第9章 MATLAB符号计算
- 格式:ppt
- 大小:97.00 KB
- 文档页数:23
如何在Matlab中进行符号计算Matlab是一种非常强大的数学计算软件,除了常见的数值计算,也可以进行符号计算。
符号计算是一种基于数学符号的计算方法,可以进行代数运算、求解方程、求导、积分等一系列符号运算。
在Matlab中进行符号计算,可以帮助我们更好地理解数学概念、解决复杂的数学问题。
本文将介绍如何在Matlab中进行符号计算,包括符号变量的定义、基本运算、方程求解、求导和积分等方面。
一、符号变量的定义在Matlab中进行符号计算,需要首先定义符号变量。
符号变量是用来表示未知数和函数的数学符号,可以使用syms关键字来定义。
例如,我们可以定义一个符号变量x,并进行一些基本操作。
```syms x;f = x^2 + sin(x);```在上述代码中,我们定义了一个符号变量x,并定义了一个函数f,代表x的平方加上sin(x)。
在后续的运算中,可以使用这些符号变量进行计算。
二、基本运算在Matlab中进行符号计算时,可以进行基本的数学运算,包括加减乘除、幂运算、开方等。
这些运算符在符号计算中与数值计算中的用法一致。
例如,我们可以进行如下的运算:```syms x;f = x^3 + 2*x^2 - x + 1;g = diff(f, x);```在上述代码中,我们定义了一个函数f,然后使用diff函数对f进行求导,将结果赋值给变量g。
通过这样的方式,可以方便地进行复杂的数学运算。
三、方程求解在Matlab中进行符号计算时,经常需要解方程。
Matlab提供了solve函数,可以对方程进行求解。
例如,我们可以解一个简单的一次方程:```syms x;eqn = 2*x + 3 == 7;sol = solve(eqn, x);```上述代码中,我们定义了一个方程eqn,然后使用solve函数求解方程,将结果赋值给变量sol。
在Matlab中可以同时解多个方程,并得到符号解或数值解。
四、求导和积分除了基本运算和方程求解,Matlab还提供了求导和积分的函数,方便进行符号计算。
Matlab中的符号计算方法在数学和科学领域,符号计算是一个重要的工具。
它可以帮助我们进行精确的数学计算和推理,而不仅仅是依赖计算机的数值近似。
Matlab作为一个强大的数值计算软件,也提供了丰富的符号计算功能,用于代数运算、微积分和代数方程求解等方面。
本文将介绍Matlab中的一些常用的符号计算方法和技巧。
一、符号变量在Matlab中,我们可以通过声明符号变量来表示符号对象。
符号变量通常用小写字母表示,例如x、y、z等。
使用符号变量,我们可以进行各种代数运算,例如加法、减法、乘法和除法等。
下面是一些示例:syms x y zf = x^2 + y^2 - z^2;g = (x + y + z)^3;h = sin(x) * cos(y);通过声明符号变量,并使用这些变量进行计算,我们可以得到精确的结果,而不是使用数值近似。
二、符号表达式在Matlab中,符号表达式是由符号变量和运算符组成的一种数据类型。
使用符号表达式,我们可以构建复杂的代数表达式和方程。
例如,我们可以定义一个符号表达式f表示一个多项式函数,并对其进行运算:f = x^3 - 2*x^2 + x - 1;我们可以对符号表达式进行加减乘除等运算,并得到一个新的符号表达式。
三、代数方程求解在解决数学问题时,我们经常需要求解代数方程。
Matlab提供了强大的符号求解工具,可以帮助我们求解各种类型的代数方程。
例如,我们可以使用solve函数求解一元方程:syms xeqn = x^2 - 3*x + 2 == 0;sol = solve(eqn, x);通过solve函数,我们可以找到满足方程eqn的所有解,并将其存储到sol变量中。
除了一元方程,Matlab还支持多元方程的求解。
