2007学年度第一学期八年级数学新教材期中试卷
- 格式:doc
- 大小:109.50 KB
- 文档页数:4
2013-2014学年度第一学期初二期中考试数学试卷一、选择题:(每题3分,共15分)1.如图所示,图中不是轴对称图形的是 ( ).2.如图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠A=50°,∠B=30°, 则∠AOD 的度数为 ( ). A .50° B .30°C .80°D .100°3.点M (3,5)关于X 轴对称的点的坐标为 ( ) A 、(-3,-5) B 、(-3,5) C 、(3,-5) D 、(5,-3)4.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上(如图),可以证明,得ED =AB ,因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是( )A 、“边角边”B 、“角边角”C 、“边边边”D 、“斜边、直角边”5.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为 ( )(A )50° (B )51° (C )61° (D )71°第5题二、填空题:(每题4分,共20分)6.等腰三角形的底角是70°,则它的顶角是___________. 7.正方形有 条对称轴,正五边形有 条对称轴.8.如图,在△ABC 中,BC=5,BC 边上的垂直平分线 DE 交BC 、AB 分别于点D 、E ,△AEC 的周长是11 则△ABC 的周长等于 。
O DCBA第2题ACED B第8题9.如图,等边△ABC 的边长为2 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长..为 cm .10.在直角坐标系中,已知A (-3,3),在x 轴上确定一点P ,使△AOP 为等腰三角形,符合条件的点P 共有_________个。
泗洪县2007-2008学年度第一学期期中考试八年级数学试卷(试卷满分120分,考试时间100分钟)题 号 一二三四五六总分累分人得 分祝你考出好成绩!一、精心选一选(请将下列各题唯一正确的选项代号填在题后的括号内.本大题共10小题,每小题3分,共30分)1.下列各函数关系式中,属于一次函数的是 ( )A. x y 2-=B. 112+=x yC. 12++=x x y D.xy 1=2.若点(-1,2)在函数5+=kx y 的图像上,则k 的值为 ( )A.3B.2C.1D.-43.为了反映某种股票的涨跌情况,选用较合适的统计图是( )A .条形图 B.折线图 C.直方图 D.扇形图 4.一次函数53+-=x y 的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5.正比例函数y = kx(k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是( )6.如图,,ND MB =BD AC =,NDC MBA ∠=∠,则⊿ABM ≌⊿CDN 的理由是( ) A .SSSB .SASC .ASAD .HL7.如图是我国历届奥运会获奖牌总数的统计图.那么下列不正确的结论是( )得分 阅卷人A B DC M N(第6题) A O y x B O y x C O y x D O y x (第7题)A.奖牌总数最多的是第28届; C.奖牌总数超过30枚的共有5届;8.已知在一个样本中,50个数据分别落在5个小组内,第一、二、三、五组数据分别是5,7, 3,15,则第四组的频率是 ( ) B. 0.4 C9.已知一次函数b kx y +=的图像如图所示,当0<x ,y 的取值X 围是 ( )A .0>y B.0<y C.02<<-y D.2-<y10. 如图,PD PC PB PA ==,,则图中能全等的三角形共有 ( ) A .2对B.3对C.4对D.5对二、耐心填一填(本大题共8小题,每小题4分,共32分.)11.把直线121-=x y 向上平移21个单位,可得到直线解析式_____________.12.函数xxy -=5的自变量x 的取值X 围是. 13.已知数据25,21,23,27,26,25,24,31,22,26,29,26,28,24,29,30,27,28,32,30在列频率分布表时,如果取组距为2,那么应分为组.14.在世界人口扇形统计图中,关于中国部分的圆心角的度数为 度.15.若直线y=3x+•b•与两坐标轴所围成的三角形的面积是6•个单位,则b•的值是________. 16.如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根…,根据图形推断火柴棒根数s 与小鱼条数n 的函数关系式是. 17.如图,直线1l :1+-=x y 和直线2l :2121--=x y 相交于点A ,从图中可知不等式得分 阅卷人第10题OPDC BA中国20%印度18%其他国家62%-21oyx21211--≥+-x x 的解集是.18.如图,ABC ∆和ABD ∆有一条公共边AB ,已知90=∠=∠D C ,请添加一个条件,使ABD ABC ∆≅∆,添加的条件是.(添加一个即可)三、用心想一想(本大题共2小题,每小题8分,共16分.)19.观察下列大棚蔬菜种植情况统计图(图7),回答问题:⑴扇形统计图中括号中的数据应是多少? ⑵哪种蔬菜种植面积最大? ⑶哪两种蔬菜种植面积较接近?⑷已知豆角种了27公顷,种植蔬菜的总面积是多少公顷?20.已知:如图, D 是△ABC 的边AB 上一点, E 是AC 的中点,F 在DE 的延长线上,且EF=DE ,求证:FC∥AB .第17题DCBA 黄瓜21%豆角15%茄子23%其他10%西红柿( )%EB CAD F四、在心求一求(本大题共2小题,每小题8分,共16分.21.已知一个一次函数的图像经过点A (-4,14)和点B (6,-16). (1)求这个函数的解析式; (2)若点C 的坐标是(-1,1),问A 、B 、C 三点是否在同一条直线上?为什么?22.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是: A组:0.5h t <; B组:0.5h 1h t <≤ C组:1h 1.5h t <≤ D组: 1.5h t ≥ 请根据上述信息解答下列问题: (1)C组的人数是; (2)补全统计图;(3)本次调查数据的中位数落在组内;(4)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、细心算一算(本大题共2小题,每小题8分,共16分.)23.已知,直线y=2x+3与直线y=-2x-1.(1)求两直线与y 轴交点A ,B 的坐标; (2)求两直线交点C 的坐标; (3)求△ABC 的面积.24.如图,AB=AC,∠BAC=900,BD ⊥AE 于D ,CE ⊥AE 于E ,且BD >CE. 求证:BD=EC+ED.得分 阅卷人xyABC六、费心试一试(本大题10分.)25.有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了多少时间?开挖6小时后,甲队比乙队多挖了多少米;(2)请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?时)八年级数学参考答案及评分标准一、本大题共10小题,每小题3分,共30分.二、本大题共8小题,每小题4分,共32分.11.2121-=x y 12.05≠≤x x 且 13.6 14.72 15.4916.26+=n s 17.3≥x18.AC=AD 或BC=BD 或∠BAC=∠BAD 或∠ABC=∠ABD三、每题8分,共16分.19. 解:(1)31 (2分) (2)西红柿 (2分) (3)茄子和黄瓜 (2分) (4)180公顷 (2分)20.证得 (1)△ADE ≌△CFE (SAS )(5分) (2)FC ∥AB (3分)四、每题8分,共16分.21.解:(1)函数解析式为23+-=x y (4分)(2)因为当1-=x 时,52)1(3=+-⨯-=y 1≠, 所以C 点不在直线AB 上(4分) 22.(共8分) 解:(1)120;(2分)(2)略;(2分)(4)14400人.(4分)(说明:本题第(3)小题删去) 五、每题8分,共16分.23.解:(1)A(0,3) ,B (0,-1)(2分) (2)⎩⎨⎧--=+=1232x y x y 解得⎩⎨⎧=-=11y x ,所以C 点坐标为(-1,1)(3分)(3)21421=⨯⨯=∆ABC S (2分) 24.证得(1)∠ABD=∠CAE (2分)得 △ABD ≌△CAE (AAS )(3分)(2)BD=EC+ED (3分)六、本题满分10分.25. (1)乙队开挖到30米时,用了2小时, (1分)开挖6小时后,甲队比乙队多挖了10米.(1分)(2)①x y 10=(2分)②205+=x y (2分)③4小时后(2分)(3)21010=-==乙甲乙甲,,V V V V ,小时)(5250-60=÷,所以两队需再挖5小时长度相等且同时完工,所以甲队从开挖到完工共挖了110米.(2分)注:19-25题其它解(证)法请参照给分.。
2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)1. 下列各式中,属于分式的有()个A. 4B. 3C. 2D. 12. 下列计算结果正确是()A. B. C. D.3. 下列出版社的商标图案中,是轴对称图形的为()A. B. C. D.4. 下列二次根式中,属于最简二次根式的是()A. B. C. D.5. 下列计算正确的是()A. B. C. D.6. 等腰三角形的顶角是,则此等腰三角形的底角度数为()A. B. C. 或 D.7. 如果把分式中的x和y的值同时扩大为原来的3倍,那么分式的值()A. 扩大为原来的3倍B. 缩小为原来的C. 不变D. 无法判断8. 某校八年级学生去距离学校的游览区游览,一部分学生乘慢车先行,出发后,另一部分学生乘快车前往,结果他们同时到达.已知快车的速度是慢车速度的倍,求慢车的速度,设慢车的速度是,所列方程正确的是( )A. B. C. D.9. 下列说法正确的是()A. 等腰三角形的角平分线、中线、高线互相重合;B. 三角形三边垂直平分线交点到三边的距离相等;C. 有一个角是的等腰三角形是等边三角形;D. 如果两个三角形全等,那么它们必是关于某条直线成轴对称的图形.10. 如图,点C为线段上一动点(不与A、E重合),在同侧分别作等边和等边,与交于点O,与交于点P,与交于点Q,连接,以下四个结论①;②;③平分;④,下面的结论正确的有()个A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)11. 将用科学记数法表示为__________.12. 分解因式:______.13. 要使分式有意义,则的取值范围是__.14. 如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为___________.15. 如图,等腰三角形的底边长为4,面积是20,腰的垂直平分线分别交、边于E、F点.若D为边的中点,点M为线段上一动点,则周长的最小值是___________.16. 若是一个关于x的完全平方式,那么k的值是__________.17. 若,,则______.18. 在边长为的等边三角形中,于点,点在直线上,且,则的长为_____.19 如果,那么________________.20. 如图,在等腰三角形中,,为上一点,为延长线上一点,连接,且,,的平分线交于点,若,,则__________.三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)21. 计算:(1);(2).22. 先化简,再求值:,其中23. 如图,在平面直角坐标系中,已知的三个顶点坐标分别是(1)将向上平移4个单位,再向右平移1个单位,得到,请画出,并写出的坐标;(2)请画出关于y轴对称的,并写出的坐标.24. 已知:为等边三角形,点D,E分别在上,且,连接交于点F,在延长线上取点G,使得,连接.(1)如图1,求证:为等边三角形;(2)如图2,当点D为的中点时,在不添加任何辅助线的情况下,请直接写出图2中四条线段,使每一条线段的长度都等于线段的长度的2倍.25. 某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A、B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元购买文化衫,最多可购买多少件A款文化衫?26. 教科书中这样写道:“形如的式子称为完全平方式“,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等问题.例如:分解因式:.解:原式再如:求代数式的最小值.解:,可知当时,有最小值,最小值是.根据阅读材料,用配方法解决下列问题:(1)分解因式:________.(直接写出结果)(2)当x为何值时,多项式有最大值?并求出这个最大值.(3)利用配方法,尝试求出等式中a,b值.27. 已知,如图1所示,为等边三角形,D是边上一点,,且,连接、.(1)求证:;(2)如图2,延长交于点F,连接,求证:平分;(3)如图3,在(2)的条件下,过点E作于H,若,,求的长.2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)【1题答案】C【2题答案】B【3题答案】A【4题答案】A【5题答案】C【6题答案】B【7题答案】A【8题答案】B【9题答案】C【10题答案】D二、填空题(每题3分,共30分)【11题答案】【12题答案】【14题答案】或【15题答案】12【16题答案】【17题答案】【18题答案】或【19题答案】【20题答案】三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)【21题答案】(1)(2)【22题答案】,【23题答案】(1)见解析;;(2)见解析;(1)见解析(2)【25题答案】(1)A款文化衫每件元,B款文化衫每件元;(2)最多可购买280件A款文化衫【26题答案】(1)(2)当时,多项式有最大值,最大值是7;(3),.【27题答案】(1)见解析(2)见解析(3)。
2010-2011学年度第一学期期中阶段检测八年级数学试卷(人教版)2010.11 考生注意:1.本卷共6页,总分100分,考试时间90分钟.一、选择题(每小题2分,共20分)1.27的立方根是…………………………………………………………………………【】A.3 B.3-C.9 D.9-2.化简16的值为……………………………………………………………………【】A.4 B.±4 C.-4 D.16 3.下列说法正确的是……………………………………………………………………【】A.面积相等的两个三角形全等,B.周长相等的两个三角形全等,C.形状相同的两个三角形全等,D.能够完全重合的两个三角形全等.4.点P(2,-3)关于y轴的对称点的坐标是…………………………………………【】A.(2,3 )B.(-2,-3)C.(-2,3)D.(-3,2)5.下列图案是轴对称图形有……………………………………………………………【】A.1个B.2个C.3个D.4个6.一个等腰三角形的两边长分别为2和5,则它的周长为………………………………………………【】A.7 B.9 C.12 D.9或127.如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为…………………………………………【】A.50°B.30°C.100°D.90°30︒lC'B'A'BCA50︒第7题图八年级数学第1 页共6 页八年级数学 第 2 页 共 6 页8.如图,AC =AD ,BC =BD ,则有…………………………………………………【 】 A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACB9.如图,为估计池塘岸边A ,B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB =10米,A ,B 间的距离不可能是………………………………【 】 A .20米 B .15米 C .10米D .5米10.如图,在边长为1的正方形网格中,将△ABC 向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是……………………………………………【】 A .(0,-1) B .(1,1) C .(2,-1) D .(1,-2) 二、填空题(每小题3分,共24分) 11.4的算术平方根是 .12.若一个三角形有三条对称轴,则这个三角形是 三角形.13.如图,若△ABC ≌△A 1B 1C 1,且∠A=110°,∠B=40°,则∠C 1= .14.如图,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 15.已知点(x ,y )与点(-2,-3)关于x 轴对称,那么x +y = . 16.等腰三角形的一个角等于100°,则另两个角为 . 17.在△ABC 中,∠C =90°,AD 平分∠BAC ,若AB =5,CD =2,则△ABD 的面积为 .18.如图,已知ABC 为等腰三角形纸片ABC 底边,将此三角形纸片对折,使腰AB 、AC 重合,折痕为AD ,则折痕AD 与底边BC 的关系是 .A BCD12 A BCDABC DOABAB C C 1A 1B 1AB C D第8题图第9题图第10题图 第13题图第14题图第17题图 第18题图八年级数学 第 3 页 共 6 页三、解答题(本题共8道小题,共56分) 19.(本题6分)计算:8164642733+-+-.20.(本题6分) 计算:233221-+-+-.21.(本题6分)(1)在图1中,将△ABC 先向左平移5个单位,再作关于直线AB 的轴对称图形,经两次变换后得到△A 1B 1 C 1.画出△A 1B 1C 1;(2)在图2中,△ABC 经变换得到△A 2B 2C 2.描述变换过程.第18题图1第18题图2 0 1 4 5 6 7 8 9 1211 12 11 10 9 8 76 5 4 3 2 1B 2C 20 1 2 3 4 5 6 7 8 9 10 12 11 12 11 10 9 8 7 6 5 4 3 2 1C图122.(本题8分)已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E.(1)求证:AE=BE;(2)若∠AEC=45°,AC=1,求CE的长.23.(本题7分)画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明).已知:求作:ahEDCBA八年级数学第4 页共6 页八年级数学 第 5 页 共 6 页24.(本题7分)如图所示,∠ABC 和∠ACB 的平分线相交于F ,过F 作DE //BC ,交AB 于D ,交AC 于E ,求证:BD +EC =DE .25.(本题8分)如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,AB +BD 与DE 的长度有什么关系?并加以证明.ABCEDABCDE F八年级数学 第 6 页 共 6 页26.(本题8分)已知:如图,AF 平分∠BAC ,BC ⊥AF , 垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于P ,M .(1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.FMPE DCBA。
