元的学生人数比例为32%,32%,有1900×32%=608,∴由样本数据,估计该校1900 名学生中捐款金额为10 元的学生人数比例为∴该校本次活动捐款金额为10 元的学生约有608 名.故答案为: 50,32.22.(8 分)(2013?天津)已知直线I 与⊙ O, AB是⊙O的直径, AD⊥I于点 D.(Ⅰ)如图①,当直线I 与⊙O 相切于点 C 时,若∠ DAC=30°,求∠ BAC 的大小;(Ⅱ)如图②,当直线I 与⊙O 相交于点E、 F 时,若∠ DAE=18°,求∠ BAF 的大小.考点:切线的性质;圆周角定理;直线与圆的位置关系.分析:(Ⅰ)如图①,首先连接OC,根据当直线l 与⊙O 相切于点 C,AD⊥l于点 D.易证得OC∥AD,继而可求得∠B AC=∠DAC=30°;(Ⅱ)如图②,连接BF,由 AB是⊙O 的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF 的度数,又由圆的内接四边形的性质,求得∠B 的度数,继而求得答案.解答:解:(Ⅰ)如图①,连接 OC,∵直线 l 与⊙O相切于点C,∴OC⊥l ,∵AD⊥l ,∴OC∥AD,∴∠ OCA=∠DAC,∵OA=OC,∴∠ BAC=∠OCA,∴∠ BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB 是⊙O 的直径,∴∠ AFB=90°,∴∠ BAF=90° ∠ B,∴∠ AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四形ABFE是的内接四形,∴∠ AEF+∠B=180°,∴∠ B=180° 108°=72°,∴∠ BAF=90° ∠ B=180° 72°=18°.23.(8 分)(2013?天津)天塔是天津市的志性建筑之一,某校数学趣小要量天塔的高度,如,他在点A 得天塔最高点 C 的仰角 45°,再往天塔方向前至点 B 得最高点C的仰角54°, AB=112m,根据个趣小得的数据,算天塔的高度CD(tan36 °≈,果保留整数).考点:解直角三角形的用- 仰角俯角.分析:首先根据意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD AB=CD 112;在Rt△BCD 中,可得BD=CD?tan36°,即可得CD?tan36°=CD 112,而求得答案.解答:解:根据意得:∠ CAD=45°,∠ CBD=54°,AB=112m,∵在 Rt△ACD中,∠ ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD AB=CD 112( m),∵在 Rt△BCD中, tan ∠BCD=,∠ BCD=90° ∠ CBD=36°,∴tan36 °=,∴BD=CD?tan36°,∴CD?tan36°=CD 112,∴CD=≈≈ 415( m).答:天塔的高度CD: 415m.24.(8 分)(2013?天津)甲、乙两商以同价格出售同的商品,并且又各自推出不同的惠方案:在甲商累物超 100 元后,超出100 元的部分按90%收;在乙商累物超50 元后,超出50 元的部分按95%收,小在同一商累物x 元,其中 x> 100.( 1)根据意,填写下表(位:元)累物130290⋯x花在甲商127⋯在乙商126⋯( 2)当 x 取何,小在甲、乙两商的花相同( 3)当小在同一商累物超100元,在哪家商的花少解答:解:( 1)在甲商:100+( 290 100)× =271,100+(290 100)× =+10;在乙商: 50+( 290 50)× =278,50+( 290 50)× =+;( 2)根据意得出:+10=+,解得: x=150 ,∴当 x=150 ,小在甲、乙两商的花相同,(3)由 +10< +,解得: x> 150,+10> +,解得: x< 150,y B=+50( 1 95%) =+,正确;∴当小累物大于150 上没封,甲商花少;当小累物超100 元而不到 150 元,在乙商花少.25.( 10 分)(2013?天津)在平面直角坐系中,已知点A( 2, 0),点 B( 0, 4),点 E 在 OB上,且∠ OAE=∠0BA.(Ⅰ)如①,求点 E 的坐;(Ⅱ)如②,将△ AEO 沿 x 向右平移得到△ A′E′O′,接 A′B、BE′.① AA′=m,其中 0< m< 2,用含2222取得最小点 E′的坐;m的式子表示 A′B+BE′,并求出使A′B+BE′②当 A′B+BE′取得最小,求点E′的坐(直接写出果即可).解答:解:(Ⅰ)如①,∵点A( 2,0),点 B( 0, 4),∴O A=2, OB=4.∵∠ OAE=∠0BA,∠ EOA=∠AOB=90°,∴△ OAE∽△ OBA,∴=,即 =,解得, OE=1,∴点 E 的坐( 0, 1);(Ⅱ)①如②,接EE′.由知 AA′=m( 0< m< 2), A′O=2 m.在 Rt△A′BO 中,由2222222A′B=A′O+BO,得 A′B=( 2 m)+4 =m 4m+20.∵△ A′E′O′是△ AEO 沿 x 向右平移得到的,∴EE′∥ AA′,且EE′=AA′.∴∠ BEE′=90°, EE′=m.又 BE=OB OE=3,2222∴在 Rt△BE′E中, BE′ =E′E +BE=m+9,222222当 m=1, A′B +BE′可以取得最小,此,点E′的坐是(1, 1).②如②,点 A 作 AB′⊥ x,并使AB′=BE=3.易△ AB′A′≌△ EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点 B、A′、 B′在同一条直上, A′B+B′A′最小,即此A′B+BE′取得最小.易△ AB′A′∽△ OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点 E′的坐是(,1).26.