例如,我们可以使用solve函数求解一个二元方程组:syms x yeqn1 = x + 2*y == 5;eqn2 = x - y == 1;sol = solve([eqn1, eqn2], [x, y]);通过solve函数,我们可以找到满足方程组eqn1和eqn2的所有解,并将其存储到sol变量中。
matlab 符号计算指数在MATLAB中,符号计算和指数运算是非常常见的操作。
符号计算是指在计算过程中保持变量的符号形式,而不是将其替换为具体的数值。
这对于处理复杂的代数表达式和方程式非常有用。
指数运算则涉及对数值或符号变量进行幂运算。
首先,我们可以使用符号计算工具箱中的符号变量来进行符号计算。
通过定义符号变量,我们可以创建符号表达式,并对其进行各种运算,包括指数运算。
例如,我们可以使用符号变量创建一个符号表达式,并对其进行指数运算,如下所示:matlab.syms x; % 定义符号变量x.expr = x^2; % 创建符号表达式x^2。
在这个例子中,我们定义了一个符号变量x,并创建了一个符号表达式x^2。
接下来,我们可以使用MATLAB的符号计算工具箱中的函数对这个表达式进行操作,比如对其进行微分、积分或者简化等操作。
如果我们要对这个表达式进行指数运算,可以使用^符号进行幂运算,例如计算x^2的平方根可以这样做:matlab.sqrt_expr = sqrt(expr); % 计算x^2的平方根。
除了对符号表达式进行指数运算,我们还可以使用符号计算工具箱中的函数对数值进行指数运算。
比如,我们可以使用exp函数计算e的幂次方,使用power函数计算任意数的幂次方,例如:matlab.exp_val = exp(2); % 计算e的平方。
power_val = power(2, 3); % 计算2的立方。
总之,在MATLAB中进行符号计算和指数运算非常方便,可以通过符号变量进行复杂的符号表达式操作,也可以直接对数值进行指数运算。
这些功能为处理数学问题提供了很大的便利。
《深度探讨:从数值运算到符号运算的MATLAB应用》在科学计算领域中,MATLAB无疑是一个不可或缺的工具。
它被广泛应用于数学建模、数据分析、图形可视化和算法开发等领域。
在MATLAB中,数值运算和符号运算是两个核心概念,它们分别在不同的领域中发挥着重要作用。
本文将从数值运算和符号运算两个方面展开讨论,带您深入探索MATLAB的应用价值。
一、数值运算1. MATLAB中的数值数据类型在MATLAB中,常见的数值数据类型包括整数、浮点数和复数等。
它们在科学计算中有着广泛的应用,例如在矩阵运算、微分方程求解和优化算法中。
2. 数值计算函数的应用MATLAB提供了丰富的数值计算函数,包括线性代数运算、插值和拟合、统计分布和随机数生成等。
这些函数为科学计算提供了强大的支持,使得复杂的数值计算变得更加简单高效。
3. 数值方法在实际问题中的应用通过具体的案例,我们可以深入了解MATLAB在实际问题中的数值计算方法。
通过有限元分析解决结构力学问题、通过数值积分求解物理方程、通过数值微分求解工程问题等。
二、符号运算1. MATLAB中的符号计算工具MATLAB提供了符号计算工具包,可以进行符号变量的定义、代数运算、微分积分和方程求解等。
这为数学建模、符号推导和精确计算提供了强大的支持。
2. 符号计算函数的应用通过具体的例子,我们可以深入了解MATLAB中符号计算函数的应用。
利用符号计算求解微分方程、利用符号变量定义复杂的代数表达式等。
3. 符号计算在科学研究中的应用通过详细的案例,我们可以了解符号计算在科学研究中的应用。
利用符号计算推导物理模型、利用符号运算求解工程问题等。
总结与展望:通过本文的深度探讨,我们对MATLAB中的数值运算和符号运算有了全面的了解。
数值运算为我们提供了高效的数值计算工具,而符号运算则为我们提供了精确的符号计算工具。
这两者相辅相成,在不同的领域中发挥着重要的作用。
希望通过本文的阐述,读者可以更加深入地理解MATLAB中数值运算和符号运算的应用,提升科学计算的能力和水平。
Matlab中的符号及符号表达式计算方法介绍概述:在数字计算和科学工程领域,Matlab是一种非常常用的工具。
它被广泛用于进行数据分析、数值计算和模拟。