2007学年度第一学期八年级数学新教材期中试卷(测试时间90分钟,满分100分)一、填空题(本大题共14题,每题2分,满分28分) 1、方程x x 5122=+的一次项系数是____________________;2、已知y 是x 的正比例函数,当=x 3时,2-=y ,那么y 与x 之间的比例系数是___________;3、方程)1()1(+=-x x x x 的根是____________________ ;4、写出一个18的同类二次根式__________;5、方程0232=-x x 的根是__________;6、计算)33(3-÷=__________;7、若x 、y 是变量,且函数2)1(k x k y +=是正比例函数,则k=_________; 8、因式分解:222y xy x ++-=_______________;9、已知关于x 的一元二次方程012)1(22=-++-m x x m 有一个根是0,则m 的值是_________;10、若关于x 的方程(3x-1)2=1-k 没有实数根,则k 的取值范围是___________; 11、某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x ,依题意可列方程_______________;12、已知A(x 1,y 1)和B (x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1____y 2•;(填“>”, “<”或“=”)13、若x<0,则化简2)1(--x x =_________;14、若012=-+x x ,那么代数式7223-+x x 的值为____________________.二、单项选择题(本大题共4题,每题2分,满分8分) 15、下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高16、方程①3x -1=0,②3x 2-1=0,③0132=+xx ,④ax 2-1=3x(a 为实数),⑤2x 2-1=(x -1)(x -2),⑥(5x+2)(3x-7)=15x 2 其中一元二次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 17、等式22-=-x x x x成立的条件是( )18、当k>0时,下列方程中没有实数根的是( )A .012=--kx xB .022=-+k x xC .0=+k kxD .012=+kx 三、(本大题共6题,每题5分,满分30分) 19、计算31248512739+-+ 20、计算)0()>÷+b bc a a bc b a c ab (21、解方程43)38(23-=-y y y 22、解方程21212-=--y y23、用配方法解方程:x x 6232=-24、设a 、b 为有理数,且133332+=--a b ,求a 、b 的值.四、(本大题共3题,25题8分,26、27题每题7分,满分22分)25、甲、乙两人同时从A 地前往相距5千米的B 地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s (千米)关于时间t (分钟)的函数图像如图所示;乙慢跑所行的路程s (千米)关于时间t (分钟)的函数解析式为1(060)12s t t =≤≤. (1)在图中画出乙慢跑所行的路程关于时间的函数图像;(2)乙慢跑的速度是每分钟 千米;(3)甲修车后行驶的速度是每分钟________千米;(4)甲、乙两人在出发后,中途 分钟时相遇.26、若k 是一个整数,已知关于x 的一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 最大可以取多少?为什么?(第14题图)27、a 为何值时,关于x 的方程0122=--x ax 有实数根?并求出它的实数根.(可用a 表示)五、(第28题9分,29题3分,满分12分)28、已知△ABC 的两边是关于x 的方程02322=+-k kx x 的两根,第三边长为4.当k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长.29、计算:)711)(57(1127654--+-2007学年度第一学期八年级数学新教材期中试卷答案一、1、5-2、32-3、04、2,22……(答案不唯一)5、0,32 6、213+ 7、1 8、)2)(2(y y x y y x +---- 9、-1 10、k>1 11、64)1(1002=-x 12、21y y < 13、1-2x 14、-6 二、15、C 16、B 17、D 18、D 三、19、原式=33232031439+-+(3分) 20、原式=abc a bc b a a bc c ab ⋅+⋅ (2分) =3311(2分) =2222a cb b a b + (1分) =abcb a b ⋅+(1分) =b+c (1分)21、434232-=-y y y (1分) 22、1)1(22-=--y y (1分) 081432=+-y y (2分) 0222=--y y (1分)41=y 322=y (各1分) 311+=y 311-=y (各1分) 23、3222=-x x (1分) 24、)33)(13(32a b -+=-(1分) 35)1(2=-x (1分) 3333+=+-a b a (1分)3151±=-x (1分) ⎩⎨⎧==-133a b a (2分) 31511+=x 31512-=x (各1分) 所以0,1==b a (1分)四、25、(1)略(2)121(3)203(4)24 (各2分) 26、由题意得⎩⎨⎧≠->-+=∆010)1(44k k , (4分)所以2<k 且1≠k , (2分)又因为k 是一个整数所以k 最大可以取0. (1分) 27、若a ≠0,原方程是一元二次方程,当044≥+=∆a ,即1-≥a 且0≠a 时有实根,(3分)aax 2442+±=;(2分)若a=0,原方程是一元一次方程, 则21-=x (2分) 五、28、k x 21= k x =2 (2分) 1、若4为底 k k =2 无解 (2分) 2、若4为腰 (1)41=x 则2=k三边分别为 4、4、2 ,周长为10 (2分) (2)42=x 则4=k三边分别为 4、4、8 ,不能构成三角形,舍去 (2分)所以2=k ,时△ABC 是等腰三角形,它的周长为10. (1分) 29、原式=115- (3分)。
2022/2023学年度第一学期期中考试八年级数学试题时间:100分钟分值:120分考试形式:闭卷命题人:审核人:一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题卡相应位置上)1.下列四个图形中,是轴对称图形的为【▲ 】A .B .C .D .2.下列等式正确的是【▲ 】A .±=2B .=﹣2C .=﹣2D .=0.13.下列各组数中,能作为直角三角形三边长的是【▲ 】A.1,2,3 B.4,5,6 C.6,8,10 D.7,8,94.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢手绢”游戏,要求在他们中间放一个手绢,谁先抢到手绢谁获胜,为使游戏公平,则手绢应放的最适当的位置是在△ABC的【▲ 】A.三边垂直平分线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点5.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=10,则点P到AB的距离是【▲ 】A.15 B.12 C.5 D.10(第5题)(第6题)(第8题)(第11题)6.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为【▲ 】A.16cm B.28cm C.26cm D.18cm7.若等腰三角形一个外角等于100°,则它的顶角度数为【▲ 】A.20°B.80°C.20°或80°D.无法确定8.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.则AB为【▲ 】A.19 B.12 C.21 D.26二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上).9.16的算术平方根是▲ .10.已知+(n ﹣1)2=0,则mn=▲ .11.如图所示,是一块由花园小道围成的边长为12米的正方形绿地,在离C处5米的绿地旁边B 处有健身器材,为提醒居住在A处的居民爱护绿地,不直接穿过绿地从A到B,而是沿小道从A→C→B,请问你多走了▲ 米.12.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=▲ °.(第12题)(第14题)(第15题)(第16题)13.直角三角形的两边长为5、12,则斜边上的中线长为▲ .14.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=6cm,BC=10cm.则EC的长为▲ cm.15.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有▲个.16.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP =5,当AD⊥AB时,过D作DE⊥AC于E,若DE=4,则△BCP面积为▲ .三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)求下列各式中x的值:(1)x2﹣25=0;(2)(x﹣2)3﹣8=0.18.(本题满分6分)已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4.(1)求a、b的值;(2)求a+2b的算术平方根.19.(本题满分5分)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)20.(本题满分5分)如图,B、C、D、E在同一条直线上,AB∥EF,BC=DE,AB=EF,求证:△ACB≌△FDE.(第19题)(第20题)21.(本题满分6分)如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.22.(本题满分6分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC 的面积为▲;(3)在直线l上找一点P,使PB+PC的长最短.23.(本题满分8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.24.(本题满分8分)如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON =30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.25.(本题满分10分)阅读理解:亲爱的同学们,在以后的学习中我们会学习一个定理:直角三角形斜边上的中线等于斜边的一半.即:如图1:在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=AB.牛刀小试:(1)在图1中,若AC=6,BC=8,其他条件不变,则CD=▲;活学活用:(2)如图2,已知∠ABC=∠ADC=90°,点E、F分别为AC、BD的中点,AC=26,BD=24.求EF的长;问题解决:(3)如图3,在Rt△ABC中,∠ACB=90°,AB=10,以AB为边在AB上方作等边三角形ABD,连接CD,求CD的最大值.26.(本题满分12分)阅读以下材料,完成以下两个问题.[阅读材料]已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA 交AE于点F,DF=AC.求证:AE平分∠BAC.结合此题,DE=EC,点E是DC的中点,考虑倍长,并且要考虑连接哪两点,目的是为了证明全等,从而转移边和角.有两种考虑方法:①考虑倍长FE,如图(1)所示;②考虑倍长AE,如图(2)所示以图(1)为例,证明过程如下:证明:延长FE至G,使EG=EF,连接CG.在△DEP和△CEG中,,∴△DEF≌△CEG(SAS).∴DF=CG,∠DFE=∠G.∵DF=AC,∴CG=AC.∴∠G=∠CAE.∴∠DFE=∠CAE.∵DF∥AB,∴∠DFE=∠BAE.∴∠BAE=∠CAE.∴AE平分∠BAC.问题1:参考上述方法,请完成图(2)的证明.问题2:根据上述材料,完成下列问题:已知,如图3,在△ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,∠BAE=∠CAF=90°,AE=AB,AC=AF,AD=3,求EF的长.。
2023-2024学年度上学期八年级数学学科期中考试一、选择题(每小题3分,共24分)1.下列汉字是轴对称图形的是( )A.B.C.D.2.在平面直角坐标系中,点关于轴对称的点的坐标为( )A. B. C. D.3.下列运算正确的是( )A. B. C. D.4.下列各式能用平方差公式计算的是( )A. B. C. D.5.尺规作图:经过已知直线外一点作这条直线的垂线.下列作图正确的是()A. B. C.D.6.计算:下列步骤出现错误的是( )①②③④A.①B.②C.③D.④7.下列三角形:①有两个角等于的三角形;②有一个角等于的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有( )A.①②③B.①②④C.①③D.①②③④8.在实数范围内定义一种新运算“*”,其规则是,如果,那么的值是( )A. B. C. D.二、填空题(每小题3分,共24分)9.计算:________.10.分解因式:________.11.若等腰三角形的底角为,则它的顶角角度为________.xOy ()3,5P --y ()3,5--()3,5()3,5-()5,3-236a a a⋅=33a a a ÷=()325a a =()2242a ba b =()()a b a b -+-()()22x x ++()()21x x -+1133x y y x ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭()()a b c a b c +---()()a c b a c b -+--()()a c b a c b ⎡⎤⎡⎤-+--⎣⎦⎣⎦()22a cb --2222a ac c b---60︒60︒22*a b a b =-()()()2*555x x x +=-+x 1x =-1x =46x =46x =-()32b -=29x -=40︒12.如图,中,,,过点作的垂线交于,,则的长为________.13.若,,则________.14.已知,,则________.15.已知是完全平方式,则________.16.如图,在中,,,平分交于点,点,分别是和上的动点,设,若,则的最小值是________.三、解答题(17-18题各6分,19-23题各3分,24-25题各10分,共72分)17.(本题6分)计算:(1)(2)18.