( 10 分)(2013?天津)已知抛物y1=ax2 +bx+c(a≠0)的称是直 l ,点点 M.若自量 x 和函数 y1的部分如下表所示:(Ⅰ)求 y1与 x 之的函数关系式;(Ⅱ)若点T( 0,t )作垂直于 y 的直 l ′, A 直 l ′上的点,段AM的垂直平分交直l 于点 B,点B 关于直 AM的称点 P, P( x, y2).( 1)求 y2与 x 之的函数关系式;( 2)当 x 取任意数,若于同一个x,有 y1< y2恒成立,求 t 的取范.x⋯103⋯2⋯00⋯y1=ax +bx+c分析:( II )先根据( I )中 y1与 x 之间的函数关系式得出顶点M的坐标.①记直线 l 与直线 l ′交于点 C( 1,t ),当点 A′与点 C 不重合时,由已知得,AM与 BP互相垂直平分,故可得出四边形 ANMP为菱形,所以 PA∥l ,再由点 P(x, y2)可知点 A( x,t )(x≠1),所以 PM=PA=|y2﹣ t| ,过点 P 作 PQ⊥l于点 Q,则点 Q( 1, y2),故 QM=|y2﹣ 3| , PQ=AC=|x﹣ 1| ,在 Rt△PQM中,根据勾股定理即可得出y2与 x 之间的函数关系式,再由当点 A 与点 C 重合时,点 B 与点 P重合可得出 P 点坐标,故可得出 y2与 x 之间的函数关系式;②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣ 2t >0,即 t < 3 时,抛物线 y1的顶点 M( 1,3),抛物线 y2的顶点( 1,),由于 3>,所以不合题意,当抛物线y2开口方向向下时, 6﹣ 2t < 0,即 t > 3时,求出 y1﹣ y2的值;若 3t ﹣11≠0,要使 y1<y2恒成立,只要抛物线方向及且顶点(1,)在 x 轴下方,因为 3﹣t < 0,只要 3t ﹣11> 0,解得 t >,符合题意;若 3t ﹣11=0, y1﹣ y2=﹣< 0,即 t= 也符合题意.解答:解:(Ⅰ)∵抛物线经过点( 0,),∴c=.∴y1=ax2+bx+,2∵点(﹣ 1, 0)、( 3, 0)在抛物线y1 =ax +bx+上,∴,解得,211( II )∵y1=﹣ x2+x+,∴y=﹣( x﹣ 1)2+3,1∴直线 l 为 x=1,顶点 M( 1, 3).①由题意得, t ≠3,如图,记直线l 与直线 l ′交于点C( 1, t ),当点 A′与点 C不重合时,∵由已知得,AM与 BP 互相垂直平分,∴四边形ANMP为菱形,∴PA∥l ,又∵点 P( x, y2),∴点 A( x, t )(x≠1),∴P M=PA=|y2﹣ t| ,过点 P 作 PQ⊥l于点 Q,则点 Q( 1, y2),∴Q M=|y2﹣ 3| , PQ=AC=|x﹣ 1| ,在Rt△PQM中,2222222+,∵PM=QM+PQ,即( y2﹣ t )=( y2﹣ 3)+(x﹣ 1),整理得, y2=( x﹣ 1)即y2=x3﹣ x+,∵当点 A 与点 C重合时,点 B 与点 P 重合,∴P( 1,),∴P点坐标也满足上式,∴y与 x 之间的函数关系式为y =x 3﹣ x+(t ≠3);22②根据题意,借助函数图象:6﹣ 2t > 0,即t < 3 时,抛物线y1的顶点M( 1,3),抛物线y2的顶点(1,),当抛物线y2 开口方向向上时,∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t < 0,即 t > 3 时,22y1﹣ y2=﹣( x﹣ 1) +3﹣ [ ( x﹣ 1) +]2=( x﹣1) +,若 3t ﹣11≠0,要使y1< y2恒成立,只要抛物线y=( x﹣ 1) 2+开口方向向下,且顶点(1,)在 x 轴下方,∵3﹣ t < 0,只要 3t ﹣ 11> 0,解得 t >,符合题意;若 3t ﹣ 11=0, y1﹣ y2=﹣< 0,即 t= 也符合题意.综上,可以使 y1< y2恒成立的 t 的取值范围是 t ≥.。
2013年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共10题,共30分。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-3)+(-9)的结果等于(A)12 (B)-12 (C)6 (D)-6(2)tan60︒的值等于(A)1 (B(C(D)2(3)下列标志中,可以看作是中心对称图形的是(A)(B)(C)(D)(4)中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8 210 000m2.将8210 000用科学记数法表示应为(A)4⨯(D)70.821108.2110⨯⨯(B)5⨯(C)68211082.110(5)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15.由此可知(A)(1)班比(2)班的成绩稳定(B)(2)班比(1)班的成绩稳定(C)两个班的成绩一样稳定(D)无法确定哪班的成绩更稳定(6)右图是一个由3个相同的正方体组成的立体图形,它的三视图是(A)(B)(C)(D)(7)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(A)矩形(B)菱形(C)正方形(D)梯形(8)正六边形的边心距与边长之比为(A:3(B2(C)1:2(D2(9)若222112648xx yx y x y=-=---,,则的值等于(A)117-(B)117(C)116(D)115(10)如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;第(6)题第(7)题B②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速 向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升;③矩形ABCD 中,AB =4,BC =3,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y =S △ABP ;当点P 与点A 重合时,y =0.其中,符合图中所示函数关系的问题情境的个数为(A ) 0 (B ) 1 (C ) 2 (D )32013年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。