除了传统的数值计算,Matlab还提供了符号计算功能,这使得用户可以进行符号表达式的建模和计算。
本文将介绍Matlab中的符号计算功能,包括符号和符号表达式的定义、建模和计算方法。
一、符号计算的定义和背景:符号计算是一种将数学问题表示为符号表达式进行求解的方法。
与传统的数值计算相比,符号计算不仅可以处理具体数值,还可以处理未知变量和符号表达式。
这意味着符号计算可以进行精确的数学求解,提供准确的符号化结果。
在Matlab中,符号计算可以通过Symbolic Math Toolbox实现。
通过该工具箱,用户可以定义符号变量、符号表达式和符号函数,并进行各种符号计算。
二、符号变量的定义和使用:在Matlab中,可以使用"syms"命令定义一个或多个符号变量。
符号变量是不具体数值的变量,可以代表任意数值或符号。
下面是一个示例:syms x y z; %定义符号变量x、y和z定义完成后,我们可以将符号变量用于构建符号表达式,并进行各种符号计算。
例如,可以定义一个简单的符号表达式,并计算其导数:f = x^2 + y^2 + z^2; %定义符号表达式fdf_dx = diff(f, x); %计算f对x的导数三、符号表达式的建模和操作:在Matlab中,可以使用定义的符号变量构建复杂的符号表达式,并进行各种符号操作。
例如,可以定义一个二次方程,并求解其根:syms a b c x;equation = a*x^2 + b*x + c; %定义二次方程roots = solve(equation, x); %求解方程的根除了求解方程的根,还可以进行符号表达式的展开、因式分解、合并等操作。
这些符号操作扩展了Matlab的数学建模能力,使得用户能够更加灵活和方便地进行符号计算。
matlab符号运算求解微分方程在科学研究和工程技术领域,微分方程是一种常见的数学模型,用于描述存在着变化和相互关联的自然现象。
然而,微分方程通常需要采用解析或数值方法才能得到精确的解。
而作为一种强大的数学计算软件和编程语言,MATLAB的符号计算工具可以提供一种方便有效的方式来求解微分方程。
符号计算是一种基于数学公式和符号代数方法的计算技术,相比于数字计算,它更加精确和高效。
在MATLAB中,通过Symbolic Math Toolbox可以轻松实现符号计算,包括求解微分方程、计算积分、求解方程等。
下面我们将从三个方面介绍如何使用MATLAB求解微分方程。
一、符号变量的定义和使用在MATLAB中,我们首先需要定义符号变量。
通过声明符号变量,我们可以让MATLAB知道我们要处理的变量是符号变量,而不是数字变量。
定义符号变量可以使用syms函数。
例如,我们要定义一个符号变量x,只需要在MATLAB命令窗口中输入以下代码:syms x接下来,我们可以使用符号变量x来表示各种函数表达式和微分方程中的未知函数。
例如,我们可以定义一个函数表达式f(x):f(x) = x^2 + 2*x + 1我们可以使用f(x)来表示这个函数,在MATLAB命令窗口中输入f(x),就可以得到函数的值。
同时,符号变量也可以用来表示微分方程中的未知函数。
例如,我们可以定义一个一阶常微分方程:syms y(x)ode = diff(y,x) == x其中,y(x)表示未知函数,而ode表示微分方程。
diff函数用于求解函数y(x)对x的导数。
我们可以使用dsolve函数来求解微分方程。
例如,我们可以在命令窗口中输入以下代码:dsolve(ode)通过这个函数调用,MATLAB将给出微分方程的解析解。
二、符号运算和微分方程求解在MATLAB中,我们可以使用符号运算来对方程进行化简和求解。
符号运算包括:1. simplify:对表达式进行化简;2. collect:将表达式中相似的项进行合并;3. factor:将表达式进行因式分解;4. expand:将表达式展开;5. subs:用指定的符号代替表达式中的变量。
一、背景介绍Matlab是一种强大的数学软件,常用于数学建模、仿真、数据分析等领域。