(本题6分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)画出关于轴对称的;ABC △AB AC =120BAC ∠=︒A AB BC D 6BC =AD 25m =26n =2m n+=8a b -=15ab =-22a b +=29y my ++m =ABC △5BA BC ==6AC =BH ABC ∠AC H P D BH AB PA PD m +=4BH =m ()352a a b -()3212633a a a a-+÷ABC △()3,2A -()4,3B --()1,1C --ABC △y 111A B C △(2)求的面积.19.(本题8分)先化简,再求值.,其中,.20.(本题8分)如图,是等腰三角形,,点是上一点,过点作交于点,交的延长线于点.(1)证明:是等腰三角形.(2)若,,,求的长.21.(本题8分)小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号纸片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________.(2)如果要拼成一个长为,宽为的大长方形,则需要2号纸片________张,3号纸片________张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积,可以把多项式分解因式,其结果是________;(4)动手操作,请你依照小刚的方法,利用拼图分解因式________.22.(本题8分)数学课上,刘老师出示了如下的题目:如图1,在等边中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由.ABC △()()()22322x y x y x y +-+-13x =12y =-ABC △AB AC =D AB D DE BC ⊥BC E CA F ADF △60B ∠=︒4BD =2AD =EC ()2a b +()a b +2232a ab b ++2256a ab b ++=ABC △E AB D CB ED EC =AE DB图1图2小敏与同桌小聪探究解答的思路如下:(1)特殊情况,探索结论:当点为的中点时,如图2,确定线段与的大小关系,请你直接写出结论:________(填“>”或填“<”或填“=”)(2)特例启发,解答题目:解:题目中,与的大小关系是:________(填“>”或填“<”或填“=”).理由如下:如图3,过点作,交于点.(请你补充完成解答过程)图3备用图(3)拓展结论,设计新题:小敏解答后,提出了新的问题:在等边中,点在直线上,点在直线上,且,已知的边长为3,,则的长=________(请直接写出结果,备用图供选用).23.(本题8分)阅读下列材料,回答问题.(1)形如型的二次三项式,有以下特点:①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和.把这个二次三项式进行因式分解,可以这样来解:E AB AE BD AE DB AE DB AE DB E EFBC AC F ABC △E AB D CB ED EC =ABC △1AE =CD ()2x p q x pq +++()2x p q x pq+++2x px qx pq=+++.因此,可以得________.利用上面的结论,可以直接将某些二次项系数为1的二次三项式分解因式;(2)利用(1)中的结论,分解因式:①________;②________;③________.24.(本题10分)已知:在平面直角坐标系中,点,点.图1 图2 图3(1)如图1,连接,于点,,求出的长度.(面积法)(2)如图2,点从点出发,沿射线个单位的速度运动,运动时间为秒,设的面积为(平方单位),试用含的式子表示.(3)当,且点在线段的延长线上时,在轴上是否存在一点,使得为等腰三角形?若存在,请直接写出点坐标;若不存在,请说明理由.25.(本小题10分)已知,中,.(1)填表:(2)如图1,,点在线段上,点在线段的延长线上,,求证:;()()2x px qx pq =+++()()x x p q x p =++()()x p x q =++()2x p q x pq +++=2718m m +-=228x x --=22710x y xy -+=()2,0A ()0,2B AB OH AB ⊥H OH m =AB P B BA t AOP △S t S 1S =P BA y Q BPQ △Q ABC △AB AC =BAC ∠20︒100︒602α︒+ABC∠80︒30α︒-90BAC ∠=︒D AB E BA 22ACE BCD α∠=∠=EC ED =图1(3)如图2,,点在线段上,作,且,若,,求的长;图2(4)如图3,点在的延长线上,连接,点为上一点,连接交于点,,当时,若,,求的长.图390BAC ∠=︒D AB BM AB ⊥22M ACD β∠=∠=3BM =2AD =AM P BA CP Q CP BQ AC R 22ACP PBQ γ∠=∠=2180BRC P ∠+∠=︒1AR =2PQ =AP八年级 数学 学科期中考试答案一、选择题题号12345678选项CCDDBDDA二、填空题9.;10.;11.100;12.2;13.30;14.34;15.6或;16.4.8.三、解答题17.(1)……………………………………2分(2)……………………………………4分18.解:(1)略…………………………………………3分(2)6.5………………………………………………3分字母标错统一扣1分;19.解:原式………………………………5分代入得0.5………………………………………………3分20.解:(1)因为,所以,………………………………………………1分又因为,所以,……………………………………1分所以,,所以,又因为,所以,………………………………………………1分所以.…………………………………………………………1分(2)因为,,所以,………………………………………………1分又因为,,所以,…………………………………………………………1分在中,,,所以,………………………………………………1分所以.…………………………………………………………1分21.解:(1)……………………………………2分38b -()()33x x +-6-2156a ab -2421a a -+21210xy y =+AB AC =B C ∠=∠DE BC ⊥90FEC DEB ∠=∠=︒90BDE B ∠=︒-∠90F C ∠=︒-∠BDE F ∠=∠BDE ADF ∠=∠ADF F ∠=∠AF AD =AB AC =60B ∠=︒AB BC AC ==4BD =2AD =6AB =Rt DEB △60B ∠=︒4BD =122BE BD ==4EC =()2222a b a ab b +=++(2)2;3………………………………………………………………2分(3)……………………………………………………2分(4)………………………………………………2分22.解:(1)=……………………………………………………1分【解析】∵为等边三角形,点为的中点,∴,.∵,∴,得出,即有.∴.∴.(2)=…………………………………………………………1分理由如下:作,交于,于,∵,∴,,,∴,……………………………………………………1分∵,∴,∴,…………………………………………………………1分在和中,∴,∴,……………………………………………………1分∵,∴为等边三角形,()()2a b a b ++()()23a b a b ++ABC △E AB 30ACE BCE ∠=∠=︒AE BE =ED EC =30D BCE ∠=∠=︒()180180603030DEB ∠=︒-︒-︒-︒=︒DEB D ∠=∠DB BE =AE DB =EFBC AB E AC F EF BC 60AEF ABC ∠=∠=︒60AFE ACF ∠=∠=︒12∠=∠45120∠=∠=︒EC ED =23∠=∠13∠=∠BDE △FEC △13,45,,DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩BDE FEC ≅△△DB EF =60A AEF AFE ∠=∠=∠=︒AEF △∴.∴.…………………………………………………………1分(3)2或4.………………………………………………………………2分【解析】第一种情况:假设点在线段上,并作,交于,于,如图所示:根据②可知,∵在等边中,的边长为3,,∴,∴;第二种情况:假设点在线段的反向延长线上,如图所示:根据②的结论可知,∵在等边中,的边长为3,,∴.综上所述,的长为2或4.23.解:(1).……………………………………………………2分(2)①.………………2分②.……………………2分③...................2分24.解:(1)..........................................3分(2) (1)分AE DB =AE EF =E AB EFBC AB E AC F AE DB =ABC △ABC △1AE =1AE DB ==134CD DB BC =+=+=E AB AE DB =ABC △ABC △1AE =312CD BC DB =-=-=CD ()()x p x q ++22718[9(2)]9(2)(2)(9)m n m m m m +-=÷+-+⨯-=-+2228[2(4)]2(4)(2)(4)x x x x x x --=++-+⨯-=+-222710()[(2)(5)](2)(5)(2)(5)x y xy xy xy xy xy -+=+-+-+-⨯-=--AB =()202S t t =-≤<………………………………………………2分(3)点坐标:或或或……………………各1分25.解:(1)每空1分………………………………3分(2)∵,,∴……………………1分∵,在中,,∴∴,∴.………………………………1分(3)法1:延长至点,使,连接证…………………………………………1分导,………………………………1分法2:延长至点,使,连接证………………………………1分导,………………………………1分图1图2(4)法1:在上截取,连接.设,在中,,在中,,∵,∴,∴………………1分∴是等边三角形()22S t t =->Q ()0,1-()0,4-(0,2-(0,2+BAC ∠20︒100︒1202α︒+602α︒+ABC∠80︒10︒30α︒-60α︒-AB AC =90BAC ∠=︒18090452ABC ACB ︒-︒∠=∠==︒22ACE BCD α∠=∠=BCD △45CDE α∠=︒+45ACD α∠=︒-45245DCE ααα∠=︒-+=︒+CDE DCE ∠=∠EC ED =BA E AE BM =CE()SAS ACE BAM ≅△△ECD CDE ∠=∠325AM CE AD AE ==+=+=MB F AD BF =AF ()SAS ACD BAF ≅△△F MAF ∠=∠325AM MF AD BM ==+=+=BA BG AR =CG 2m BAC ∠=ACP △22P m γ∠=-ABR △2BRC m γ∠=+2180BRC P ∠+∠=︒()()2222180m m γγ++-=︒30m =︒ABC △证,算角:,…………………………1分,∴,∴…………………………1分图3图3法2:延长至点使得导出或等边………………………………1分全等,出等腰……………………1分 算出3…………………………1分法3:在上截取,给分情况同上()SAS ABR BCG ≅△△PC PG =BC QC =AG AP CQ PQ +=+12AG AP AG +=++3AP =AC H CH AP=30︒HRB △CQ CS CR =。
2023-2024学年第一学期期中八年级数学试题一.选择题(共8小题,每题3分,共24分)1.下列等式正确的是()A.B.C.D.2.下列条件中,不能判定△ABC为直角三角形的是()A.∠A:∠B:∠C=7:3:11B.∠A+∠B=∠CC.a:b:c=7:24:25D.a2=9,b2=1,c=3.已知点P在第四象限内,到x轴的距离等于3,到y轴的距离等于4,则点P坐标是()A.(3,﹣4)B.(3,4)C.(﹣4,3)D.(4,﹣3)4.在解关于x,y的二元一次方程组时,若①﹣②可直接消去一个未知数,则◎和☆的关系是()A.◎=☆B.◎+☆=0C.◎+☆=1D.◎×☆=15.下列函数中,是一次函数的是()A.y=3x2+1B.C.D.6.一组数据由5个正整数组成,其中位数是3.如果这组数据的唯一众数是4,那么这组数据的和为()A.13B.14C.15D.14或157.如图,根据图中的标注和作图痕迹可知,在数轴上的点A所表示的数为()A.﹣1﹣B.﹣1+C.D.18.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2024的坐标是()A.(2,0)B.(4,3)C.(2,4)D.(4,1)7题图8题图10.的算术平方根是的方程组,无论11题图13题图三.解答题(共13小题,共81分)14.(4分)计算:;15.(4分)解方程组:.16.(5分)如图,在Rt△ABC 中,∠ACB=90°,BC=8cm,AC=6cm,动点P 从点B 出发,沿射线BC 以2cm/s 的速度移动,设运动的时间为t(s).(1)求AB 边的长.(2)当∠BAP=90°时,求t 的值.17.(6分)平面直角坐标系中,△ABC 的三个顶点坐标分别为A(1,4),B(3,4),C(3,﹣1).(1)在平面直角坐标系中,画出△ABC,并求出△ABC 的面积.(2)若△A 1B 1C 1与△ABC 关于x 轴对称,请在坐标系中画出△A 1B 1C,写出A 1、B 1、C 1的坐标.21.(7分)如图,一次函数434+-=x y 数y=kx﹣4的图象与直线AB 交于点C(m,2)(1)求m 的值及点A、B 的坐标;(2)若点P 是x 轴上的一个动点,当22.(6分)如图,一辆小汽车在一条限速40km/h 的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A 的正前方60m 处的C 点,过了8s 后,测得小汽车所在的B 点与车速检测仪A 之间的距离为100m.(1)求B,C 间的距离.(2)这辆小汽车超速了吗?请说明理由.23.(6分)已知2a+7b+3立方根是3,3a+b﹣1的算术平方根是4,c 是的整数部分.求3a﹣b+c 的平方根.24.(6分)小丽和小明同时解一道关于x 、y 的方程组,其中a 、b 为常数.在解方程组的过程中,小丽看错常数“a ”,解得;小明看错常数“b ”,解得.(1)求a、b 的值;(2)求出原方程组正确的解.25.(7分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径是2米,长方形的另一条边长是2.3米.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少增加到多少?26.(10分)(1)问题发现:如图1,等腰直角AOB置于平面直角坐标系中,点A,B的坐标分别为(4,0),(0,4),D是AB 上一点,AD=OA,则点D的坐标为______.(2)问题探究:如图2,若点A,B的坐标分别为(16,0),(0,12),其余条件与(1)相同,求经过O,D两点的直线表达式.(3)问题解决:国庆前夕,大唐芙蓉园景区为了提高服务质量,想尽可能美化每一个角落,给游客美的享受.如图3,ABO是景区东门的广场一角,OA,OB两面墙互相垂直,景区管理部门设计将OA,OB墙面布置成历史人文宣传墙,AB边上用建筑隔板搭出AD段将该角落与广场其他区域隔开,AD段布置成长安八景图,剩余BD部分为广场角出入口,内部空间放置一些绿植和供游人休息的桌椅,考虑到出入安全,还需在靠近出入口的E处建一个安检点.已知16mAD OA==,12m∠,安检点E在BC与OD的交点处.求点E分别到OB,OB=,BC平分OBAOA墙面的距离.2023-2024学年第一学期期中八年级数学试题参考答案一.选择题(共7小题)1.A .2.A .3.D .4.A .5.B .6.B .7.A .8.D 二.填空题(共4小题)9.3或.10.3.11.x =1.12.7.13.三.解答题(共11小题)14.计算:解:(1)=﹣1﹣8×﹣3×=﹣1﹣1﹣1=﹣3;15.解方程组:解:原方程组可化为,①+②,得x =3,把x =3代入①,得y =,∴此方程组的解.16.解:(1)在Rt△ABC 中,∠ACB =90°,BC =8cm ,AC =6cm ,由勾股定理,得AB 2=BC 2+AC 2=82+62=100,∴AB =10cm ;(2)当∠BAP =90°时,CP =BP ﹣BC =(2t ﹣8)cm ,AC =6cm ,在Rt△ACP 中,AP 2=AC 2+CP 2=62+(2t ﹣8)2,在Rt△BAP 中,AP 2=BP 2﹣AB 2=(2t )2﹣102,则62+(2t ﹣8)2=(2t )2﹣102,解得:t =,所以当∠BAP =90°时,t 的值为.17.解:(1)如图所示,△ABC 的面积为:=5;(2)(图略)若△A 1B 1C 1与△ABC 关于x 轴对称,则A 1(1,﹣4)、B 1(3,﹣4)、C 1(3,1).18.解:(1)根据题意可知,甲组再次开始加工的时间为:(1500﹣300)÷300=4(小时),∴8﹣4﹣2=2(小时),∴甲组停产2小时;(2)乙组共加工疫苗试剂:200×(8﹣)+400=1300(百盒),∴乙组共加工了疫苗试剂1300百盒.(3)乙组提速前的加工速度为400÷(﹣1)=160(百盒/小时)甲组停工时,300=160(t﹣1),解得t=.甲组再次加工过程中,300+300(t﹣4)=400+200(t﹣),解得t=6.∴甲、乙两组工人加工的疫苗试剂数量相等时t的值或6.19.解:(1)设每名熟练工每月可以安装x辆电动汽车,每名新工人每月可以安装y辆电动汽车,依题意,得:,解得:.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=40.答:还需要招聘40名新工人才能完成一个月的生产计划.20.解:(1)a=7,b=7.5,c=50%;(2)我认为八年级学生掌握传统气节知识较好,理由如下:因为七年级、八年级学生知识竞答活动得平均分一样均为7,但是八年级的众数(8分)大于七年级的众数,因此我认为八年级学生掌握传统气节知识较好;(3)(人)答:估计参加此次测试活动成绩合格的学生人数大约是1480人.21.解:(1)一次函数y=﹣x+4的图象经过点C(m,2),得﹣m+4=2,解得m=,∵一次函数y=﹣x+4的图象分别与x轴,y轴的正半轴交于点A、B,∴当y=0时,﹣x+4=0,解得x=3,即A(3,0),当x=0时,y=4,即B(0,4),∴m=,A(3,0),B(0,4);(2)把点C(,2)一次函数y=kx﹣4,得2=k﹣4,解得k=4,∴y=4x﹣4,当y=0时,x=1,即D(1,0).∴AD=3﹣1=2,=×2×2=2;∴S△ACD∵点P是x轴上的一个动点,设P(x,0),∴PD=|x﹣1|,∵S=,△PCD∴|x﹣1|×2=2,∴x=2或0,∴点P的坐标为(2,0)或(0,0).22.解:(1)在Rt△ABC中,∵AC=60m,AB=100m,且AB为斜边,∴BC===80(m),答:B,C间的距离为80m;(2)这辆小汽车没有超速.理由:∵80÷8=10(m/s),平均速度为:10m/s,10m/s=36km/h,36<40,∴这辆小汽车没有超速.23.解:∵2a+7b+3立方根是3,3a+b﹣1的算术平方根是4,∴,解得:,∵9<14<16,∴3<<4,∴的整数部分是3,∴c=3,∴3a﹣b+c=3×5﹣2+3=15﹣2+3=16,∴3a﹣b+c的平方根是±4.24.解:(1)∵在解方程组的过程中,小丽看错常数“a”,解得,∴﹣1﹣3b=5,解得b=﹣2;∵在解方程组的过程中,小明看错常数“b”,解得,∴2a+1=3,解得a=1;∴a=1;b=﹣2;(2)由(1)知,由①﹣②得﹣y=﹣2,解得y=2,将y =2代入①得x =1,∴原方程组的解为.25.解:(1)能通过.理由如下:如图①所示,当桥洞中心线两边各为0.8米时,0.82+x 2=12,∴x=0.6∵2.5<2.3+6∴能通过(2)如图②所示,OA 2=1.22+(2.8-2.3)2=1.32,∴OA=1.3米∴桥洞的宽至少应为1.3×2=2.6米.。