天津市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2013•天津)计算(﹣3)+(﹣9)的结果等于()A.12B.﹣12C.6D.﹣62.(3分)(2013•天津)tan60°的值等于()A.1B.C.D.23.(3分)(2013•天津)下列标志中,可以看作是中心对称图形的是()A.B.C.D.4.(3分)(2013•天津)中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8210 000m2,将8210 000用科学记数法表示应为()A.821×102B.×105C.×106D.×1075.(3分)(2013•天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为,(2)班成绩的方差为15,由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定6.(3分)(2013•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是()A.B.C.D.7.(3分)(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形考点:旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选A.8.(3分)(2013•天津)正六边形的边心距与边长之比为()A.:3B.:2C.1:2D.:29.(3分)(2013•天津)若x=﹣1,y=2,则﹣的值等于()A.B.C.D.10.(3分)(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3考点:函数的图象.分析:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以升/分的速度匀速向这个空桶注水,注5分后停止,注水量为×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;解答:解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以升/分的速度匀速向这个空桶注水,注5分后停止,注水量为×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选C.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2013•天津)计算a•a6的结果等于a7.12.(3分)(2013•天津)一元二次方程x(x﹣6)=0的两个实数根中较大的根是 6 .13.(3分)(2013•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是k>0 .14.(3分)(2013•天津)如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段AC=BD (答案不唯一).考点:全等三角形的判定与性质.专题:开放型.分析:利用“角角边”证明△ABC和△BAD全等,再根据全等三角形对应边相等解答即可.解答:解:∵在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),∴AC=BD,AD=BC.故答案为:AC=BD(答案不唯一).15.(3分)(2013•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55 (度).16.(3分)(2013•天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.17.(3分)(2013•天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为7 .考点:相似三角形的判定与性质;等边三角形的性质.分析:先根据边长为9,BD=3,求出CD的长度,然后根据∠ADE=60°和等边三角形的性质,证明△ABD∽△DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.解答:解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=9﹣3=6;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE,则=,即=,解得:CE=2,故AE=AC﹣CE=9﹣2=7.故答案为:7.18.(3分)(2013•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于 6 ;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC 相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB 相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.