在工程和科学研究中,求解符号方程是一个常见的问题,Matlab提供了丰富的符号计算工具,可以帮助用户高效地求解符号方程。
二、Matlab符号计算工具1. 符号变量定义在Matlab中,我们可以通过syms命令定义符号变量,使用符号变量进行符号运算。
例如:```matlabsyms x y```2. 求解符号方程Matlab提供了solve函数,可以用来求解符号方程。
solve函数的基本语法如下:```matlabsol = solve(equations, variables)```其中,equations表示要求解的方程组,variables表示待求解的变量。
solve函数会返回符号方程的解。
三、示例接下来,我们通过一个示例来演示如何使用Matlab求解符号方程。
假设我们要求解如下的符号方程:```matlabsyms xeqn = x^2 - 4*x + 3 == 0;sol = solve(eqn, x);disp(sol);```运行以上代码,可以得到方程x^2 - 4*x + 3 = 0的解为x = 1或x = 3。
四、注意事项在使用Matlab求解符号方程时,有一些需要注意的事项:1. 可能存在多解或无解的情况,在求解后需要对解进行检查;2. 符号计算是一种复杂的运算,可能存在数值精度问题,需要注意数值的精确性;3. 在求解复杂的方程组时,可能需要对方程组进行化简或变形,以提高求解效率。
五、总结通过Matlab的符号计算工具,我们可以较为方便地求解符号方程,实现高效的符号计算。
在工程和科学研究中,这些工具能够帮助我们快速解决复杂的数学问题,提高工作效率。
希望本文的介绍和示例能够帮助读者更好地理解和应用Matlab的符号计算工具。
Matlab在求解符号方程方面具有广泛的应用。
通过利用Matlab的符号计算工具,用户可以轻松地进行符号方程的求解和符号计算,并获得高精度的结果。
如何使用MATLAB进行符号计算1. 引言在科学计算和工程应用中,符号计算是一项重要的任务。
符号计算可以帮助我们推导数学公式、解方程、进行代数化简等等。
MATLAB作为一种强大的科学计算工具,也提供了符号计算的功能。
本文将介绍如何使用MATLAB进行符号计算。
2. 符号计算基础在MATLAB中,符号计算通过符号工具箱提供。
首先需要将变量声明为符号变量,使用`syms`关键字来完成。
例如,下面的代码将变量x和y声明为符号变量:```syms x y```其次,我们可以使用`sym`函数将数值转换为符号类型。
例如,下面的代码将整数2转换为符号类型:```a = sym(2)```最后,我们可以使用各种符号运算进行符号计算。
例如,下面的代码演示了符号变量之间的加法运算:```x + y```3. 推导数学公式符号计算的一个常见用途是推导数学公式。
MATLAB提供了一系列函数来进行推导,如`diff`、`int`等。
例如,下面的代码计算了函数sin(x)的导数: ```syms xf = sin(x);df = diff(f, x);```在这个例子中,`diff`函数用于计算导数,第一个参数是要计算导数的函数,第二个参数是相对于哪个变量求导数。
4. 解方程另一个常见的符号计算任务是解方程。
MATLAB提供了`solve`函数来解方程。
例如,下面的代码解了方程x^2 - 2 = 0:```syms xsol = solve(x^2 - 2);```解方程的结果是一个结构体数组,每个元素代表一个解。
5. 代数化简符号计算还可以用于代数化简。
MATLAB提供了`simplify`函数来进行代数化简。
例如,下面的代码对表达式(x+1)^2进行化简:```syms xexpr = (x+1)^2;simplified_expr = simplify(expr);````simplify`函数将表达式化简为最简形式。
一、介绍matlab符号运算matlab符号运算是指利用matlab软件进行代数表达式的计算和求解。
在matlab中,符号运算可以实现对多项式的加减乘除、导数和积分等操作,非常适用于代数表达式的计算和求解。