2007~2008学年度第一学期期中试卷八年级数学(A )一、精心选一选(共40分).1、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是A B C D2、和数轴上的点成一一对应关系的数是A.自然数B.有理数C.无理数D. 实数3、下列说法不正确的A 、251的平方根是±51; B 、-9是81的一个平方根;C 、16的算术平方根是4 ;D 、3273-=-4、已知,三角形的三边长为6,8,10,则这个三角形最长边上的高是A 、10B 、8C 、2.4D 、4.85、2)33(-的值为A.33-B.33-C. 33-或33-D.以上答案都不对 6、如图ABCD 中,EF ∥BC , GH ∥AB ,GH 与EF 线交于点O ,图中共有平行四边形的个数 A 、6 B 、7 C 、8 D 、9学校______________ 班别____________ 姓名________________ 座号_________…………………………………………………………………………………………………………………………………………………………………………○…………… 密 ………… 封 ………… 线 ………… 内 ………… 不 ………… 准 ………… 答 ………… 题 ………………………………○7、如图,延长正方形ABCD 的一边BC 至E ,使CE =AC ,连结AE 交CD 于F , 则∠AFC 的度数是A 、112.5°B 、120°C 、122.5°D 、135°8、有四组线段中不能组成直角三角形的是:A 、3,2,1B 、7,24,25C 、32,42,52D 、9,40.,41 9、剪掉多边形的一个角,则所成的新多边形的内角和A. 减少180°B. 增加180°C. 减少所剪掉的角的度数D. 增加180°或减少180°或不变10、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测:检测后,他们都说窗框是矩形,你认为最有说服力的是A 、甲量得窗框两组对边分别相等B 、乙量得窗框的对角线相等C 、丙量得窗框的一组邻边相等D 、丁量得窗框的两组对边分别相等且两条对角线也相等第二卷二、耐心填一填(4×5=20分).11、实数4-,0,722,3125-,0.1010010001……(两个1之间依次多一个0),3.0,2π中,无理数有: ; 12、如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短距离为______cm 。
霍邱县2023—2024学年度第一学期期中考试八年级数学试卷一、选择题(本大题共有10小题,每小题4分,共计40分)1.下列长度的三条线段能组成三角形的是()A.1,1,2B.2,3,6C.3,4,7D.6,8,92.已知点A 在第三象限,到x 轴的距离为3,到轴的距离为4,则点A 的坐标为()A. B. C. D.3.下列图像中不能表示y 是x 的函数的是()A. B. C. D.4.妈妈从家里出发去公园锻炼,她连续匀速走了后回到家,如图,图中的折线段是她出发后所在位置离家的距离与行走时间之间的关系,则下列图形中可以大致描述妈妈行走的路线的是()A. B. C. D.5.已知函数是关于x 的正比例函数,则关于字母k 、b 的取值正确的是()A., B., C., D.,6.对于函数,下列结论正确的是()A.它的图象必经过点 B.它的图象经过第一、二、三象限C.当时, D.y 的值随x 值的增大而增大7.如图,在中,已知点D 、E 、F 分别是、、的中点,且,则为()(3,4)(3,4)-(4,3)--(3,4)--50min OA AB BC --(km)s (min)t (1)1y k x b =-+-1k ≠1b =1k =1b =-1k =1b ≠1k ≠1b =-1y x =-+(1,0)-1x >0y <ABC △BC AD CE 4ABC S =△BEF S △A.2B.1C.D.8.一次函数与的图象如图所示,则下列结论:①;②;③关于x 的方程的解是;④当时,中,正确的序号有()A.①②B.①③C.②④D.③④9.2023年杭州亚运会竞赛项目中,有一个中华民族传统运动项目一一赛龙舟,此项比赛共分为六个小项目,中国健儿成绩骄人,共获得五金一银.在500米直道竞速赛道上,甲、乙两队所划行的路程y (单位:米)与时间t (单位:分)之间的函数关系如图所示,根据图中提供的信息,有下列说法:①甲队比乙队提前0.5分钟到达终点;②当划行1分钟时,甲队比乙队落后50米;③当划行分钟时,甲队追上乙队;④当甲队追上乙队时,两队划行的路程都是300米.其中错误的是()A.①B.②C.③D.④10.在平面直角坐标系中,已知两直线与相交于第四象限,则k 的取值范围是()A. B. C. D.二、填空题(本大题共有4小题,每小题5分,共计20分)11.围棋起源于中国,它蕴含着中华文化的丰富内涵,是中国文化与文明的体现.如图,围棋盘放在某个平面直角坐标系内,黑棋①的坐标为,白棋④的坐标为,则白棋②的坐标为______________.12.如图,三角形有一部分被墨迹所遮挡,观察可判断三角形的形状为______________三角形.(填“锐角”、“直12141y kx b =+2y x a =+0k <0a >kx x a b -=-3x =3x <12y y <53(0)y kx k k =+≠36y x =-60k -<<30k -<<63k -<<-6k <-(1,2)--(4,3)--角”或“钝角”)13.若将直线平移,使其经过点,则平移后所得的直线表达式为______________.14.已知关于x 的两个一次函数,(其中k ,a 均为常数).(1)若两个一次函数的图象都经过y 轴上的同一个点,则______________;(2)若对于任意实数x ,都成立,则k 的取值范围是______________.三、解答题(本大题共有9小题,共计90分)15.(本题满分8分)已知平面直角坐标系中有一点.(1)点M 在x 轴上,求M 的坐标;(2)当点且轴时,求M 的坐标.16.(本题满分8分)已知A 、B 两地相距,小明以的速度从A 步行到B 地,若设他到B 地的距离为,步行的时间为.(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数;(2)写出该函数自变量的取值范围.17.(本题满分8分)如图,在平面直角坐标系中,的顶点坐标分别为,,,把进行平移,平移后得到,且内任意点平移后的对应点为.(1)画出平移后的图形;(2)计算的面积.18.(本题满分8分)已知y 与成正比例,且当时,.23y x =+(1,1)-11y ax a =-+224y kx k =+-2a k +=12y y >(1,23)M m m -+(5,1)N -//MN x 30km 6km /h km y h x ABC △(2,4)A -(5,1)B --(0,1)C ABC △111A B C △ABC △(,)P x y 1(3,4)P x y +-ABC △1x +1x =6y =(1)求出y 与x 之间的函数表达式;(2)当时,求x 的最大值.19.(本题满分10分)如图,在中,,,是的角平分线.(1)线段是边上的高线,请在图中画出;(2)在(1)条件下,求的度数.20.(本题满分10分)在平面直角坐标系中,一只蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动1个单位长度.其行走路线如图所示.(1)填写下列各点的坐标:,,;(2)写出点的坐标;(3)指出蚂蚁从点到点的移动方向.21.(本题满分12分)如图:已知直线经过点、.(1)求直线所对应的函数表达式;(2)求直线与直线相交于点C ,求点C 的坐标;(3)根据图象,直接写出关于x 的不等式的解集.22.(本题满分12分)习近平总书记说:“人民群众多读书,我们的民族精神就会厚重起来、深邃起来.”某书店计划在4月23日世界读书日之前,同时购进A ,B 两类图书,已知A 类图书每本的进价36元,B 类图书每本的进价45元.(1)该书店计划用4500元全部购进两类图书,设购进A 类x 本,B 类y 本.求y 关于x的关系式;35y -≤≤ABC △28A ∠=︒120ABC ∠=︒CD ABC △CE AB CE DCE ∠()4____,____A ()10____,____A ()15____,____A 2023A 2022A 2023A y kx b =+(5,0)A (1,4)B AB 24y x =-AB 240x kx b ->+>(2)进货时,A 类图书的购进数量不少于60本,已知A 类图书每本的售价为38元,B 类图书每本的售价为50元,若书店全部售完可获利W 元,求W 关于x 的关系式,并说明应该如何进货才能使书店所获利润最大,最大利润为多少元?23.(本题满分14分)小颖根据学习函数的经验,对函数的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表:请把列表补充完整并在所给坐标系中画出该函数的图象;x …01234…y…1…(2)根据函数图象解决问题:①该函数的最大值为_______________;②若y 随x 的增大而减小,则x 应满足的条件是___________________;(3)运用合适的方法探究:若在同一坐标系中另有一次函数,①当时,x 的取值范围是___________________;②将沿y 轴怎样平移?能使与y 的函数图象无交点?请写出具体的平移方向和距离. 霍邱县2023-2024学年度第一学期期中考试八年级数学参考答案一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案DCABACBBDA二、填空题(本大题共4小题,每小题5分,满分20分)11.12.钝角13.14.5且三、解答题15.(1)解:点在x 轴上,,1|1|y x =--2-1-2-1-1112y x =-1y y <1112y x =-1y (5,1)-23y x =-53k <0k ≠ (1,23)M m m -+230m ∴+=解得:,,点M 的坐标为;(4分)(2)点且轴时,,解得:,,点M 的坐标为;(8分)16.解:(1)由题意可得:,此函数是一次函数;(4分)(2)A 、B 两地相距,,解得:,即该函数自变量的取值范围是:.(8分)17.解:(1)如图(4分)(2)(8分)18.解:(1)解:设y 与x 之间的函数关系式为,当时,,,解得:,y 与x 之间的函数关系式为;(4分)(2)解:,y 随x 的增大而增大,当时,x 的值最大,此时,解得:,当时,x的最大值为.(8分)19.解:(1)如图,线段即为所作.正确做出图形即可,对尺规作图不作要求.(3分)(2)由三角形内角和定理可知.32m =-351122m ∴-=--=-∴5,02⎛⎫- ⎪⎝⎭(5,1)N -//MN x 231m ∴+=-2m =-1213m ∴-=--=-∴(3,1)--306y x =- 30km 030630x ∴≤-≤05x ≤≤05x ≤≤11119553532252222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△(1)(0)y k x k =+≠ 1x =6y =6(11)k ∴=+3k =∴3(1)33y x x =+=+30> ∴5y =533x =+23x =∴35y -≤≤23CE 18032ACB A ABC ∠=-∠-∠=︒︒是的角平分线,.(6分),.是边上的高线,,.(10分)20.解(1),,(2分);(4分)(2);(8分)(3)蚂蚁从点到点的移动方向是向下.(10分)21.解(1)把点、代入得:得:把代入②得:;(4分)(2)直线与直线相交于点C(8分)(3)由图象可知,不等式的解集是.(12分)22.解:(1)解:根据题意得:,;(4分)(2)根据题意得:,(8分),随x 的增大而减小.,且x 为整数,当时,W 有最大值,最大值为,(10分).∴当购进A 类图书60本,B 类图书52本时,该书店所获利润最大,为380元.(12分)23.解(1)如表和图:x …01234…y…1…CD ACB ∠1162DCB ACB ∴∠=∠=︒120ABC ∠=︒ 60CBE ∴∠=︒CE AB 906030BCE ︒∴-︒∠==︒46DCE DCB BCE ∴∠=∠+∠=︒4(2,0)A 10(5,1)A 15(7,0)A 2023(1011,0)A 2022A 2023A (5,0)A (1,4)B y kx b =+504k b k b +=⎧⎨+=⎩①②-①②44k =-1k ∴=-1k =-14b -+=5b ∴=5y x ∴=-+24y x =-AB 245y x y x =-⎧∴⎨=-+⎩①②32x y =⎧∴⎨=⎩(3,2)C ∴240x kx b ->+>35x <<36454500x y +=41005y x ∴=-+4(3836)(5045)252510025005W x y x y x x x ⎛⎫=-+-=+=+⨯-+=-+ ⎪⎝⎭20-< W ∴60x ≥ ∴60x =260500380-⨯+=4100525y x ∴=-+=2-1-2-1-1-2-(4分)(2)①1;②;(8分)(3)在同一坐标系中画出一次函数的图像,①如图,当时,x 的取值范围为;(11分)②当时,分别计算出,,平移使与y 的函数图像无交点.需将沿y 轴向上平移,平移的距离大于个单位长度.(14分)1x >1112y x =-111|1|2x x -<--22x -<<1x =112y =-1y =13122⎛⎫--= ⎪⎝⎭∴1112y x =-1y 1112y x =-32。