三、解答题(共8小题,满分66分)19.(6分)(2013•天津)解不等式组.20.(8分)(2013•天津)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征.分析:(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值.(Ⅱ)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于6时,即该点在函数图象上;(Ⅲ)根据反比例函数图象的增减性解答问题.解答:解:(Ⅰ)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得3=,解得,k=6,∴这个函数的解析式为:y=;(Ⅱ)∵反比例函数解析式y=,∴6=xy.分别把点B、C的坐标代入,得(﹣1)×6=﹣6≠6,则点B不在该函数图象上.3×2=6,则点C中该函数图象上;(Ⅲ)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,又∵k>0,∴当x<0时,y随x的增大而减小,∴当﹣3<x<﹣1时,﹣6<y<﹣2.21.(8分)(2013•天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50 ,图①中m的值是32 ;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解答:解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15=15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.22.(8分)(2013•天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.考点:切线的性质;圆周角定理;直线与圆的位置关系.分析:(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.解答:解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=180°﹣72°=18°.23.(8分)(2013•天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A 处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈,结果保留整数).考点:解直角三角形的应用-仰角俯角问题.分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD﹣112;在Rt△BCD 中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.解答:解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD为:415m.24.(8分)(2013•天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)130290 (x)累计购物实际花费在甲商场127…在乙商场126…(2)当x取何值时,小红在甲、乙两商场的实际花费相同(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少解答:解:(1)在甲商场:100+(290﹣100)×=271,100+(290﹣100)×=+10;在乙商场:50+(290﹣50)×=278,50+(290﹣50)×=+;(2)根据题意得出:+10=+,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由+10<+,解得:x>150,+10>+,解得:x<150,y B=+50(1﹣95%)=+,正确;∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.25.(10分)(2013•天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).解答:解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E′的坐标是(,1).26.(10分)(2013•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.x…﹣103…y1=ax2+bx+c…00…分析:(II)先根据(I)中y与x之间的函数关系式得出顶点M的坐标.1①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点P 作PQ⊥l于点Q,则点Q(1,y2),故QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P点坐标,故可得出y2与x之间的函数关系式;②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,求出y1﹣y2的值;若3t﹣11≠0,要使y1<y2恒成立,只要抛物线方向及且顶点(1,)在x轴下方,因为3﹣t <0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.解答:解:(Ⅰ)∵抛物线经过点(0,),∴c=.∴y1=ax2+bx+,∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(II)∵y1=﹣x2+x+,∴y1=﹣(x﹣1)2+3,∴直线l为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ANMP为菱形,∴PA∥l,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q(1,y2),∴QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣1)2+,即y2=x3﹣x+,∵当点A与点C重合时,点B与点P重合,∴P(1,),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=x3﹣x+(t≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]=(x﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t≥.。