在工程、数学和物理等领域,matlab符号运算被广泛应用,能够高效地解决各种代数运算问题。
二、matlab符号运算的基本操作1. 创建符号变量在matlab中,可以使用syms函数来创建符号变量,例如:```matlabsyms x y```这样就创建了两个符号变量x和y,可以用于代数表达式的计算和求解。
2. 代数表达式的运算利用符号变量创建代数表达式,并进行加减乘除等运算,例如:```matlabf = x^2 + 2*x + 1;g = x + 1;h = f * g;```这样就实现了对代数表达式的乘法运算,h为结果表达式。
3. 多项式求导利用diff函数可以对代数表达式进行求导,例如:```matlabf = x^2 + 2*x + 1;df = diff(f,x);```这样就求出了代数表达式f对x的一阶导数df。
4. 多项式积分利用int函数可以对代数表达式进行积分,例如:```matlabf = x^2 + 2*x + 1;F = int(f,x);```这样就求出了代数表达式f对x的不定积分F。
5. 多项式因式分解利用factor函数可以对代数表达式进行因式分解,例如:```matlabf = x^2 + 2*x + 1;factored_f = factor(f);```这样就对代数表达式f进行了因式分解,得到了其因式分解形式。
三、matlab符号运算在工程应用中的实例在工程领域,matlab符号运算被广泛应用于各种代数表达式的计算和求解。
以下以电路分析为例,介绍了matlab符号运算在工程应用中的实例。
1. 电路分析中的符号运算在电路分析中,通常需要对电路中的电压、电流、电阻等元件进行建模和分析。
MATLAB符号计算MATLAB是一种强大的数值计算和科学计算工具,不仅可以进行数值计算,还可以进行符号计算。
符号计算是一种基于数学符号的计算方法,它可以处理复杂的代数表达式、方程、微分、积分等数学问题。
MATLAB 中的符号计算将这些问题转化为代数表达式,然后通过符号工具箱进行求解。
使用MATLAB进行符号计算需要用到符号工具箱。
可以通过输入`syms`命令来定义符号变量,例如`syms x`可以定义符号变量x。
在定义完符号变量之后,就可以使用这些变量进行符号计算了。
1.代数表达式的化简符号计算可以对代数表达式进行化简。
MATLAB提供了许多函数可以实现化简操作,如`simplify`、`collect`、`expand`等函数。
其中`simplify`函数可以将符号表达式化简为最简形式;`collect`函数可以将符号表达式按照指定的变量进行整理;`expand`函数可以将符号表达式展开为多项式形式。
例如,对于表达式`(x+1)^2`,可以使用`simplify`函数进行化简:```matlabsyms xexpr = (x + 1)^2;result = simplify(expr);```2.解方程符号计算可以解析地求解方程。
MATLAB提供了`solve`函数用于解方程。
`solve`函数可以通过指定的变量来解析地求解方程,并获得方程的解。
例如,对于方程`x^2 - 1 = 0`,可以使用`solve`函数求解:```matlabsyms xeqn = x^2 - 1;sol = solve(eqn, x);````sol`将得到方程的解,即`x = -1`和`x = 1`。
3.求导和积分符号计算可以对函数进行求导和积分。
MATLAB提供了`diff`函数用于求导,提供了`int`函数用于积分。
这些函数可以对符号表达式进行求导和积分,并获得结果。
例如,对于函数`f(x) = x^2`,可以使用`diff`函数求导:```matlabsyms xf=x^2;df = diff(f, x);```求导结果为`df = 2*x`。
第9章 MATLAB符号计算习题9一、选择题1.设有a=sym(4)。
则1/a+1/a的值是()。
BA.0.5 B.1/2 C.1/4+1/4 D.2/a2.函数factor(sym(15))的值是()。