2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6 B.3,5,7 C.4,5,10 D.3,3,83.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒4.画ABC 边BC 上的高,下列画法正确的是()A . B.C. D.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A.6B.7C.8D.910.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.【答案】D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【详解】解:A .不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6B.3,5,7C.4,5,10D.3,3,8【答案】B【分析】根据三角形的三边关系,进行判断即可.【详解】解:A 、246+=,不能构成三角形;B 、357+>,能构成三角形;C 、4510+<,不能构成三角形;D 、338+<,不能构成三角形;故选B .【点睛】本题考查构成三角形的条件.解题的关键是掌握两条短的线段之和大于第三条线段的长时,三条线段能构成三角形.3.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒【答案】B 【分析】三角形内角和定理,求出BCD ∠,再根据全等三角形对应角相等,即可得出结果.【详解】解:∵73,38D DBC ∠=︒∠=︒,∴10689D D CD BC B ∠︒-∠-=∠=︒;∵ABC DCB △≌△,∴69B ABC CD ∠∠==︒;故选B .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的对应角相等,是解题的关键.4.画ABC 边BC 上的高,下列画法正确的是()A. B.C. D.【答案】D【分析】根据三角形的高的定义:从三角形的一个顶点出发,向对边引垂线,顶点与垂足形成的线段即为三角形的高,进行判断即可.【详解】解:画ABC 边BC 上的高,如图所示:故选D .【点睛】本题考查画三角形的高.熟练掌握三角形的高的定义,是解题的关键.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL【答案】D 【分析】根据题意得到两个三角形是直角三角形,结合给出的条件:直角边和斜边分别相等,从而得出结论.【详解】∵90BCA BDA ∠=∠=︒,∴BAC 和BAD 是直角三角形,∵BC BD =,AB AB =,∴()BAC BAD HL ≌,故选:D .【点睛】此题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法及其应用.6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒【答案】D 【分析】先根据邻补角的定义计算出5∠的度数,再根据多边形的外角和为360︒,计算即可得到答案.【详解】解:如图,120BAE ∠=︒ ,518018012060BAE ∴∠=︒-∠=︒-︒=︒,12345∠∠∠∠∠ 、、、、是五边形ABCDE 的五个外角,12345360∴∠+∠+∠+∠+∠=︒,1234360536060300∴∠+∠+∠+∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查了利用邻补角求角的度数、多边形的外角和,熟练掌握多边形的外角和为360︒是解此题的关键.7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P【答案】C【分析】本题考查了两点之间线段最短、轴对称的性质,熟练掌握轴对称的性质是解此题的关键.先找出点B 对称点B ',连接AB ',再根据两点之间线段最短即可得到答案.【详解】解:正确作法如下:如图,作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点P ,,理由如下:在l 上异于点P 的位置任取一点H ,连接AH ,BH ,B H ',,B 、B '关于直线l 对称,BH B H '∴=,AH BH AH B H AB AP B P AP BP '''∴+=+>=+=+,PA PB ∴+最短,故选:C .8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒【答案】B 【分析】根据等腰三角形的性质可得70ABC C ∠=∠=︒,根据三角形内角和定理可得40A ∠=︒,根据线段垂直平分线的性质可得AD BD =,从而得到40ABD A ==︒∠∠,最后由DBC ABC ABD ∠=∠-∠进行计算即可得到答案.【详解】解: 70AB AC C =∠=︒,,70ABC C ∴∠=∠=︒,180ABC C A ∠+∠+∠=︒ ,18040A ABC C ∴∠=︒-∠-∠=︒,DE 是AB 的垂直平分线,AD BD ∴=,40ABD A ∴∠=∠=︒,704030DBC ABC ABD ∴∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形内角和定理,熟练掌握以上知识点是解此题的关键.9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A .6 B.7 C.8 D.9【答案】C【分析】在AB 上截取AE AC =,证明ADE ADC △△≌,得到3DE CD ==,2AED C B ∠=∠=∠,推出EDB B ∠=∠,得到3BE DE ==,再利用AB AE BE =+,求解即可.【详解】解:在AB 上截取AE AC =,∵AD 平分CAE ∠,∴DAE DAC ∠=∠,∵AD AD =,∴ADE ADC △△≌,∴3DE CD ==,2AED C B ∠=∠=∠,∵AED B EDB ∠=∠+∠,∴EDB B ∠=∠,∴3BE DE ==,∴8AB AE BE =+=;故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是添加辅助线,构造全等三角形和特殊三角形.10.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】B 【分析】由折叠的性质可得90BCD BED ∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,即可判断①②,由BD 不一定等于AD ,可得BDE ∠不一定等于ADE ∠,即可判断③;根据等边三角形的判定即可判断④.【详解】解: 将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,BCD BED ∴ ≌,90BCD BED ∴∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,DE AB ⊥∴,BD 垂直平分CE ,故①②正确,符合题意;BD Q 不一定等于AD ,∴BDE ∠不一定等于ADE ∠,∴DE 不一定平分ADB ∠,故③错误,不符合题意;60ADE ∠=︒ ,180120CDE ADE ∴∠=︒-∠=︒,CDB EDB ∠=∠ ,1602CDB EDB CDE ∴∠=∠=∠=︒,9030CBD BDE ∠=︒-∠=∴︒,30EBD CBD ∠∴∠==︒,即60CBE ∠=︒,BC BE = ,BCE ∴△是等边三角形,故④正确,符合题意;综上所述,正确的有①②④,故选:B .【点睛】本题考查了折叠的性质、线段垂直平分线的判定与性质、等边三角形的判定等知识点,熟练掌握以上知识点是解此题的关键.二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.【答案】BC AD =(答案不唯一)【分析】当BC AD =时,可证()SAS ABC CDA ≌,然后作答即可.【详解】解:当BC AD =时,∵BC AD =,21∠=∠,AC CA =,∴()SAS ABC CDA ≌,故答案为:BC AD =.【点睛】本题考查了全等三角形的判定定理.解题的关键在于熟练掌握根据ASA SAS AAS 、、证明三角形全等.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.【答案】40【分析】此题主要考查了三角形的外角性质,平行线的性质,角平分线的定义,首先根据三角形的外角定理求出40ABD ∠=︒,再根据角平分线的定义得40CBD ABD ∠=∠=︒,然后根据平行线的性质即可得BDE ∠的度数.【详解】解:∵36A ∠=︒,76BDC ∠=︒,∴BDC A ABD ∠=∠+∠,即7636ABD ︒=︒+∠,∴763640ABD ∠=︒-︒=︒,∵BD 是ABC 的角平分线,∴40CBD ABD ∠=∠=︒,∵DE BC ∥,∴40BDE CBD ∠=∠=︒.故答案为:40.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.【答案】()1,1-【分析】根据平行于x 轴的直线上的点的纵坐标相同,得到点B 的纵坐标,过点A 作AD BC ⊥,利用等腰三角形的三线合一,求出点B 的横坐标即可.【详解】解:∵BC x ∥轴,()5,1C ,∴点B 的纵坐标为1,过点A 作AE x ⊥,交x 轴于点E ,交BC 于点D ,则:()2,1D ,∵,AB AC =∴BD CD =,∴点B 的横坐标为2251⨯-=-,∴()1,1B -.故答案为:()1,1-.【点睛】本题考查坐标与图形,等腰三角形的性质.熟练掌握平行于x 轴的直线上的点的纵坐标相同,等腰三角形三线合一,是解题的关键.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.【答案】3【分析】过点D 作DF AB ⊥于点F ,角平分线的性质得到DF DE =,再利用三角形的面积公式进行计算即可.【详解】解:过点D 作DF AB ⊥于点F ,∵AD 平分,BAC DE AC∠⊥∴2DF DE ==,∴ABD △的面积是1132322AB DF ⋅=⨯⨯=;故答案为:3.【点睛】本题考查角平分线的性质.熟练掌握到角平分线上的点到角两边的距离相等,是解题的关键.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.【答案】①.115②.5【分析】先证明ABD BCE ≌,得到BD CE =,BAD CBE ∠=∠,利用三角形外角的性质,求出AFB ∠,利用BD BE -即可得到DE 的长.【详解】解:∵ABC 为等腰直角三角形,∴90,,45ABC AB BC ACB ∠=︒=∠=︒,∵,AD BD CE BD ⊥⊥,∴90ADB CEB ∠=∠=︒,∴90ABD BCE CBE ∠=∠=︒-∠,∴ABD BCE ≌,∴70BAD CBE ∠=∠=︒,7BD CE ==,∴115AFB DBC BCD ∠=∠+∠=︒,5DE BD BE =-=;故答案为:115,5.【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,三角形的外角.解题的关键是证明ABD BCE ≌.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.【答案】①.5(答案不唯一)②.5(答案不唯一)③.9【分析】(1)根据题意,画出图形,进行求解即可.(2)根据题意,分,,A B C ∠∠∠分别为直角,进行讨论求解即可.【详解】解:(1)如图,当5,5m n ==时,此时:()5,5A ,()5,0B ,()0,5C ,由图可知,三角形ABC 为等腰直角三角形,满足题意,故答案为:5,5(答案不唯一);(2)∵点(),0B m ,点()0,C n ,m 与n 均是正整数,∴点,B C 分别在,x y 轴的正半轴上,∵()5,5A ,∴()()2222222225555AB m AC n BC m n =+-=+-=+,,,当A ∠为直角时,222AB AC BC +=,即:()()2222225555m n m n +-++-=+,整理得:10m n +=,∴10m n =-,∴()()222222551055AB n n AC =+-+=+-=,满足ABC 为等腰直角三角形,∴1,2,3,4,5,6,7,8,9m =,9,8,7,6,5,4,3,2,1n =,满足上述条件的ABC 共有9个;当B ∠为直角或C ∠为直角,不存在点,B C 分别在,x y 轴的正半轴上,m 与n 均是正整数时,ABC 为等腰直角三角形;故答案为:9.【点睛】本题考查坐标与图形.熟练掌握等腰直角三角形的性质,利用数形结合和分类图讨论的思想进行求解,是解题的关键.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.【答案】1x y =⎧⎨=⎩【分析】利用加减消元法求解即可.【详解】解:32341x y x y -=⎧⎨+=⎩①②,2⨯+①②得,77x =,解得,1x =,将1x =代入②得,141y +=,解得,0y =,∴10x y =⎧⎨=⎩.【点睛】本题考查了加减消元法解二元一次方程组.解题的关键在于正确选取合适的方法解方程组.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.【答案】(1)2x ≥-,图见解析(2)3,4【分析】(1)根据解不等式的步骤,进行求解,再在数轴上表示出解集,即可;(2)分别求出每一个不等式的解集,找到它们的公共部分,即可.【详解】解:(1)4113x x -≥-,去分母,得:4133x x -≥-,移项,合并,得:2x ≥-;数轴表示解集,如图:(2)()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩①②,由①,得:52x ≥;由②,得:4x ≤;∴不等式的解集为:542x ≤≤.∴整数解为:3,4.【点睛】本题考查解一元一次不等式和一元一次不等式组.熟练掌握解一元一次不等式的步骤,正确的计算,是解题的关键.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.【答案】见解析【分析】利用SAS 证明CAB DAB ∆∆≌,即可证明C D ∠=∠.【详解】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS 、AAS 、ASA 、SSS 等全等三角形的判定方法是解题的关键.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.【答案】76AEC ∠=︒,14DAE ∠=︒【分析】三角形的内角和定理,求出,CAD BAC ∠∠的度数,角平分线求出,CAE BAE ∠∠的度数,利用CAE CAD ∠-∠求出DAE ∠,三角形的外角求出AEC ∠即可.【详解】解:∵AD 是ABC 中BC 边上的高,∴90ADC ∠=︒,∵32,60B C ∠=∠=︒︒,∴18088BAC B C ∠=︒-∠-∠=︒,18030CAD ADC C ∠=︒-∠-∠=︒,∵AE 平分BAC ∠,∴1442CAE BAE BAC ∠=∠=∠=︒,∴76AEC B BAE ∠=∠+∠=︒,14DAE CAE CAD ∠=∠-∠=︒.【点睛】本题考查与角平分线有关的三角形的内角和定理,三角形的外角.熟练掌握相关知识点,是解题的关键.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.【答案】(1)图见解析(2)NP ,到线段两端距离相等的点在线段的垂直平分线上【分析】(1)根据作图步骤,作图即可;(2)根据中垂线的判定,进行作答即可.【小问1详解】解:如图,线段CD 即为所求【小问2详解】证明:,CM CN MP NP == ,∴点,C P 在线段MN 的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.故答案为:NP ,到线段两端距离相等的点在线段的垂直平分线上【点睛】本题考查基本作图——作垂线.熟练掌握垂线的尺规作图方法,中垂线的判定方法,是解题的关键.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.【答案】(1)见解析(2)见解析【分析】(1)由题意得,AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,证明()SAS ABD ACE △≌△,进而可证BD CE =;(2)如图,延长CE 交BD 于F ,交AB 于G ,由()SAS ABD ACE △≌△,可得ABD ACE ∠=∠,由180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,可得90BFC CAB ∠=∠=︒,进而结论得证.【小问1详解】证明:∵等腰直角三角形ABC 和等腰直角三角形ADE ,90BAC DAE ∠=∠=︒,∴AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,∵AB AC =,DAB EAC ∠=∠,AD AE =,∴()SAS ABD ACE △≌△,∴BD CE =;【小问2详解】证明:如图,延长CE 交BD 于F ,交AB 于G ,∵()SAS ABD ACE △≌△,∴ABD ACE ∠=∠,∵180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,∴90BFC CAB ∠=∠=︒,∴CE BD ⊥.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,三角形内角和定理,对顶角相等.解题的关键在于明确全等的判定条件.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)【答案】(1)①图见解析②图见解析(2)图见解析【分析】(1)作以点C 为顶点的等边三角形的中线与BR 的交点即为点A ,利用三线合一以及等边三角形的角为60︒,即可得到ABC 是以90ACB ∠=︒的直角三角形;②根据150,CAE AE BC ∠=︒=,得到点E 在线段BR 上,点A 的下方3个单位长度的位置,再根据DE AB =确定点D 的位置,即可;(2)分别以点,,A B C 为原心,以小于AB 长度的一半为半径画弧,与三边的交点为,,P Q R ,连接即可得到等边三角形PQR .【详解】解:(1)①如图所示:ABC 即为所求,②如图所示,ADE V 即为所求;(2)如图,PQR 即为所求;【点睛】本题考查作图—复杂作图.熟练掌握等边三角形的性质,全等三角形的判定,是解题的关键.24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.