2013年天津市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(-3)+(-9)的结果等于()A.12B.-12C.6D.-62.tan60°的值等于()A.1B.C.D.23.下列标志中,可以看作是中心对称图形的是()4.中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8210000m2.将8210000用科学记数法表示应为()A.821×104B.82.1×105C.8.21×106D.0.821×1075.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15.由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定6.下图是由3个相同的正方体组成的一个立体图形,它的三视图是()7.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形8.正六边形的边心距与边长之比为()A.∶3B.∶2C.1∶2D.∶29.若x=-1,y=2,则---的值等于()A.-B.C.D.10.如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3第Ⅱ卷(非选择题,共90分)二、填空题(本大题共8小题,每小题3分,共24分)11.计算a·a6的结果等于.12.一元二次方程x(x-6)=0的两个实数根中较大的根是.13.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是.相等的线14.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组..段.15.如图,PA、PB分别切☉O于点A、B,若∠P=70°,则∠C的大小为(度).16.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于4的概率是. 17.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明).三、解答题(本大题共8小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(本小题6分)解不等式组-已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当-3<x<-1时,求y的取值范围.21.(本小题8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①、②,请根据相关信息.解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.已知直线l与☉O,AB是☉O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与☉O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与☉O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.23.(本小题8分)天塔是天津市的标志性建筑之一.某校数学兴趣小组要测量天塔的高度.如图,他们在点A处测得天塔最高点C的仰角为45°.再往天塔方向前进至点B处测得最高点C的仰角为54°,AB =112m.根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(Ⅰ)根据题意,填写下表(单位:元):(Ⅱ)当x取何值时,小红在甲、乙两商场的实际花费相同?(Ⅲ)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?25.(本小题10分)在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E在OB上,且∠OAE=∠OBA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A'E'O',连结A'B、BE'.①设AA'=m,其中0<m<2,试用含m的式子表示A'B2+BE'2,并求出使A'B2+BE'2取得最小值时点E'的坐标;②当A'B+BE'取得最小值时,求点E'的坐标(直接写出结果即可).26.(本小题10分)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M,若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l',A为直线l'上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).①求y2与x之间的函数关系式;②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.