DA.'15' B.15 C.[ 1, 3, 5] D.[ 3, 5]3.在命令行窗口输入下列命令:>> f=sym(1);>> eval(int(f,1,4))则命令执行后的输出结果是()。
AA.3 B.4 C.5 D.14.MA TLAB将函数展开为幂级数,所使用的函数是()。
DA.tailor B.tayler C.diff D.taylor5.MATLAB用于符号常微分方程求解的函数是()。
CA.solve B.solver C.dsolve D.dsolver二、填空题1.在进行符号运算之前首先要建立,所使用的函数或命令有和。
符号对象,sym,syms2.对于“没有定义”的极限,MATLAB给出的结果为;对于极限值为无穷大的极限,MA TLAB给出的结果为。
NaN,Inf3.在命令行窗口输入下列命令:>> syms n;>> s=symsum(n,1,10)命令执行后s的值是。
554.在MATLAB中,函数solve(s,v)用于代数方程符号求解,其中s代表,v 代表。
符号代数方程,求解变量5.在MA TLAB符号计算中y的二阶导数表示为。
D2y三、应用题1.分解因式。
(1)x9-1 (2)x4+x3+2x2+x+1(3)125x6+75x4+15x2+1 (4)x2+y2+z2+2(xy+yz+zx)(1):2x=sym('x'); A=x^9-1; factor(A) (2):x=sym('x');B=x^4+x^3+2*x^2+x+1; factor(B) 2.求函数的极限。
(1)4586lim 22++x x x x --4→x (2)xx -0→x lim(1):x=sym('x');A=(x^2-6*x+8)/(x^2-5*x+4); limit(A,x,4) (2):x=sym('x'); B=abs(x)/x; limit(B)3.求函数的符号导数。
MATLAB符号计算功能MATLAB是一种高级计算机语言和环境,广泛用于科学和工程计算。
除了数值计算功能,MATLAB还提供了符号计算功能,即能够进行符号推导和代数计算的能力。
本文将详细介绍MATLAB的符号计算功能,包括符号表达式和符号求解。
一、符号表达式在MATLAB中,可以使用符号对象来创建和操作符号表达式。
符号对象是一种特殊的MATLAB变量类型,用于存储和操作符号表达式,而不是数值。
符号表达式由符号变量和运算符组成,可以表示代数表达式、方程、微积分等。
1.创建符号变量可以使用syms函数创建符号变量。
例如,要创建一个名为x的符号变量,可以使用以下命令:syms x2.创建符号表达式可以使用符号变量和运算符创建符号表达式。
例如,要创建一个符号表达式x^2+2*x+1,可以使用以下命令:expr = x^2 + 2*x + 13.展示符号表达式可以使用disp函数将符号表达式显示在命令窗口中。
例如,要展示上述创建的符号表达式,可以使用以下命令:disp(expr)二、符号求解1.方程求解可以使用solve函数求解方程。
solve函数可以解代数方程、方程组和符号方程。
例如,要解方程x^2 + 2*x + 1 = 0,可以使用以下命令:sol = solve(x^2 + 2*x + 1 == 0, x)2.求导可以使用diff函数对符号表达式进行求导。
diff函数可以计算一阶、多阶和偏导数。
例如,要对表达式x^2 + 2*x + 1进行求导,可以使用以下命令:diff_expr = diff(expr, x)3.积分可以使用int函数对符号表达式进行积分。
int函数可以计算定积分和不定积分。
例如,要对表达式x^2 + 2*x + 1进行积分,可以使用以下命令:int_expr = int(expr, x)4.简化表达式可以使用simplify函数简化符号表达式。
simplify函数可以将符号表达式转化为其最简形式。
matlab的符号计算符号数学工具箱是操作和解决符号表达式的符号数学工具箱(函数)集合,有复合、简化、微分、积分以及求解代数方程和微分方程的工具。