【答案】(1)证明见解析(2)①补图见解析;②EC BD DE =+,证明见解析【分析】(1)由AH 平分PAQ ∠,可得BAM CAM ∠=∠,由BC AH ⊥,可得90AMB AMC ∠=∠=︒,证明()ASA ABM ACM ≌,进而可证BM CM =;(2)①如图1,即为所求;②如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,则ABN ACM ∠=∠,证明()SAS ABD ACF △≌△,则AD AF =,BAD CAF ∠=∠,由12DAE PAQ BAM CAM ∠=∠=∠=∠,可得BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,则BAD EAM ∠=∠,BAE FAM ∠=∠,由BAD BAE EAM FAM ∠+∠=∠+∠,可得DAE FAE ∠=∠,证明()SAS ADE AFE △≌△,则DE EF =,根据EC CF EF =+,等量代换可得EC BD DE =+.【小问1详解】证明:∵AH 平分PAQ ∠,∴BAM CAM ∠=∠,∵BC AH ⊥,∴90AMB AMC ∠=∠=︒,∵BAM CAM ∠=∠,AM AM =,90AMB AMC ∠=∠=︒,∴()ASA ABM ACM ≌,∴BM CM =;【小问2详解】①解:如图1,②解:EC BD DE =+,证明如下:如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,∴ABN ACM ∠=∠,∵AB AC =,ABD ACF ∠=∠,DB CF =,∴()SAS ABD ACF △≌△,∴AD AF =,BAD CAF ∠=∠,∵12DAE PAQ BAM CAM ∠=∠=∠=∠,∴BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,∴BAD EAM ∠=∠,BAE FAM ∠=∠,∴BAD BAE EAM FAM ∠+∠=∠+∠,即DAE FAE ∠=∠,∵AD AF =,DAE FAE ∠=∠,AE AE =,∴()SAS ADE AFE △≌△,∴DE EF =,∵EC CF EF =+,∴EC BD DE =+.【点睛】本题考查了角平分线的定义,全等三角形的判定与性质,轴对称的性质.解题的关键在于确定全等三角形的判定条件.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.【答案】(1)①1P ,3P ,②36P y -≤≤,且0P y ≠,3P y ≠(2)①47P x ≤≤,②()()1110m n --=【分析】(1)①画出图形,再根据垂直对称点的定义判断即可;②先判断ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,所得图形即为点P 的轨迹,再根据垂直对称点的定义判断即可;(2)①根据垂直对称点的定义,结合AB BP ⊥可得线段PA 垂直平分线过点B ,即有AB BP =,过P 点作PT x ⊥轴于点T ,证明AOB BTP ≌V V ,问题随之得解;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段;同理当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,即可判断出动点P 形成的轨迹组成的图形为平行四边形,问题随之得解.【小问1详解】①如图,∵()0,3A ,()0,0B ,()13,3P ,()21,1P ,()33,0P,∴133AB AP BP ===,3AB BP ⊥,1AP AB ⊥,22P B =,25AP =,∴点B 在3AP 的垂直平分线上,点A 在1BP 的垂直平分线上,∴线段AB 的垂直对称点是1P ,3P ;②∵对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,∴AB PB =或者AB PA =,∴ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,如图,当AB PA =时,点P 位于点P '处,∴根据等腰三角形的性质可得顶点A 在BP '的垂直平分线上,当AB PB =时,点P 位于点P ''处,∴根据等腰三角形的性质可得顶点B 在AP ''的垂直平分线上,当点P 位于点A 或者点B 时,点P 不是线段AB 的垂直对称点,∵()0,3A ,()0,0B ,3AB =,∴()0,6M ,()0,3N -,∴点P 的纵坐标P y 的取值范围:36P y -≤≤,且0P y ≠,3P y ≠;【小问2详解】①过P 点作PT x ⊥轴于点T ,如图,∵P 是线段AB 的垂直对称点,AB BP ⊥,∴点B 在AP 的垂直平分线上,90ABP ∠=︒,∴AB BP =,即ABP 是等腰直角三角形,∵90ABP AOB ∠=︒=∠,∴OAB OBA OBA PBT ∠+∠=∠+∠,∴OAB PBT ∠=∠,∵PT x ⊥轴,∴90BTP AOB ∠=︒=∠,∴BTP AOB ≌,∴AO BT =,∵()0,A a ,(),0B b ,3a =,14b ≤≤,∴3AO a ==,BO b =,∴3AO BT ==,∴3OT OB BT b =+=+,∵14b ≤≤,∴437b ≤+≤,∴47OT ≤≤,∴点P 的横坐标P x 的取值范围:47P x ≤≤;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段,且两条线段相等;当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,且两条线段相等;∵两组对边分别相等的四边形是平行四边形,∴动点P 形成的轨迹组成的图形为平行四边形,如图,∵a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,∴点A 垂直移动的距离为()1m -,点B 水平移动的距离为()1n -,∴动点P 形成的轨迹组成的图形为平行四边形的底为()1n -,高为()1m -,∵动点P 形成的轨迹组成的图形面积为10,∴()()1110n m --=.【点睛】本题主要考查了坐标与图形,平行四边形的判定与性质,等腰三角形的判定与性质,全等三角形的判定与性质,垂直平分线的性质等知识,正确理解线段垂直对称点的含义是解答本题的关键.。
2007~2008学年度第一学期期中考试八年级数学试卷(B )(注意事项及说明: 本卷考试时间为120分钟, 全卷满分为150分)第一卷一、认真选一选!(每题4分,共40分)1、一个直角三角形,两直角边长分别为3和4,下列说法正确的是( )A 、斜边长为5B 、三角形的周长为25C 、斜边长为25D 、三角形的面积为20 2、在下列长度的各组线段中,能组成直角三角形的是( )A 、5,6,7B 、5,12,13C 、1,4,9D 、5,11,123、将直角三角形的三条边长同时扩大相同的倍数, 得到的三角形是( )A 、钝角三角形;B 、锐角三角形;C 、直角三角形;D 、等腰三角形.4、在52.3,3,311,414.1,2 π-中,无理数有( ) A 、1个 B 、2个 C 、3个 D 、4个 5、和数轴上的点成一一对应关系的数是( )A 、自然数B 、有理数C 、无理数D 、实数 6、实数9的算术平方根是( )A 、±3B 、3C 、±3D 、3 7、下列说法正确的是( )A 、有理数只是有限小数B 、无理数是无限不循环小数C 、带根号的数都是无理数D 、3π是分数 8、观察下面右面四幅图案,能通过图案(1)的平移得到的是( )(1)ABCD9、在ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A 、1∶2∶3∶4B 、2∶1∶2∶1C 、1∶1∶2∶2D 、1∶2∶2∶110、若某数的平方等于这个数的本身,则这个数等于( ) A 、 0 B 、1± C 、–1或0 D 、 1或0二、细心填一填!(每题4分,共20分)11、在Rt △ABC 中,∠C=90°a=5,b=12,则c= 。
12、25的平方根是 ,=-38 。
13、某人乘电梯从一楼到二楼,这一运动过程叫 。
14、在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为 。
2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。
2022-2023学年度第一学期期中考试试卷初二数学 2022.10班级: 姓名:一、 选择题(每小题3分,共30分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是( )齐鲁医院 华西医院 湘雅医院 协和医院 A . B . C . D .2.下列长度的三条线段,能组成三角形的是( ) A .3,4,8B .5,6,10C .5,5,11D .6,7,133.如图所示,△ABC 中AB 边上的高线画法正确的是( )4.如图,在△ABC 中,∠A =45°,∠C =75°,BD 是△ABC 的角平分线,则∠BDC 的度数为( ) A .60° B .70° C.75° D.105°5.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( )A. 8B. 9C. 10D. 126.如图,已知MON ,以O 为圆心,任意长为半径画弧,与射线OM 、ON 分别交于A 、B ,再分别过点A 、B 作OM 、ON 的垂线,交点为P ,画射线OP ,可以判定△AOP ≌△BOP ,全等的依据是( ) A. SSS B. SAS C. AAS D. HL第4题 第5题 第6题 第7题D CABH C BAABC HH CBABC HAA B C D7.如图,∠AOB=60°,点P 在边OA 上,OP=10,点M ,N 在边OB 上,PM=PN ,若MN=2, 则OM 的长为( ) A. 5 B. 4 C. 4.5 D. 68.借助如图所示的“三等分角仪”能三等分某些度数的角,这个“三等分角仪”由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC =CD =DE ,点D ,E 可在槽中滑动.若∠BDE =75°,则∠CDE 的度数是( )A .68°B .75°C .80°D .90°9.如图,点P 是∠AOB 内任意一点,且∠AOB=40°,点M 和点N 分别是射线OA 和射线OB 上的动点, 当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,AE ⊥AB 且AE AB =,BC ⊥CD 且BC CD =,请按照图中所标数据,计算图中实线所围成的图形的面积是( )A. 30B. 32C. 35D. 38第8题 第9题 第10题二、填空题(每小题2分,共16分)11.八边形内角和是_________°,外角和是_________°. 12.等腰三角形的两边分别为4和7,则其周长是____________.13.如图,点P 是AD 上一点,∠ABP=∠ACP ,请再添加一个条件:_______________,使得△ABP ≌△ACP . 14. 如图,BD 是∠ABC 的平分线,点P 是射线BD 上一点,PE ⊥BA 于点E ,PE=2,点F 是射线BC 上一个动点,则线段PF 的最小值为________.15.如图,某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,则此时轮船与小岛P 的距离BP =__________海里.第13题 第14题 第15题16.如图,△ABC 的面积为10cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为_________.17.在平面直角坐标系xOy 中,点A 的坐标为(4,﹣3),在坐标轴上确定一点P ,使△AOP 为等腰三角形,则满足条件的点P 的个数是_________.18.如图,在△ABC 中,∠ABC =45°,过点C 作CD ⊥AB 于点D ,过点B 作BM ⊥AC 于点M ,连接MD ,过点D 作DN ⊥MD ,交BM 于点N .CD 与BM 相交于点E ,若点E 是CD 的中点;下列结论:①BN=CM ;②∠AMD =45°;③NE ﹣EM =MC ;④EM :MC :NE =1:2:3.其中正确的结论有_________________.(填写序号即可)三、解答题(19、20题每题5分,21、22、23题4分,24、25、26题6分,27、28题7分,共54分) 19.如图,点A ,B ,C ,D 在一条直线上,且AB =CD ,若∠1=∠2,EC =FB .求证:∠E =∠F .20.《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在ABC △中,AC AB >. 求证:____________________________.证明:如图,由于AC AB >,故在AC 边上截取AD AB =,连接BD .(在上图中补全图形)AD AB =,ABD ∴=∠∠________.(_________________________________)(填推理的依据) ADB ∠是BCD 的外角,CBA∴∠=∠+∠.(__________________________________)(填推理的依据)ADB C DBC∴∠>∠.ADB C∴∠>∠.ABD C∠∠∠,ABC ABD DBC=+∴∠>∠.ABC ABD∴∠>∠.ABC C21.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).A B C;(1)在图中作出△ABC关于y轴对称的△111(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.22.2019年12月18日,新版《北京市生活垃圾管理条例》正式发布,并在2020年5月1日起正式实施,这标志着北京市生活垃圾分类将正式步入法制化、常态化、系统化轨道.目前,相关配套设施的建设已经开启.如图,计划在某小区道路l上建一个智能垃圾分类投放点O,使得道路l附近的两栋住宅楼A,B到智能垃圾分类投放点O的距离相等.(1)请在图中利用尺规作图(保留作图痕迹,不写作法),确定点O的位置;(2)得到OA=OB的依据为:.23.如图:点E是∠ABC的边BA上一点,EF//BC.(1)在图中作出∠ABC的平分线BM,交EF于点M.(保留作图痕迹,不写作法和证明);(2)在(1)中,判断△BEM的形状,并证明.24.已知在△ABC 中,∠CAB 的平分线AD 与BC 的垂直平分线DE 交于点D ,DM ⊥AB 于M ,DN ⊥AC 的延长线于N .(1)求证:BM=CN ;(2)当∠BAC =70°时,求∠DCB 的度数.25.如图,已知△ABC 和△ADE 均为等边三角形,连接CD 、BE ,作AF ⊥CD 于点F ,AG ⊥BE 于点G 求证:(1)∠CDA =∠BEA ; (2)△AFG 为等边三角形.26.已知,如图,Rt △ABC 中,90BAC ∠=︒. (1)按要求作图:(保留作图痕迹) ①延长BC 到点D ,使CD BC =; ②延长CA 到点E ,使2AE CA =; ③连接AD ,BE .(2)猜想线段AD 与BE 的数量关系,并证明.27.如图,在平面直角坐标系xoy 中,直线l 经过点M (3,0),且平行于y 轴.给出如下定义:点P (x ,y )先关于y 轴对称得点1P ,再将点1P 关于直线l 对称得点P ',则称点P '是点P 关于y 轴和直线l 的二次反射点.(1)已知A (-4,0),B (-2,0),C (-3,1),则它们关于y 轴和直线l 的二次反射点',','A B C 的坐标分别是________________________________;(2)若点D 的坐标是(a ,0),其中a<0,点D 关于y 轴和直线l 的二次反射点是点D ',求线段DD '的长; (3)已知点E (4,0),点F (6,0),以线段EF 为边在x 轴上方作正方形EFGH 中,若点P (a ,1),Q (a +1,1)关于y 轴和直线l 的二次反射点为P ',Q ',且线段P Q ''与正方形EFGH 的边有公共点,求a 的取值范围.28.已知:线段AB及过点A的直线l.如果线段AC与线段AB关于直线l对称,连接BC交直线l于点D,以AC为边作等边△ACE,使得点E在AC的下方,作射线BE交直线l于点F,连接CF.(1)根据题意将图1补全;(2)如图1,如果∠BAD = α(30°<α<60°).①∠BAE= ,∠ABE= (用含有α代数式表示);②用等式表示线段F A,FE与FC的数量关系,并证明.lABB图1(3)如图2,如果60°<α<90°,直接写出线段F A,FE与FC的数量关系,不证明.lAB图22022-2023学年度第一学期八年级数学期中考试评分标准2022年10月 命题人:安瑞一、选择题(本题共20分,每小题2分)二、填空(本题共16分,每小题2分) 三、解答题(19、20题每题5分,21、22、23题4分,24、25、26题6分,27、28题7分,共54分) 19. 证明:∵∠1+∠DBF =180°,∠2+∠ACE =180°. 又∵∠1=∠2, ∴∠DBF =∠ACE , ∵AB =CD , ∴AB +BC =CD +BC , 即AC =DB ,在△ACE 和△DBF 中,∴△ACE ≌△DBF (SAS ), ∴∠E =∠F .20.ABC C ∠>∠∠ADB 等边对等角三角形的外角等于与它不相邻的两个内角的和21. (1)如图所示:(2)如图,D 的坐标为(0,3),(0,﹣1),(2,﹣1).22.(1)如图:点O 即为所求;(2)得到OA=OB 的依据为:线段的垂直平分线上的点到线段的两个端点的距离相等. 23.略 24. 略25.∵△ABC 和△ADE 均为等边三角形, ∴AD=AE ,AC=AB , ∠DAE=∠CAB60°, ∴∠DAE+∠3=∠CAB+∠3, 即∠DAC=∠EAB ,在△DAC 和△EAB 中 AD AE DAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌EAB (SAS) ,∴∠1=∠2 , ∵AF ⊥CD ,AG ⊥BE , ∴∠AFD=∠EGA=90°,在△ADF 和△AEG 中12AFD AGE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△AGE (AAS), ∴AF=AG ,∠DAF=∠EAG ,∴∠DAF=∠FAE=∠EAG+∠FAE , 即 ∠FAG=△DAE=60°, ∴△AFG 为等边三角形.26.(1)如图所示,即为所求,(2)延长AC 到点F ,使CF =AF ,连接BF , 在ACD ∆和FCB ∆中CD CB ACD FCB AC FC =⎧⎪∠=∠⎨⎪=⎩()ACD FCB SAS ∴∆≅∆ AD FB ∴=∵CF AC =2AF AC ∴= 2AE CA =∴AF AE =90BAC ︒∠= AB EF ∴⊥∴AB 是EF 的垂直平分线, ∴BE BF = ∴AD =BF11 G F E D C B l A 27.28.解:(1)补全图形;(2)① 260α-︒,120.α︒-② 数量关系是FA = FC + FE ,证明如下:在FA 上截取FG = EF ,连接EG .由①得,∠ABE = 120°-α,∠BAD = α . ∴ ∠AFB = 180° -∠ABE -∠BAD = 60° . ∴ △EFG 为等边三角形.∴ EG = FE = FG ,∠GEF = 60°. 又∵ 等边三角形AEC ,∴ ∠AEC = 60°.∴ ∠AEC =∠GEF = 60°.∴ ∠AEC -∠GEC =∠GEF -∠GEC . 即 ∠AEG =∠CEF .又∵ 等边三角形AEC ,∴ AE = EC .∴ △AEG ≌△CEF .∴ AG = FC .∴ FA = AG + FG = FC + FE .(3)FA = FC - FE。