答案全解全析:1.B (-3)+(-9)=-(3+9)=-12,故选B.2.C tan 60°=,故选C.3.D A选项是轴对称图形;B、C选项既不是轴对称图形,也不是中心对称图形;D选项是中心对称图形,故选D.评析本题考查中心对称图形的概念,解题关键是寻找对称中心,然后绕对称中心旋转180°后与原图形重合的图形是中心对称图形.4.C 科学记数法的形式为a×10n,其中1≤|a|<10,故8 210 000=8.21×106.故选C.5.B 数据的方差反映一组数据的稳定性.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)班成绩的方差比(1)班成绩的方差小,故(2)班的成绩比(1)班的成绩稳定, 故选B.6.A 从前面看到的图形有上下两层,上层是一个正方形,下层是左右并排的两个正方形,且上层的一个正方形放在下层的两个正方形中间,故排除B;从左面看到的是上下两个一样的正方形,且按要求左视图应该放在主视图的右边,故排除C;从上面看到的是一个正方形放在两个正方形的正中间,上层一个正方体和下层两个正方体的两条交线按要求应该画出来,故选A.7.A ∵△ADE绕E点旋转180°得到△CFE,∴AE=CE,DE=EF.∴四边形ADCF是平行四边形.又∵BC=AC,D是AB的中点,∴∠ADC=90°,∴平行四边形ADCF是矩形.8.B 如图所示:∵ABCDEF是正六边形,∴△OAB为正三角形.过O作OH⊥AB,垂足为H,则=sin 60°=,即边心距与边长的比为∶2,故选B.9.D 原式=---=--=--=,当x=-1,y=2时,原式=-=.故选D.10.C 小明以400米/分的速度骑车5分钟,离开出发地的距离应该是2 000米而不是6米,故①不符合;小亮以1.2升/分的速度匀速向空桶注水,5分钟后正好注入6升,休息4分钟,这4分钟内桶里的水一直保持6升,再以2升/分的速度往外倒,正好3分钟倒完,故②符合;矩形ABCD中,AB=4,BC=3,则AC=5,P点从A向C运动的过程中,△ABP的底AB=4不变,高从0增加到3,故面积从0增加到6,P点从C向D运动的过程中,△ABP的底和高分别是4和3,△PAB的面积一直为6,P点从D到A的运动过程中,△ABP的底不变,高从3减小到0,面积从6减小到0,故③也符合,故选C.评析“判断两个变量在运动变化过程中对应的函数图象是否正确”是本题考查的重点.解答本题的关键是找到变量在变化过程中的某一关键点或者某一关键段,观察关键点或者关键段对应的函数图象是否正确,把动态问题转化为静态问题来解决.11.答案a7解析a·a6=a1+6=a7.12.答案 6解析x(x-6)=0,则x=0或x-6=0,即x=0或x=6,故较大的根为6.13.答案k>0解析易知一次函数y=kx+1(k为常数,k≠0 的图象过点(0,1),要使图象经过第一、二、三象限,只需k>0.14.答案答案不唯一.AC=BD(或BC=AD,AO=BO,CO=DO)解析在△ADB和△BCA中,∠C=∠D,∠ABC=∠BAD,AB=AB,故△ADB≌△BCA,则AC=BD,AD=BC, ∠ABD=∠BAC,∴OA=OB,又AC=BD,∴OC=OD.15.答案55解析如图,连结OA、OB,因为PA、PB是圆的切线,所以∠OAP=∠OBP=90°,又因为∠P=70°,所以∠AOB=360°-90°-90°-70°=110°,又∠AOB=2∠C,所以∠C=55°.16.答案解析根据列表可得,总共有16个结果,和是4的有3个,故两次摸出的小球的标号之和等于4的概率为.17.答案7解析∵△ABC为等边三角形,∴∠B=60°.又∵∠ADC=∠B+∠BAD=∠ADE+∠EDC,∠ADE=60°,∴∠EDC=∠BAD.又∵∠B=∠C,∴△ABD∽△DCE,∴AB∶CD=BD∶CE.∵AB=9,BD=3,∴CD=6,∴CE=2,∴AE=7.18.答案(Ⅰ)6(Ⅱ)如图,取格点P,连结PC,则PC⊥BC.过点A画PC的平行线,与BC交于点Q,连结PQ与AC相交于点D;过点D画CB的平行线,与AB相交于点E,连结DE,分别过点D、E画PC的平行线,与CB相交于点G、F.则四边形DEFG即为所求.解析如图所示,△ABC中,c>b>a,EFGD为△ABC内一条边在BC边上的正方形,设正方形的边长为x,BC边上的高AH=h,△ABC的面积为S.∵△ADG∽△ABC,∴=-,∴x==.同理可得:当正方形的一边落在AC或AB边上时,有x=或x=.-=(a-b)+-=(a-b)-2S·-=(a-b ·-.∵ab>ah,即ab>2S,∴ab-2S>0.又∵b>a,∴a-b<0.∴-=(a-b ·-<0,∴a+<b+,∴>.同理可得>,∴>>,即当正方形一边落在三角形最短的边上, 另两个顶点落在其他两边上时,正方形为三角形中所包含的面积最大的正方形,所以本题所作正方形一边应该落在最短边BC上.又根据画图过程可得:图中所作四边形DEFG为矩形,∵△QDG∽△QPC,△ADE∽△ACB,△DPC∽△DQA,∴=,=,=,∴=.又∵PC=BC,∴DG=DE,∴四边形DEFG为正方形.∴所作四边形DEFG为△ABC内部面积最大的正方形.评析本题主要考查“在一个三角形内部如何作出面积最大的正方形”这一作图方法,解题关键是综合运用正方形和相似三角形知识寻找满足正方形面积最大的位置(即正方形的一边应该落在三角形的最短边上,另外两个顶点分别在另外两条边上).正确作出图形的关键是“利用网格特点,找出使PC和BC垂直且相等的P点”.19.解析-,①,②解不等式①,得x<3.解不等式②,得x>-3.∴不等式组的解集为-3<x<3.20.解析(Ⅰ)∵反比例函数y=的图象经过点A(2,3),∴3=,解得k=6.∴这个函数的解析式为y=.(Ⅱ)分别把点B,C的坐标代入y=,可知点B的坐标不满足函数解析式,点C的坐标满足函数解析式, ∴点B不在这个函数的图象上,点C在这个函数的图象上. (Ⅲ)∵当x=-3时,y=-2,当x=-1时,y=-6,又由k>0知,当x<0时,y随x的增大而减小,∴当-3<x<-1时,-6<y<-2.