另外还有一些用于线性代数的工具,求解逆、行列式、正则型式的精确结果,找出符号矩阵的特征值而无由数值计算引入的误差。
工具箱还支持可变精度运算,即支持符号计算并能以指定的精度返回结果。
符号数学工具箱中的工具是建立在功能强大的称作Maple软件的基础上。
它最初是由加拿大的滑铁卢(Waterloo)大学开发的。
当要求MATLAB进行符号运算时,它就请求Maple去计算并将结果返回到MATLAB命令窗口。
因此,在MATLAB中的符号运算是MATLAB处理数字的自然扩展。
8.1 符号表达式符号表达式是代表数字、函数、算子和变量的MATLAB字符串,或字符串数组。
不要求变量有预先确定的值,符号方程式是含有等号的符号表达式。
符号算术是使用已知的规则和给定符号恒等式求解这些符号方程的实践,它与代数和微积分所学到的求解方法完全一样。
符号矩阵是数组,其元素是符号表达式。
MATLAB在内部把符号表达式表示成字符串,以与数字变量或运算相区别;否则,这些符号表达式几乎完全象基本的MATLAB命令。
下表列有几则符号表达式例子以及MATLAB等效表达式。
符号表达式 MATLAB表达式'1/(2*x^n)'y='1/sqrt(2*x)''cos(x^2)-sin(2*x)'M=sym('[a,b;c,d]')f=int('x^3/sqrt(1-x)','a','b')MATLAB符号函数使我们能用多种方法来操作符号表达式,比如,>>diff('cos(x)') %differentiate cos(x) with respect to xans=-sin(x)>>M=sym('[a,b;c,d]') %create a symbolic matrix MM=[a,b][c,d]>>determ(M) %find the determinant of the symbolic matrix Mans=a*d-b*c要注意的是,以上第一例的符号表达式是用单引号以隐含方式定义的。
第3章MATLAB符号计算符号计算则是可以对未赋值的符号对象(可以是常数、变量、表达式)进行运算和处理。
MATLAB具有符号数学工具箱(Symbolic Math Toolbox),将符号运算结合到MATLAB的数值运算环境。
符号数学工具箱是建立在Maple软件基础上的。
3.1 符号表达式的建立Symbolic Math Toolbox2.1版规定在进行符号计算时,首先要定义基本的符号对象然后才能进行符号运算。
3.1.1 创建符号常量符号常量是不含变量的符号表达式,用sym命令来创建符号常量。
语法:sym(‘常量’) %创建符号常量例如,创建符号常量,这种方式是绝对准确的符号数值表示:>> a=sym('sin(2)')a =sin(2)sym命令也可以把数值转换成某种格式的符号常量。
语法:sym(常量,参数) %把常量按某种格式转换为符号常量说明:参数可以选择为’d’、’f’、’e’或’r’四种格式,也可省略,其作用如表3.1所示。
表3.1 参数设置a=sym('sin(2)')a =sin(2)例如,把常量转换为符号常量,按系统默认格式转换:a=sym(sin(2))a =8190223105242182*2^(-53)【例3.1】创建数值常量和符号常量。
a1=2*sqrt(5)+pi %创建数值常量a1 =7.6137a2=sym('2*sqrt(5)+pi') %创建符号表达式a2 =2*sqrt(5)+pia3=sym(2*sqrt(5)+pi) %按最接近的有理数型表示符号常量a3 =8572296331135796*2^(-50)a4=sym(2*sqrt(5)+pi,'d') %按最接近的十进制浮点数表示符号常量a4 =7.6137286085893727261009189533070a31=a3-a1 %数值常量和符号常量的计算a31 =a5='2*sqrt(5)+pi' %字符串常量a5 =2*sqrt(5)+pi图3.1 工作空间窗口可以通过查看工作空间来查看各变量的数据类型和存储空间,工作空间如图3.1所示。