2024-2025学年度第一学期期中考试试题八年级数学一、选择题(每小题3分,共30分)1.下列是二元一次方程的是( )A .B .C .D .2.已知点在第二象限,则点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.物理课上小新学习了利用排水法测量物体的体积(即物块的体积等于排出的水的体积).如图,他将一个正方体物块悬挂后完全浸入盛满水的圆柱形小桶中(绳子的体积忽略不计),水溢出至一个量简中,测得溢出的水的体积为.由此,可估计该正方体物块的棱长位于哪两个相邻的整数之间( )第3题图A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.利用加减消元法解方程组,小致说:要消去,可以将①②;小远说:要消去,可以将①②.关于小致和小远的说法,下列判断正确的是( )A .小致对,小远不对B .小致不对,小远对C .小致和小远都对D .小致和小远都不对5.若一个正比例函数的图象经过点,则这个图象一定也经过点( )A .B .C .D .6.如图,在平面直角坐标系中,直线:与直线:交于点,则关于、的方程组的解为()3xy =21x y +=23x y +=215x -=(),4A x (),4B x --350cm 34165633x y x y -=⎧⎨+=⎩①②x 3⨯-5⨯y 3⨯+2⨯()4,5-()5,4-4,15⎛⎫-⎪⎝⎭5,14⎛⎫-⎪⎝⎭()5,4-1l 4y x =+2l y kx b =+(),3A a x y4y x y kx b =+⎧⎨=+⎩第6题图A .B .C .D .7.如图,在平面直角坐标系中,,,,点是线段上一点,直线解析式为,当随增大而增大时,点的坐标可以是( )第7题图A .B .C .D .8.如果表中给出的每一对,的值都是二元一次方程的解,则表中的值为( )012531A .B .C .0D .79.《九章算术》是人类科学史上应用数学的“算经之首”,书中有这样一个问题:若2人坐一辆车,则9人需要步行,若“……”.问:人与车各多少?小高同学设有辆车,人数为,根据题意的列方程组为,根据已有信息,题中用“……”表示的缺失条件应补为( )A .三人坐一辆车,有一车少坐2人B .三人坐一辆车,则2人需要步行C .三人坐一辆车,则有两辆空车D .三人坐一辆车,则还缺两辆车10.如图,在一场篮球比赛中,某队甲、乙两队员的位置分别在、两点处,队员甲抢到篮板后,迅速将球抛向对方半场,队员乙看到后同时快跑到点处恰好接住了球,则图中分别表示球、乙队员离点的距离(单位:米)与甲队员抛球后的时间(单位:秒)关系的大致图象是( )A .B .C .D .二、填空题(每小题3分,共21分)31x y =⎧⎨=-⎩14x y =-⎧⎨=⎩13x y =-⎧⎨=⎩13x y =-⎧⎨=-⎩()1,1A -()3,1B ()2,3P M AB PM y kx b =+y x M ()2,1-()0,1()2,1()3,1x y 3ax by -=m x y1-m7-3-x y ()2932y x y x =+⎧⎨=-⎩A B C A y x11.若是同类二次根式,请写出一个符合条件的最简二次根式为________.12.如图,是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”,两点的坐标分别为,,则表示蝴蝶“翅膀顶端”点的坐标为________.第12题图13.将直线向左平移2个单位,再向下平移6个单位后,正好经过点,则的值为________.14.如果某个二元一次方程组的解中两个未知数的值互为相反数,我们称这个方程组为“和谐方程组”.若关于,的方程组是“和谐方程组”,则的值为________.15.若一次函数的图象不经过第一象限,则的取值范围是________.16.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图①;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图②那样的正方形,中间还留下了一个洞,恰好是面积为的小正方形,则每个小长方形的面积为________.图①图②17.如图,在平面直角坐标系中,点,点,点为轴上一点,连接,将绕点逆时针旋转得,连接,得到等腰直角,且为直角,连接,请写出当最大时点的坐标为________.第17题图a a A B ()3,1--()3,1-C 2y kx =-()2,4k x y 343x y ax y a+=+⎧⎨-=⎩a 25y kx k =++k 225mm 2mm ()1,5B ()3,0D A y AB AB B BC AC ABC △ABC ∠CD CB CD -C三、解答题(共8小题,共69分)18.(本题满分8分)计算:(1);(2.19.(本解满分8分)解方程组:(1);(2).20.(本题满分7分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,点的坐标为.(1)将先向右平移5个单位,再关于轴对称,得到,请画出;(2)直接写出,,三点的坐标分别为________,________,________;(3)的面积为________.21.(本题满分7分)定义:若两个二次根式,满足,且是有理数,则称与是关于的“友好二次根式”。
盐城市第一初级中学教育集团2010~2011学年度第一学期期中考试八年级数学试题考试时间:100分钟 卷面总分:120分 考试形式:闭卷卷首语:亲爱的同学们,你感受到数学的魅力了吗?这份试卷将会记录你的自信、沉着、智慧和收获,祝你成功!一、选择题(每小题2分,共16分)1. 2的算术..平方根是 【 】 A .2 B . 2-C .±2D .±22.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是 【 】3.下列四组线段中,可以构成直角三角形的是 【 】 A .1,2,3 B .2,3,4 C . 3,4,5 D . 4,5,64. 下列命题中,错误的是 【 】 A.等边三角形的三条边相等 B.平行四边形的对角线互相平分且相等 C.等腰梯形的两条对角线相等 D .等腰三角形底边上的中点到两腰的距离相等5.如图,在数轴上表示实数7的点可能是 【 】 A .点P B .点Q C .点M D .点N6. 如图,矩形A B C D 的两条对角线相交于点O ,1,60=︒=∠AB AOB ,则矩形的对角线A C 的长是 【 】A .1B .2C .3D .37. 如图,把△ABC 绕点C 顺时针方向旋转40°得△A ’CB ’,若AC ⊥A’B’,则∠BAC 的度数为【 】 A .50°B .60°C .70°D .80°8.如图,在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4 = 【 】A . 3.65B . 2.42C . 2.44D . 2.65二、填空题(每小题3分,共30分)A .B .C .D .ODC A B 第6题 A ′ B ′ ABCD第5题 第7题9. -2是 的立方根.10. 写出两个和为4的无理数______、_____.11. 已知x 、y 为实数,且x - 1 +3(y –2)2= 0,则x –y 的值为 12. 菱形的两对角线长分别为6cm 和8cm ,则这个菱形的面积为 cm 2.13. 2010年10月31日晚,举世瞩目的上海世博会圆满落下帷幕,本届世博会参观人数达7308万人次,创造世博会历史之最,将7308万人次用科学记数法(四舍五入保留3个有效数字)表示约为 万人.14.如图,四边形ABCD 是正方形,延长AB 到E , 使AE=AC ,则∠BCE 的度数是 °.15. 若一个等腰梯形的中位线长是5cm ,腰长是5cm ,则这个等腰梯形的周长是 cm . 16. 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米. 一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行 米.17. 如图,□ABCD 中,E 、F 分别为B C 、A D 边上的点,要使BF D E =,需添加一个条件: .18. 有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是图 (填序号).三、解答题(本大题共10小题,共74分)19.(本题4分)计算:328)3(4---ABC EDF(第17题)(第16题)(第14题) C E20.(本题8分)求下列各式中x 的值. (1)8142=x(2)27)3(3=-x21.(本题6分)如图,已知平行四边形A B C D ,D E 是A D C ∠的角平分线,交B C 于点E . (1)试说明:C D C E =;(2)若B E C E =,80B ∠=︒,求D AE ∠的度数.22.(本题6分)如图, A 、B 两地被建筑物阻隔,为测量A 、B 两地的距离,在地面上选一点C ,连接CA 、CB ,分别取CA 、CB 的中点D 、E . (1)若DE 的长度为32米,求A 、B 两地之间的距离;(2)如果D 、E 两点之间还有阻隔,请你设计一种..解决此问题的方案.EDCBAABDEC23.(本题8分)问题背景:在A B C △中,A B 、B C 、A C,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点A B C △(即A B C △三个顶点都在小正方形的顶点处),如图1所示.这样不需求A B C △的高,而借用网格就能计算出它的面积.(1)请你将A B C △的面积直接填写在横线上:__________________; (2)画D E F △,D E 、E F 、D F试判断D E F △的形状,并说明理由.24. (本题8分) 如图,∠AOB =90°,OA =250cm ,OB =50cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?图1图2ACB25.(本题8分)如图,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 和∠BAC 外角的平分线,BE ⊥AE .(1)试说明:DA ⊥AE ;(2)试判断AB 与DE 是否相等?并说明理由.26.(本题8分)在Rt ⊿ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,设 ⊿ABC 的面积为S ,周长为l .(2)如果a +b -c =m ,观察上表猜想:lS = ,(用含有m 的代数式表示);(3)说出(2)中结论成立的理由.ABD EF27.(本题8分)Rt △ABC 与Rt △FED 是两块全等的含30o 、60o角的三角板,按如图(一)所示拼在一起,CB 与DE 重合.(1) 试说明:四边形ABFC 为平行四边形;(2) 取BC 中点O ,将△ABC 绕点O 顺时针旋转到如图(二)中△C B A '''位置,直线C B ''与AB 、CF 分别相交于P 、Q 两点,直接写出OQ 、OP 长度的大小关系(不要说明理由); (3) 在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB 为菱形,并说明理由.图(二)图(一)FF28.(本题10分)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =B E .(1)试说明:CE =CF ;(2)在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下列各题:①如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12, E 是AB 的中点,且∠DCE =45°,求DE 的长;②如图3,在△ABC 中,∠BAC =45°,AD ⊥BC ,BD =4,CD =6,则S △ABC = (直接写出结果,不需要说明理由).A G D F图1BAD C图3B CA DE图2C图1C图3图4C 图2周长________周长________ 附加题:(共20分)1.(本题10分)如图1,有一张菱形纸片ABCD ,AC =8,BD =6.(1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平 行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD 剪 开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行 四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4 中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)2.(本题10分) 如图,在梯形ABCD 中,AD //BC ,E 是BC 的中点,AD =5,BC =12,CD =32,∠ C =45°,点P 是BC 边上一动点,设PB 的长为x .(1) 当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为直角梯形; (2) 当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为平行四边形;; (3) 点P 在BC 边上运动的过程中,以P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.PEABCD。