评析本题的第(Ⅰ)(Ⅱ)问主要考查用待定系数法求函数的解析式和函数图象的意义;第(Ⅲ)问考查反比例函数的性质,熟练掌握“当k>0时,在每个象限内y随x的增大而减小”这一性质是解答本题的关键.21.解析(Ⅰ)50;32.(Ⅱ)∵==16(元),∴这组样本数据的平均数为16元.∵在这组样本数据中,10出现了16次,出现次数最多,∴这组样本数据的众数为10元.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,有=15元, ∴这组样本数据的中位数为15元.(Ⅲ)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据估计该校1 900名学生中捐款金额为10元的学生人数比例为32%,有1 900×32%= 608(名),∴该校本次活动捐款金额为10元的学生约有608名.评析本题重点考查学生对平均数、众数、中位数概念的理解,用样本估计总体以及学生的识图能力,易错处多因概念理解不透彻,易把16看成众数,把5元、10元、15元、20元、30元直接加起来除以4、16、12、10、8的和得到的结果作为平均数.22.解析(Ⅰ)如图,连结OC.∵直线l与☉O相切于点C,∴OC⊥l,∴∠OCD=90°.∵AD⊥l,∴∠ADC=90°.∴OC∥AD,∴∠ACO=∠DAC,在☉O中,∵OA=OC,∴∠BAC=∠ACO,∴∠BAC=∠DAC=30°.(Ⅱ)如图,连结BF.∵AB是☉O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF为Rt△ADE的一个外角,∠DAE=18°,∴∠AEF=∠ADE+∠DAE=90°+18°=108°.在☉O中,四边形ABFE是圆内接四边形,∴∠AEF+∠B=180°,∴∠B=180°-108°=72°,∴∠BAF=90°-72°=18°.评析本题重点考查了“圆内接四边形对角互补”“直径所对的圆周角是直角”这两个重要的知识点,对“见切线连圆心和切点”“利用直径构造直角”这些常见辅助线作法的熟练掌握是正确解答本题的关键.23.解析如图,根据题意,有∠CAD=45°,∠CBD=54°,AB=112 m.∵在Rt△ACD 中,∠ACD=∠CAD=45°,∴AD=CD. 又AD=AB+BD,∴BD=AD-AB=(CD-112)m. ∵在Rt△BCD 中,tan∠BCD=,∠BCD=90°-∠CBD=36°,∴tan 36°=,∴BD=CD ·tan 36°. ∴CD ·tan 36°=CD -112, ∴CD=- °≈- .≈415 m.答:天塔的高度CD 约为415 m. 24.解析 (Ⅰ)在甲商场:271,0.9x+10; 在乙商场:278,0.95x+2.5.(Ⅱ)根据题意,有0.9x+10=0.95x+2.5,解得x=150, ∴当x=150时,小红在甲、乙两商场的实际花费相同. (Ⅲ)由0.9x+10<0.95x+2.5,解得x>150, 由0.9x+10>0.95x+2.5,解得x<150,∴当小红累计购物超过150元时,在甲商场的实际花费少;当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.评析 本题是函数与不等式综合应用的方案设计问题,解答此类问题的关键是按照各自的优惠方案正确写出在甲、乙两个商场购物时,实际所需费用和物品标价的关系式,然后利用方程和不等式解决问题.25.解析(Ⅰ)∵点A(-2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠OBA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,∴OE=1.∴点E的坐标为(0,1).(Ⅱ)①如图,连结EE',∵AA'=m,∴A'O=2-m,在Rt△A'BO中,∵A'B2=A'O2+BO2,∴A'B2=(2-m)2+42=m2-4m+20.∵△A'E'O'是将△AEO沿x轴向右平移得到的,∴EE'∥AA',且EE'=AA',∴∠BEE'=90°,EE'=m.又BE=OB-OE=3,于是,在Rt△BE'E中,BE'2=E'E2+BE2=m2+9,∴A'B2+BE'2=2m2-4m+29(0<m<2),即A'B2+BE'2=2(m-1)2+27(0<m<2),当m=1时,A'B2+BE'2取得最小值,∴点E'的坐标为(1,1).②点E'的坐标为,.26.解析(Ⅰ)由已知,抛物线y1=ax2+bx+c经过点,,得c=,∴y1=ax2+bx+.上,∵点(-1,0)、(3,0)在抛物线y1=ax2+bx+94∴ , ,解得 -,. ∴y 1与x 之间的函数关系式为y 1=-34x 2+32x+94.(Ⅱ)由y 1=-34x 2+32x+94配方得y 1=-34(x-1)2+3,∴直线l 为x=1,顶点M(1,3).①根据题意,得t≠3.如图,记直线l 与直线l'交于点C,则点C(1,t). 当点A 与点C 不重合时,由已知,得AM 与BP 互相垂直平分, ∴四边形ABMP 为菱形,∴PA∥l, 又点P(x,y 2),则点A x,t , x≠1 ∴PM=PA=|y 2-t|.过点P 作PQ⊥l 于点Q,则点Q(1,y 2), ∴QM=|y 2-3|,PQ=AC=|x-1|.在Rt△PQM 中,由PM 2=QM 2+PQ 2,得(y 2-t)2=(y 2-3)2+(x-1)2, 整理,得y 2=16-2(x-1)2+ 32,即y 2=16-2x 2-13-x+10-26-2.当点A 与点C 重合时,点B 与点P 重合,可知点P 1, 32,其坐标也满足上式.∴y 2与x 之间的函数关系式为y 2=16-2x 2-13-x+10-26-2t≠3 ;②根据题意,借助函数图象.当抛物线y 2开口方向向上时,6-2t>0,即t<3,抛物线y 1的顶点M(1,3),抛物线y 2的顶点 1,32,由3>32,可知不符合题意. 当抛物线y 2开口方向向下时,6-2t<0,即t>3, y 1-y 2=-34(x-1)2+3-16-2x -1 232=3 -114 3-(x-1)2+3-2.若3t-11≠0,要使y 1<y 2恒成立, 只要抛物线y=3 -114 3-(x-1)2+3- 2开口方向向下,且顶点 1,3-2 在x 轴下方,因为3-t<0,所以只要3t-11>0,解得t>113,符合题意; 若3t-11=0,y 1-y 2=-13<0,即t=113也符合题意. 综上,可以使y 1<y 2恒成立的t 的取值范围是t≥113.。