宣化区2023—2024学年度第一学期阶段性检测八年级数学试卷(冀教版)(考试时间为90分钟,满分为100分)一、选择题:(本大题有14个小题,1-6小题每题3分,7-14小题每题2分,共34分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各组中的两个图形属于全等图形的是()A. B.C. D.2.等于()A.4- B.4C.4± D.2563.如图,将OAB 绕点O 逆时针旋转到OA B '' ,点B 恰好落在边A B ''上.已知4,1AB cm BB cm '==,则A B '的长是()A.1cmB.2cmC.3cmD.4cm4.约分32262x y x y的结果是()A.3xB.3xyC.23xy D.23x y5.下列变形不正确的是()A.1122x xx x+-=--- B.b a a bc c--+=-C.a b a bm m-+-=- D.22112323x x x x--=---6.下列命题正确的有()①4的平方根是2;②π是无理数;③()23-的平方根是3-;④()34-的立方根是4-;⑤0.1-是0.001的一个立方根.A.2个B.3个C.4个D.5个7.根据下列已知条件,能唯一画出ABC 的是()A.3,4,8AB BC AC === B.4,3,30AB BC A ==∠= C.60,45,4A B AB ∠=∠== D.90,6C AB ∠== 8.对于分式1aa +,下列叙述正确的是()A.当0a =时,分式无意义B.存在a 的值,使分式1aa +的值为1C.当1a =-时,分式值为0D.当1a ≠-时,分式有意义9.如图,点C 在AOB ∠的OB 边上,用尺规作出了CN OA ∥,连接EN ,作图痕迹中,ODM CEN ≅ 根据的是()A.SASB.SSSC.ASAD.AAS10.下列命题的逆命题是假命题的是()A.若0=,则0a b +=B.若a b =,则22a b =C.直角三角形的两锐角互余D.全等三角形的三组对应边相等11.如图,,,,A B C D 是四个村庄,,,B D C 在一条东西走向公路的沿线上,1BD km =,1DC km =,村庄A 和C ,A 和D 间也有公路相连,且公路AD 是南北走向,3AC km =,只有A 和B 之间由于间隔了一个小湖,无直接相连的公路.现决定在湖面上造一座桥,测得 1.2,0.7AE km BF km ==,则建造的桥长至少为()A.1.2kmB.1.1kmC.1kmD.0.7km12.小明在纸上书写了一个正确的演算过程,同桌小亮一不小心撕坏了一角,如图所示,则撕坏的一角中“”为()A.14a - B.41a + C.14a- D.11a -+13.如图,在正方形ABCD 中,4,AB E =为AB 边上一点,点F 在BC 边上,且1BF =,将点E 绕着点F 顺时针旋转90 ,得到点G ,连接DG ,则DG 的最小值为()A.2B. C.3 D.14.《九章算术》中记录的一道题译为白话文是:把一封信件用慢马送到1000里外的城市,需要的时间比规定时间多2天;若用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍.小明认为规定的时间为7天,小亮认为规定的时间为8天,关于两个人的观点,下列说法正确的是()A.小明的观点正确 B.小亮的观点正确C.两人观点都不正确D.无法确定二、填空题:(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)15.若分式52x x +-的值为零,则x 为__________.16.分式22m m n -和33nm n+的最简公分母为__________.17.已知9999909911,99a b ==,则a 与b 的大小关系为__________.18.已知ABC 和11111111,30,5;3A C B B B AB A B AC A C ∠=∠=====,已知C n ∠= ,则1C ∠=__________.19.关于x 的分式方程1322x m x x++=--有增根,则m =__________.20.如图,在数轴上竖直摆放一个直径为4个单位长度的半圆,A 是半圆上的中点,半圆直径的一个端点位于原点O .该半圆沿数轴从原点O 开始向右无滑动滚动,当点A 第一次落在数轴上时,此时点A 表示的数为__________.三、解答题:(本大题共6个小题,共48分.解答应写出文字说明、证明过程或演算步骤)21.计算:(本小题满分8分)对于分式方程22333x x x-+=--,牛牛的解法如下:解:方程两边同乘()3x -,得()2323x x -+=--去括号,得2326x x -+=-+解得1x =∴原方程的解为1x =(1)上述解答过程中,从哪一步开始错误__________(填序号);(2)请写出正确的解答过程.22.(本小题满分8分)如图,池塘两端A B 、的距离无法直接测量,请同学们设计测量A B 、之间距离的方案.小明设计的方案如图所示:他先在平地上选取一个可以直接到达A B 、的点O ,然后连接AO 和BO ,接着分别延长AO 和BO 并且使,CO AO DO BO ==,最后连接CD ,测出CD 的长即可.你认为以上方案可行吗?若可行,请说明理由.23.(本小题满分8分)小明和小强一起做分式的游戏,如图所示,他们面前各有三张牌(互相可以看到对方的牌),两人各自任选两张牌分别做分子和分母,组成一个分式,然后两人均取一个相同的x 值,再计算分式的值,值大者为胜.为使分式有意义,他们约定x 是大于3的正整数.小明的牌:1x +2x +3x +小强的牌:1x -2x -3x -(1)小明组成的分式中值最大的分式是__________,小强组成的分式中值最大的分式是__________;(2)小强思考了一下,哈哈一笑,说:“虽然我是三张带减号的牌,但最终我一定是胜者”;小强说的有道理吗?请你通过计算说明.24.(本小题满分8分)问题背景:如图1,在四边形ABCD 中,,120,90,,AB AD BAD B ADC E F =∠=∠=∠= 分别是,BC CD 上的点,且60EAF ∠= ,探究图中线段,,BE EF FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG BE =.连接AG ,先证明ABE ADG ≅ ,再证明AEF AGF ≅ ,可得出结论,他的结论应是____________________;探索延伸:如图2,若在四边形ABCD 中,,180,,AB AD B D E F =∠+∠= 分别是,BC CD 上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立?若成立请说明理由.图1图225.(本小题满分8分)暑假期间,部分家长组织学生到户外游学实践活动,一名家长带一名学生.现有甲、乙两家游学机构,其报价相同,每位学生的报价比家长少20元.按报价计算,家长的总费用为50000元,学生的总费用为48000元.(1)请利用分式方程求家长和学生报价分别是每位多少元?(2)经协商,甲机构的优惠条件:家长全价,学生都按七五折收费;乙机构的优惠条件:家长和学生均按m (m 为整数)折收费,结果他们选择了总费用较少的乙机构,求m 的最大值.26.(本小题满分8分)点A B 、在数轴上分别表示有理数,a b A B 、、两点之间的距离表示为AB ,在数轴上A B 、两点之间的距离AB a b =-.已知数轴上两点A B 、对应的数分别为1-、3,点P 为数轴上一动点,其对应的数为x .(1),A B 两点之间的距离是__________;(2)设点P 在数轴上表示的数为x ,则x 与4-之间的距离表示为__________;(3)若点P 到点A 、点B 的距离相等,则点P 对应的数为__________;(4)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为8?若存在,请直接写出x 的值;若不存在,说明理由.宣化区2023-2024学年度第一学期阶段性检测八年级数学试卷(冀教版)参考答案一、选择题:题号1234567答案D B C B A A C 题号891011121314答案DBBBACB二、填空题:题号151617181920答案5-3()()m n m n +-相等n ︒或180n ︒-︒1-4π+三、解答题:21.(1)①;………………………3分(2)52……………………8分22.解:SAS 证全等………………8分23.(1)解:小明:31x x ++,小强:13x x --……………………4分(2)解:小强说的有道理,理由如下:∵13(1)(1)(3)(3)831(3)(1)(1)(3)(1)(3)x x x x x x x x x x x x x x -+-++--=-=-+-++-+-,当x 是大于3的正整数时,∴80(1)(3)x x >+-,∴1331x x x x -+>-+,故小强说的有道理.…………………8分24.(1)解:EF BE FD =+.…………………2分探索延伸:EF BE FD =+仍然成立.理由:如图2,延长FD 到点G ,使DG BE =,连接AG 先证()ABE ADG SAS ≅ ,再证EAF GAF ∠=∠.从而()AEF AGF SAS ≅ ,∴EF FG =,又∵FG DG DF BE DF =+=+,∴EF BE FD =+.……………………8分图225.(1)解:设家长的报价为x 元,学生的报价为()20x -元,由题意得:500004800020x x =-,经检验,500x =是分式方程的解,答:家长的报价为500元,学生的报价为480元;……………………5分(2)由题意得:(5000048000)50000480000.7510m+⨯<+⨯,解得:38849m <,∵m 为正整数,∴m 的最大值为8.……………………8分26.(1)4;……………………2分(2)4x +;……………………4分(3)1……………………6分(4)3-或5…………………8分。
罗湖外语初中学校2023—2024学年度第一学期八年级期中数学试题说明:1.本学科试题从第1页至第8页,共8页。
满分120分,考试时间120分钟。
2.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目的指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
3.考生务必保持答题卡的整洁。
考试结束时,只交回答题卷,本卷自行保管。
一、选择题(每题3分,共10小题,共30分,每题只有一个正确选项)1.下列四个实数中,无理数是()A.﹣B.C.0.3D.2.16的算术平方根是()A.±4B.±2C.4D.﹣43.下列几组数不能构成直角三角形的是()A.,,B.2,3,4C.3,4,5D.6,8,104.根据下列表述,能确定准确位置的是()A.太平洋影城3号厅2排B.南偏东40°C.深南大道中段D.东经116°,北纬42°5.下列运算正确的是()A.B.C.D.6.已知过A (a ,﹣2),B (3,﹣4)两点的直线平行于y 轴,则a 的值为()A.﹣2B.3C.﹣4D.27.关于一次函数y =﹣2x +1,下列说法不正确的是()A.图象与y 轴的交点坐标为(0,1)B.图象与x 轴的交点坐标为(,0)C.y 随x 的增大而增大D.图象不经过第三象限8.我国古代数学著作《九章算术》中记载了一道有趣的问题.大意是:有一个水池,纵截面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇径直拉向岸边,它的顶端恰好到达岸边的水面,如图.设芦苇长为x 尺,那么可以列出方程为()A.x 2+52=(x +1)2B.x 2+102=(x +1)2C.(x ﹣1)2+102=x 2D.(x ﹣1)2+52=x29.甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.图中l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km )随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个10.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx﹣k图象是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.二次根式中,x的取值范围是.12.点A(2,﹣3)到y轴的距离是.13.若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.14.如图,一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱表面爬到B点,那么它需要爬行的最短路线的长是.15.如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则AP+PC的最小值是.(第14题图)(第15题图)三、解答题(本大题共7小题,其中第16题12分,第17题6分,第18题6分,第19题7分,第20题6分,第21题8分,第22题10分,共55分)16、(1);(2).(3);17.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,A(﹣4,5),B(﹣2,1),C (﹣1,3).(1)作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出△A 1B 1C 1的各顶点的坐标;(3)求△AB 1C 1的面积.18.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E .(1)试判断△BDE 的形状,并说明理由;(2)若AB =3,AD =9,求线段BE 的长度.k19.探索计算:弹簧挂上物体后会伸长.已知一弹簧的长度(cm )与所挂物体的质量(kg )之间的关系如下表:所挂物体的质量/kg 01234567弹簧的长度/cm1212.51313.51414.51515.5(1)当所挂物体的质量为3kg 时,弹簧的长度是;(2)在弹性限度内如果所挂物体的质量为xkg ,弹簧的长度为ycm ,根据上表写出y 与x 的关系式;(3)当所挂物体的质量为5.5kg 时,请求出弹簧的长度;(4)如果弹簧的最大长度为20cm ,那么该弹簧最多能挂质量为多少的物体?20.如图,已知一次函数y =kx +b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.21.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.22.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE =DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.数学参考答案一、选择题1-5:BCBDD;6-10:BCDBB。
2007学年度第一学期八年级数学新教材期中试卷
(测试时间90分钟,满分100分)
一、填空题(本大题共14题,每题2分,满分28分) 1、方程x x 5122=+的一次项系数是____________________;
2、已知y 是x 的正比例函数,当=x 3时,2-=y ,那么y 与x 之间的比例系数是___________;
3、方程)1()1(+=-x x x x 的根是____________________ ;
4、写出一个18的同类二次根式__________;
5、方程0232=-x x 的根是__________;
6、计算)33(3-÷=__________;
7、若x 、y 是变量,且函数2
)1(k x k y +=是正比例函数,则k=_________; 8、因式分解:222y xy x ++-=_______________;
9、已知关于x 的一元二次方程012)1(22=-++-m x x m 有一个根是0,则m 的值是_________;
10、若关于x 的方程(3x-1)2=1-k 没有实数根,则k 的取值范围是___________; 11、某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x ,依题意可列方程_______________;
12、已知A(x 1,y 1)和B (x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1____y 2•;(填“>”, “<”或“=”)
13、若x<0,则化简2)1(--x x =_________;
14、若012=-+x x ,那么代数式7223-+x x 的值为____________________.
二、单项选择题(本大题共4题,每题2分,满分8分) 15、下列关系中的两个量成正比例的是( )
A .从甲地到乙地,所用的时间和速度;
B .正方形的面积与边长
C .买同样的作业本所要的钱数和作业本的数量;
D .人的体重与身高
16、方程①3x -1=0,②3x 2-1=0,③01
32=+
x
x ,④ax 2-1=3x(a 为实数),⑤2x 2-1=(x -1)(x -2),⑥(5x+2)(3x-7)=15x 2 其中一元二次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 17、等式
2
2
-=-x x x x
成立的条件是( )
18、当k>0时,下列方程中没有实数根的是( )
A .012=--kx x
B .022=-+k x x
C .0=+k kx
D .012=+kx 三、(本大题共6题,每题5分,满分30分) 19、计算3
1
248512739+-+ 20、计算
)0()>÷+b bc a a bc b a c ab (
21、解方程43)38(23-=-y y y 22、解方程2
1
212-=--
y y
23、用配方法解方程:x x 6232=-
24、设a 、b 为有理数,且133
332+=--a b ,求a 、b 的值.
四、(本大题共3题,25题8分,26、27题每题7分,满分22分)
25、甲、乙两人同时从A 地前往相距5千米的B 地.甲骑自行车,途中修车耽误
了20分钟,甲行驶的路程s (千米)关于时
间t (分钟)的函数图像如图所示;乙慢跑
所行的路程s (千米)关于时间t (分钟)的函数解析式为1
(060)12
s t t =
≤≤. (1)在图中画出乙慢跑所行的路程关于时间
的函数图像;
(2)乙慢跑的速度是每分钟 千米;
(3)甲修车后行驶的速度是每分钟
________千米;
(4)甲、乙两人在出发后,中途 分
钟时相遇.
26、若k 是一个整数,已知关于x 的一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 最大可以取多少?为什么?
(第14题图)
27、a 为何值时,关于x 的方程0122=--x ax 有实数根?并求出它的实数根.(可用a 表示)
五、(第28题9分,29题3分,满分12分)
28、已知△ABC 的两边是关于x 的方程02322=+-k kx x 的两根,第三边长为4.当k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长.
29、计算:)
711)(57(1127654--+-。