2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF . 因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.(第3题答题)(第4题答题)(第3题)(第4题)5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967 (B )1821967 (C )5463967 (D )16389967【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:(第7题)45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=;(ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)(第7题答题)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CE,BE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.…………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形. 当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2013天津市初中数学竞赛赛试题
所属班级 姓名 一、选择题(每小题7分,满分35分):
1、设实数,,a b c 满足2346c b a a +=-+,244c b a a -=-+,则,,a b c 的大小关系是( ). A 、a b c <≤ B 、b a c <≤ C 、b c a <≤ D 、c a b <≤
2、设O 为锐角⊿ABC 的外心,连结AO 、BO 、CO ,并分别延长,交对边于点D 、E 、F ,若
⊿ABC 的外接圆半径为6,111AD BE CF
++的值是( ). A 、1 B 、12 C 、13 D 、1
6
3、已知20122011a x =+,20122012b x =+,20122013c x =+,那么222a b c ab bc ca ++---的值为( ). A 、3 B 、2 C 、1 D 、0
4、如图,在平面直角坐标系xoy 中,直线PA 是一次函数y x n =+的图像,与x 轴、y 轴分别交于点A 、Q. 直线PB 是一次函数2y x m =-+的图像,与x 轴交于点B.若AB=2,四边形OBPQ 的面
积等于56,则m n
m n
+-的值为( ).
A 、1
B 、 2
C 、 3
D 、 4
5、已知10个彼此不相等的正整数1210,,,a a a 满足条件215a a a =+,326a a a =+,437a a a =+,658a a a =+,769a a a =+,9810a a a =+,则4a 的最小值是( ). A 、19 B 、20 C 、21 D 、22
二、填空题(每小题7分,满分35分):
6、若1
10111219
a =++++ ,则a 的整数部分为 .
7、若关于x 的不等式()250a b x a b -+->的解集为10
7
x <,则关于x 的不等式ax b >的解集为 .
8、如图,一钢球从入口处自上而下沿通道自由落下,在每个岔口处向两侧滑落是等可能的,则钢球落入出口乙的概率为 .
9.如图,在矩形ABCD 中,E 、F 分别是AD 、BC 的中点,AC 与EF 交于点O ,点M 在线段AO 上,ME 、CD 的延长线相交于点N.若∠MFB= 57︒,则∠FNC 的大小等于 .
10.在一张正方形纸片的内部给出了2013个点,连同正方形的4个顶点共有2017个点,按下列规则将这张纸片剪成一些三角形:①每个三角形的顶点都在给出的2017个点中;②每个三角形内部不再有这2017个点中的点.那么,最多可以剪出的三角形的个数是 .
三、解答题(每小题20分,满分80分):
11. 已知关于x 的函数()2122y k x kx k =--++的图像与x 轴有交点. ⑴求k 的取值范围;
⑵若12,x x 是函数图像与x 轴两个不同交点的横坐标,且满足()212121224k x kx k x x -+++=. ①求k 的值;
②请结合图像,确定当2k x k ≤≤+时,函数y 的最大值和最小值.
出口丁
出口丙出口乙出口甲入口
M F O
E
N
D C B
A
12.已知,,a b c 均为正整数,其中c 不是完全平方数,且24a b -== 求a b c ++的值.
13. 如图,四边形ABCD内接于⊙O,E、F分别是BC、AD的中点,AC⊥BD,垂足为H.
求证:四边形HFOE是平行四边形.
14. 如图,已知D为锐角⊿ABC内部的一个点,使得90
ADB ACB
∠=∠+︒,且AC BD AD BC
⋅=⋅.
⑴求AB CD
AC BD
⋅
⋅
的值.
⑵求证:⊿ACD的外接圆和⊿BCD的外接圆在C点切线互相垂直.
H O
F
E
D
C B
A
D
A
C。